Supplementary information for

Tuning CO₂ reaction enthalpy *via* metal complexes for advanced amine technology

Kangkang Li^{1,*}, Jian Chen², Simeng Li², Yang Liu², Paul Feron³, Hai Yu³, Hanming Liu⁴, Yong Cai⁵, Kaiqi Jiang^{6,*}

¹ Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, China

² State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, PR China

³ CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia

⁴ Beijing Key Laboratory of CO₂ Capture and Process, Huaneng Clean Energy Research Institute, Beijing, China

⁵ China National Petroleum Corporation, Yard 7 Kunlun Road, Changping District, Beijing

⁶ Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China

*Corresponding author:

Email address: kangkang.li@pku.edu.cn & kaiqi.jiang@ncepu.edu.cn

The SI contains 2 tables and 2 Figures:

Table S1. Chemical reactions and their equilibrium constants in Ni(II)-MEA-CO₂-H₂O system

Table S2. CO_2 loading performance in CO_2 absorption-desorption experiments in 2M MEA solution

Figure S1. Desorption system boundary to analyze the three components of regeneration duty including sensible heat, latent heat and reaction heat.

Figure S2. Rich split configuration of CO₂ desorption process to recover the latent heat.

MEA-CO ₂ -H ₂ O reaction ^a								
No.	Reactions	$lnK = A + \frac{B}{T} + ClnT + DT$ Equilibrium Constant						
		Α	В	С	D			
R1		170.7	-8477.7	21.9	0.005781			
R2	$\leftrightarrow H^+ + HCO_3^-$	231.46	-12092.1	-36.8	0			
R3	$HCO_{3}^{-} \leftrightarrow H^{+} + CO_{3}^{2-}$	216.0	-12431.7	-35.5	0			
R4	$MEA + H^+ \leftrightarrow MEAH^+$	1974.4	-7.5	56.0	0			
R5	$MEACOO^- + H_2O \leftrightarrow MEA + HCO_3^-$	47.7	-1.67	-13.07	0.0651			
	Ni-I	MEA complexa	tion ^b					
	Reactions	Equilibrium Constant lgK			ΔH, kJ/mol			
R6	$Ni^{2+} + MEA \leftrightarrow Ni(MEA)^{2+}$	3.12			-14			
R7	$Ni^{2+} + 2MEA \leftrightarrow Ni(MEA)^{2+}_{2}$	5.60			-30			
R8	$Ni^{2+} + 3MEA \leftrightarrow Ni(MEA)^{2+}_{3}$	7.30			-41			

Table S1. Chemical reactions and their equilibrium constants in Ni(II)-MEA-CO₂-H₂O system.

Note: ^a Equilibrium constants are from Kim et al²²; ^b stability constants and enthalpies are from NIST Data Gateway²³.

Table S2 CO₂ loading performance in CO₂ absorption-desorption experiments in 2M MEA solution

	CO ₂ loading				
Ni(II) concentration	Ni/MEA=0	Ni/MEA=0.05	Ni/MEA=0.10	Ni/MEA=0.15	
CO ₂ absorption at 25 °C	0.53	0.51	0.46	0.41	
CO ₂ desorption at 40 °C	0.47	0.47	0.36	0.30	
CO ₂ desorption at 60 °C	0.33	0.32	0.25	0.21	
CO ₂ desorption at 80 °C	0.26	0.22	0.20	0.15	
Cyclic loading between 25°C and 40 °C	0.06	0.04	0.15	0.16	
Cyclic loading between 25°C and 60 °C	0.20	0.19	0.21	0.20	
Cyclic loading between 25°C and 80 °C	0.27	0.29	0.26	0.26	

Figure S1. Desorption system boundary to analyze the three components of regeneration duty including sensible heat, latent heat and reaction heat.

Figure S2. Rich split configuration of CO_2 desorption process to recover the latent heat.