Solvent-free aerobic photocatalytic oxidation of C(sp³)–H

and C(sp³)–OH to C=O bonds

Xulu Jiang, ^a Weitao Wang, ^{*,a} Huan Wang, ^a Zhen-Hong He, ^a Yang Yang, ^a Kuan

Wang, ^a Zhao-Tie Liu ^{*,a, b} Buxing Han ^{*,c}

^a Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.

^b School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

^c Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

**E*-mails: wangweitao@sust.edu.cn (W. Wang), ztliu@snnu.edu.cn (Z.-T. Liu), hanbx@iccas.ac.cn_(B. Han)

1. EXPERIMENT Page S2

- 2. TABLES Pages S3-S6
- **3. FIGURES Pages S7-17**

4. REFERENCES Pages S18-19

5. NMR DATA Pages S20-S55

6. HPLC/GC, HPLC-MS/GC-MS, AND ¹H NMR DATA Pages S56-91

1. EXPERIMENT

The conversion of ethyl benzene (Conv.), the yield of acetophenone (Y) and the selectivity of acetophenone (Sel.) were calculated as follows:

 $Conversion (ethyl benzene) = \left(1 - \frac{n_{remaining ethylbenzene}}{n_{initial ethylbenzene}}\right) \times 100\%$ $Conversion (ethyl benzene) = \frac{n_{acetophenone}}{n_{ninitial ethylbenzene}} \times 100\%$ $Yield (acetophenone) = \frac{Yield_{acetophenone}}{Conversion_{ethyl benzene}} \times 100\%$

2. TABLES

Entry	Catalyst	Substrate	Reaction conditions	Solvent	Conv	Fr (µmol·g-1·h-1)ª	Ref.
1		Ethydhangana	Catalyst (20 mg) 10 W white LED 2>420 mm 1 atm	a a a ta mitrila	· (%)	416	[1]
1	4CD/DIIVIO	Euryibenzene	Catalyst (20 mg), 10 w white LED, \mathcal{N} 420 mil, 1 atm O. RT 16 b	(8 mI)	30	410	[1]
2	VO@g-C ₃ N ₄	Ethylbenzene	Catalyst (25 mg), 40 W domestic bulb, H_2O_2 (1.5 mmol), RT, 12 h.	acetonitrile (2 mL)	99	3330	[2]
3	BiVO ₄ /Ag/C ₃ N ₄	Ethylbenzene	Catalyst (50 mg), visible light irradiation ($\lambda >$ 400 nm), O ₂ flow rate (3 mL· min ⁻¹), RT, 3 h.	acetonitrile (5 mL)	>99	140	[3]
4	a-Fe ₂ O ₃	Ethylbenzene	Catalyst (10 mg), NHPI (4 mg), HY zeolite (3 mg), O ₂ (1 atm), blue LED light (455 nm, 3 W), RT, 8 h.	acetonitrile (1 mL)	98	58.4	[3]
5	FePW/g-C ₃ N ₄	Ethylbenzene	Catalyst (10 mg), <i>t</i> BuOOH (2.5 mmol), purple LED lamp (15 W, 425 nm, 13.4 mW· cm ⁻²), RT, 15 h.	acetonitrile (10 mL)	99	6600	[4]
6	BiOBr _{0.85} I _{0.15}	Ethylbenzene	Catalyst (10 mg), NHSI 3 mg, 1 atm O_2 , purple LED lamp (15 W, 425 nm, 13.4 mW·cm ⁻²), RT, 15 h.	acetonitrile (10 mL)	98	614	[5]
7	TCNS-5	Ethylbenzene	Catalyst (20 mg), 1 atm O_2 , solar light, 35 °C, 6 h.	acetonitrile (10 mL)	56.1	1561	[6]
8	p-BiOBr	Ethylbenzene	Catalyst (20 mg), 1 atm O ₂ , H ₂ O:TBA=2:2, 300 W xenon lamp λ >320 nm, RT, 10 h.	acetonitrile (10 mL)	80	680	[7]
9	W10/C8 -AP- SBA	Ethylbenzene	Catalyst (60 mg), O ₂ (3 mL·min ⁻¹), H ₂ O:TBA=2:2, λ >320 nm, 6~10 °C, 6 h.	acetonitrile/water =1:1 (4 mL)	97	4443	[8]
10	SACo@g-C ₃ N ₄	Ethylbenzene	Catalyst (5 mg), 0.5 mmol PMS, λ>320 nm, 60 °C, 15 h.	acetonitrile/water =1:1 (4 mL)	97.5	1242	[9]
11	C, N-TiO ₂ nanosheet	Ethylbenzene	Catalyst (10 mg), 1 atm O ₂ , 100 W Xe lamp ($350 < \lambda < 780$ nm), RT, 6 h.	methanol (5 mL)	100	1563	[10]
12	CdS nanocrystals	Ethylbenzene	Catalyst (5 mg), 1 atm O ₂ , 40 W CFL lamp, RT, 2 h.	benzotrifluoride (5 mL)	50	2250	[11]
13	Nb ₂ O ₅	Ethylbenzene	Catalyst (100 mg), O ₂ flow, 2 mL·min ⁻¹ , 40 W CFL lamp, RT, 24 h.	· /	0.35	112	[12]

Table S1 Photocatalytic oxidation of ethylbenzene to acetophenone over different catalysts.

14	5wt%Pd/CeO2	Ethylbenzene	Catalyst (20 mg), 1 mmol TBHP, visible light, 80 °C, 4 h.	- 99.8	9855	[13]
15	Ag/AgBr/TiO ₂	Ethylbenzene	Catalyst (30 mg), 1 atm Air, CFL White 15 W, RT, 4 h.	- 90	2160	[14]
16	Ce-BTC MOF	Ethylbenzene	Catalyst (70 mg), O_2 5.5 mL·min ⁻¹ , LED λ =450 nm, 160 °C, 20 h.	85	23681	[15]
17	1% Pd/H $_2$ Ti $_3$ O $_7$	Benzyl alcohol	Catalyst (100 mg), 1 atm O ₂ , Halogen lamp (150 W), 90 °C, 6h.	89	98318.0	[16]
18	Ir/TiO ₂ -p	Benzyl alcohol	Catalyst (300 mg), 1 atm O ₂ , Halogen lamp (315-420 nm), 80 °C, 6 h.	11	17203	[17]
19	$Pd/TiO_2(B)$	Benzyl alcohol	Catalyst (100 mg), 1 atm O_2 , Halogen lamp (150 W), 90 °C, 4 h.	82	2016.0	[18]
20	Cu/Nb ₂ O ₅	Benzyl alcohol	Catalyst (100 mg), 1 atm O_2 , Halogen lamp (150 W), RT, 24 h.	36	14285.7	[19]
21	Pt-TiO ₂	Benzyl alcohol	Catalyst (50 mg), 1 atm O_2 , λ =366 nm, RT, 1 h.	71	440	[20]
22	ZnO/C ₃ N ₄	Benzyl alcohol	Catalyst (100 mg), EDTA-2Na (1 mmol), 1 atm O ₂ , light source (blue LED light, 10 W, λ =400-405 nm), RT, 12 h.	99.8	16633.3	[21]
23	0.27% PdO/C-	Ethylbenzene	Catalyst (100 mg), 1 atm O ₂ , light source (blue LED			This
	Nb_2O_5	•	light, 10 W, λ=400-405 nm), RT, 12 h.	67.4	10997	work
24	0.27% PdO/C-	Ethylbenzene	Catalyst (100 mg), 1 atm O ₂ , light source (blue LED	80.4	6776	This
	Nb_2O_5		light, 10 W, λ=400-405 nm), RT, 24 h.			work
25	0.27% PdO/C-	Ethylbenzene	Catalyst (100 mg), 1 atm O ₂ , light source (blue LED			This
	Nb_2O_5		light, 10 W, λ=400-405 nm), RT, 48 h.	87.4	3665	work
26	0.27% PdO/C-	Benzyl alcohol	Catalyst (100 mg), 1 atm O ₂ , light source (blue LED			This
	Nb ₂ O ₅		light, 10 W, λ=400-405 nm), RT, 12 h.	99.0	16500	work

^a Formation rate (Fr) = μ mol_{acetophenone}·g_{catalyst}⁻¹·h_{reaction time}⁻¹.

Entry	Catalyst	Oxidation	Reaction conditions	Conv. (%)	Sel. (%)	Ref.
1	BCW-4	O ₂ (3 mL/min),	benzene (0.5mmol), photocatalyst (50 mg), acetonitrile (3 mL), H ₂ O (100 μ L), light irradiation ($\lambda \ge 400$ nm), RT, 3 h.	5.8%	>99%	22
2	ZnTi-LDH	1 atm air	Benzene (0.2 mmol), 20 mL H ₂ O, 20 mg catalyst, 300 W Xe lamp, 3 h, and 48 °C.	5.7%	81.12%	23
3	Pt/TiO ₂ -P	1 atm O ₂	Benzene (18.8 μmol), H ₂ O 7.5 mL, 300 W Xe lamp, RT, 12 h.	26.6	83.8%	24
4	C16 Qu-PW	1 atm air	benzene (1.28 mmol), photocatalyst (50 mg), acetonitrile 10 mL, water 1 mL, atmospheric air, RT, 10 h.	20.9	>99%	25
5	$W_{10}O_{32}$	1 atm O ₂	benzene (0.5mmol), photocatalyst (20 mg), Water/aceticacid (5/1), 300 W xenon lamp; 10 °C, 1 h.	21.0	81	26
6	$(C_{16}$ -Quin) ₂ V ₆	1 atm O ₂	benzene (0.5mmol), photocatalyst (50 mg), (H ₂ O/CH ₃ CN, $3:17 = v:v$), light irradiation ($\lambda \ge 400$ nm), RT, 12 h.	22.5	99%	27
7	MIL-100(Fe)	H_2O_2 (2 mmol)	benzene (0.5 mmol), photocatalyst (10 mg), CH ₃ CN/H2O, 1:1=4 mL, light irradiation ($\lambda \ge 420$ nm), 8 h.	22.5%	92%	28
8	0.2 NCWCN	H_2O_2 (2 mmol)	benzene (1 mL, 11.3 mmol), catalyst (20 mg), RT, 15 min, sunlight.	98.5	82.7	29
9	FeVO ₄	H ₂ O ₂ (25 mmol)	Benzene (10 mmol), acetonitrile (6 mL), catalyst (50 mg), 300 W Xe lamp, RT, 4 h.	30.4	100	30
10	CuO@CN	H ₂ O ₂ (25 mmol)	Benzene (1 mmol), MeCN (6 mL), catalyst (40 mg), RT, 12 h and AM 1.5 illumination.	99.9%	99.9%	31
12	PdO/C-Nb ₂ O ₅	1 atm O ₂	Benzene (1 mmol), acetonitrile (2 mL), catalyst (100 mg), blue LED lamp (10 W, 400-405 nm), RT, 48 h.	7.6%	100	This work
13	PdO/C-Nb ₂ O ₅	1 atm O ₂	Benzene (1 mmol), acetonitrile (2 mL), catalyst (150 mg), blue LED lamp (10 W, 400-405 nm), RT, 72 h.	8.03%	100	This work

 Table S2 Photocatalytic oxidation of benzene to phenol over different catalysts.

Table S3 1 exture properties of prepared materials.							
Entry	Samples	BET surface area (m ² /g)	BJH adsorption average pore	BJH pore cumulative volume ($\times 10^{-3} \text{ cm}^{3}/\text{g}$)			
			diameter (nm)				
1	Nb ₂ O ₅ -P	31	16.1881	0.128706			
2	$C-Nb_2O_5$	233	5.4603	0.229425			
3	0.27% PdO/C-Nb ₂ O ₅	205	5.1025	0.231228			

. . <u>сэ</u> т

Table S4 X-ray photoelectron spectra of C, Pd, Nb, and O element on the samples surface.

Entry	Catalysts	C (at. %)	Pd (at. %)	Nb (at. %)	O (at. %)
1	Nb ₂ O ₅ -P	8.32	-	57.52	34.16
2	$C-Nb_2O_5$	30.24	-	14.56	55.2
3	0.27% PdO/C-Nb ₂ O ₅	17.39	0.10	20.61	61.9

Table S5 The ICP results of 0.27% PdO/C-Nb₂O₅ Sample ICP content Theoretical content Entry (Pd wt.%) (Pd wt.%) 1 Fresh PdO/C-Nb₂O₅ 0.274 0.267 Used PdO/C-Nb₂O₅ 0.257 0.267 2

Table S6 Photocatalytic oxidation reactions over PdO/Nb2O5 and PdO/C-Nb2O5

Entry	Catalyst	Substrate	Conversion (%)	Selectivity (%)
1	PdO/Nb ₂ O ₅	ethylbenzene	23.3	87.5
2	PdO/Nb_2O_5	1-phenylethanol	43.4	88.9
3	PdO/C-Nb ₂ O ₅	ethylbenzene	67.4	97.7
4	PdO/C-Nb ₂ O ₅	1-phenylethanol	91.2	98.9

Reaction conditions: substrate 20 mmol, catalyst 100 mg, oxygen pressure 0.1 atm, 25 °C, blue LED light (10 W, $\lambda = 400-405$ nm), and a stirring speed of 1500 rpm.

3. FIGURES

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 fl (ppm)

Figure S2 ¹H and ¹³C NMR spectra of acetophenone

Figure S3 The TG curves of various catalysts

Figure S4 XRD patterns of fresh and used PdO/C-Nb₂O₅.

Figure S5 FT-IR spectra of fresh and used PdO/C-Nb₂O₅.

Figure S7 TEM images of the fresh (a, b) and used (c, d) 0.27% PdO/C-Nb₂O₅.

Figure S8 1-Phenylethanol peak area change diagram against time during the reaction. Reaction conditions: substrate (20 mmol), 100 mg of catalyst, 1 atm of oxygen, 10 W blue LED lamp λ =400-405 nm, room temperature.

The conclusion of consecutive reaction was based on the fact that the 1-phenylethanol was detected and the amount of 1-phenylethanol was determined. The amount of the 1-phenylethanol was roughly determined by the peak area of HPLC due to the content was too low. As shown in Fig. S8, it can be found that the amount of 1-phenylethanol was first increase and the decrease with the reaction undergoing, which was the typical characteristic of reaction intermediate compound in the consecutive reaction. Therefore, we postulated the reaction was a consecutive reaction and the 1-phenylethanol was the intermediate.

Figure S9 Kinetic study for the conversion of (a-c) ethyl benzene, and (d-f) 1-phenylethanol over Nb₂O₅-P (a, d), C-Nb₂O₅ (b, e), and 0.27% PdO/C-Nb₂O₅ (c, f). Reaction conditions: substrate (20 mmol), 100 mg of catalyst, 1 atm of oxygen, 10 W blue LED lamp λ =400-405 nm, room temperature.

Figure S10 1H NMR spectra of the pure ethylbenzene (a) and ethylbenzene exchanged by H and D (b) Reaction conditions: ethylbenzene 5 mmol, catalyst 100 mg, 2 mL CD₃OD, 0.1 atm N², 25 °C, blue LED light (10 W, $\lambda = 400-405$ nm), and a stirring speed of 1500 rpm. The deuterated solvent is CDCl₃, 600 MHz NMR spectrometer.

Figure S11 ¹H NMR spectra of the propylene and butylbenzene product mixtures Reaction conditions: substrate 20 mmol, catalyst 100 mg, oxygen pressure 0.1 atm, 25 °C, blue LED light (10 W, $\lambda = 400-405$ nm), and a stirring speed of 1500 rpm. The deuterated solvent is DMSO-*d*, 600 MHz NMR spectrometer.

Reaction conditions: substrate 20 mmol, catalyst 100 mg, oxygen pressure 0.1 atm, 25 °C, blue LED light (10 W, $\lambda = 400-405$ nm), and a stirring speed of 1500 rpm. The deuterated solvent is DMSO-*d*, 600 MHz NMR spectrometer.

The reacted mixture obtained under standard conditions was detected by ¹H NMR using DMSO-d₆ as solvent. The ¹H NMR spectrum was shown in Fig. S12. The H in the peroxide was expected to be located at 4.20 ppm, H on the benzyl group was expected to be at 4.98 ppm, and H on the methyl was expected to be at 1.52 ppm. However, the H peak in the peroxide position was not detected in the ¹H NMR spectrum (Fig. S12), which may be because the peroxide was unstable and difficult to exist stably.

Figure S13 Mechanistic experiments

Reaction conditions: substrate 20 mmol, catalyst 100 mg, TEMPO 1 mmol, oxygen pressure 0.1 atm, 25 °C, blue LED light (10 W, $\lambda = 400-405$ nm), and a stirring speed of 1500 rpm. HPLC-MS determination.

4. REFERENCES

- 1 S. Samanta, S. Khilari, R. Srivastava, ACS Appl. Nano Mater, 2017, 1, 426-441.
- 2 S. Verma, R.B. Nasir Baig, M.N. Nadagouda, R.S. Varma, P, ACS Sustain. Chem. Eng., 2016, 4, 2333-2336.
- 3 P. Chen, Y. Li, C. Xiao, L. Chen, J.-K. Guo, S. Shen, C.-T. Au, S.-F. Yin, ACS Sustain. Chem. Eng., 2019, 7, 17500-17506.
- 4 Y. Wang, P. Li, J. Wang, Z. Liu, Y. Wang, Y. Lu, Y. Liu, L. Duan, W. Li, S. Sarina, H. Zhu, J. Liu, *Catal. Sci. Tecnol.*, 2021, **11**, 4429-4438.
- 5 Y. Bian, Y. Gu, X. Zhang, H. Chen, Z. Li, Chin. Chem. Lett., 2021, 32, 2837-2840.
- 6 B. Srinivas, P. Anil Kumar Reddy, M. Rajesh, V. Durga Kumari, M. Subrahmanyam, B. R. De, *Res. Chem. Intermediat.*, 2011, **37**, 901-918.
- 7 X. Cao, A. Huang, C. Liang, H. C. Chen, T. Han, R. Lin, Q. Peng, Z. Zhuang, R. Shen, H. M. Chen, Y. Yu, C. Chen, Y. Li, J. Am. Chem. Soc., 2022, 144, 3386-3397.
- 8 L. Ni, J. Ni, Y. Lv, P. Yang, Y. Cao, Chem. Commun., 2009, 2171-2173.
- 9 J. Li, S. Zhao, S.-Z. Yang, S. Wang, H. Sun, S.P. Jiang, B. Johannessen, S. Liu, J. Mater. Chem. A, 2021, 9, 3029-3035.
- 10 X. Cheng, J. Zhang, L. Liu, L. Zheng, F. Zhang, R. Duan, Y. Sha, Z. Su, F. Xie, *Green Chem.*, 2021, 23, 1165-1170.
- 11 S.K. Pahari, P. Pal, D.N. Srivastava, S. Ghosh, A.B. Panda, Chem. Commun., 2015, 51, 10322-10325.
- 12 S. Furukawa, T. Shishido, K. Teramura, T. Tanaka, J. Phys. Chem. C, 2011, 115, 19320-19327.
- 13 L. Kalita, L. Saikia, ChemistrySelect, 2020, 5, 4848-4855.
- 14 M. Hosseini-Sarvari, A. Dehghani, New J. Chem., 2020, 44, 16776-16785.
- 15 M.M. Peng, M. Ganesh, R. Vinodh, M. Palanichamy, H.T. Jang, Arab. J. Chem., 2019, , 1358-1364.
- 16 M. Du, G. Zeng, J. Huang, D. Sun, Q. Li, G. Wang, X. Li, ACS Sustain. Chem. Eng., 2019, 7, 9717-9726.
- 17 W. Feng, G. Wu, L. Li, N. Guan, Green Chem., 2011, 13, 3265-3272.
- 18 M. Du, G. Zeng, C. Ye, H. Jin, J. Huang, D. Sun, Q. Li, B. Chen, X. Li, Mol Cat., 2020, 483, 110771.
- 19 S. Furukawa, A. Tamura, T. Shishido, K. Teramura, T. Tanaka, *Appl. Catal. B Environ.*, 2011, **110**, 216-220.
- 20 K. Imamura, H. Tsukahara, K. Hamamichi, N. Seto, K. Hashimoto, H. Kominami, *Appl. Catal. A Gen.*, 2013, **450**, 28-33.
- 21 X. Jiang, W. Wang, H. Wang, Z.-H. He, Y. Yang, K. Wang, Z.-T. Liu, B. Han, *Green Chem.*, 2022, 24, 7652-7660.
- 22 P. Chen, L. Chen a, Y. Zeng, F. Ding, X. Jiang, N. Liu, C.-T. Au, S.-F. Yin, *Appl. Catal. B Environ.*, 2018, **234**, 311-317.
- 23 J. -X. Li, Y. -Q. Xu, Z. -Z. Ding, A. H. Mahadi, Y.-F. Zhao, Y.-F. Song, *Chem. Eng. J.*, 2020, **388**, 124248
- 24 O. Tomita, B. Ohtani, R. Abe, Catal. Sci. Tecnol., 2014, 4, 3850-3860.

- 25 L. -Y. Zhang, Q. Hou, Y. Zhou, J. Wang, Mol Cat., 2019, 473, 110397.
- 26 Z.-R. Wang, H. Hojo, H. Einaga, Mol Cat., 2021, 515, 111933.
- 27 Y. -Q. Gu, Q. Li, D. -J. Zang, Y. -C. Huang, H. Yu, Y. -G. Wei, *Angew. Chem. Int. Ed.*, 2021, 60, 13310-13316.
- 28 D. -K. Wang, M. -T. Wang, Z. -H. Li, ACS Catal., 2015, 5, 6852-6857.
- 29 P. Basyach, A. K. Guha, S. Borthakur, L. Kalita, P. Chetia, K. Sonowal, L. Saikia, *J. Mater. Chem. A*, 2020, **8**, 12774-12789.
- 30 S. Samanta, R. Srivastava, Appl. Catal. B Environ., 2017, 218, 621-636.
- 31 L. -J. Sun, D.-X. Wang, Y. -X. Li, B.-G. Wu, Q. Li, C. Wang, S. Wang, B. -J. Jiang, *Chin. Chem. Lett.*, 2023, **34**, 107490.

5. NMR DATA

Figure S14 ¹H and ¹³C NMR spectrogram of acetophenone

2-Methylacetophenone

3-Methylacetophenone

¹H NMR (600 MHz, Chloroform-*d*) δ 7.85 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 2.56 (s, 3H), 2.40 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 196.75, 163.49, 130.46 (d, J = 35.2 Hz), 113.68, 55.45, 26.30.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -**Figure S17 ¹H and ¹³C NMR spectrogram of 4-methylacetophenone**

4-Methoxy-acetophenone

¹H NMR (600 MHz, Chloroform-*d*) δ 8.09 (d, J = 8.9 Hz, 2H), 7.08 (d, J = 8.9 Hz, 2H), 4.01 (s, 3H), 2.70 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 196.75, 163.49, 130.57, 130.34, 113.68, 55.45, 26.30.

Figure S18 ¹H and ¹³C NMR spectrogram of 4-methoxy-acetophenone

4-Hydroxyacetophenone

¹H NMR (600 MHz, DMSO- d_6) δ 10.33 (s, 1H), 7.84 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 2.48 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 194.01, 159.97, 128.69, 126.56, 113.12, 24.23.

Figure S19¹H and ¹³C NMR spectrogram of 4-hydroxyacetophenone

2-Hydroxyacetophenone

¹H NMR (600 MHz, DMSO- d_6) δ 11.99 (s, 1H), 7.88 (dd, J = 8.1, 1.5 Hz, 1H), 7.65 – 7.39 (m, 1H), 7.15 – 6.83 (m, 2H), 2.63 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 202.59, 158.79, 134.26, 129.41, 117.15, 115.54, 25.55.

2-Bromophenone

¹H NMR (600 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 8.0 Hz, 1H), 7.46 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.29 (td, *J* = 7.9, 1.7 Hz, 1H), 2.63 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 201.34, 141.45, 133.84, 131.81, 128.92, 127.46, 118.88, 30.31.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

4-Bromoacetophenone

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 2.58 (s, 3H). ¹³**C NMR (151 MHz, Chloroform-***d***)** δ 196.94, 135.78, 131.83, 129.79, 128.24, 26.47.

4-Iodophenone

Figure S23 ¹H and ¹³C NMR spectrogram of 4-iodophenone

4-Aminoacetophenone

H₂N

¹H NMR (600 MHz, DMSO-*d*₆) δ 7.67 (d, *J* = 8.4 Hz, 2H), 6.57 (d, *J* = 8.4 Hz, 2H), 6.04 (s, 2H), 2.39 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 195.44, 154.12, 131.07, 125.35, 112.96, 26.35.

Figure S24 ¹H and ¹³C NMR spectrogram of 4-aminoacetophenone

4-Nitrophenone

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.31 (td, *J* = 5.8, 4.7, 2.3 Hz, 2H), 8.21 – 8.08 (m, 2H), 2.75 – 2.68 (m, 3H). ¹³**C NMR (151 MHz, Chloroform-***d***)** δ 196.42, 150.28, 141.37, 129.32, 123.81, 26.96.

Figure S25 ¹H and ¹³C NMR spectrogram of 4-nitrophenone

Benzophenone

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.80 (d, *J* = 7.9 Hz, 4H), 7.58 (t, *J* = 7.4 Hz, 2H), 7.47 (t, *J* = 7.7 Hz, 4H). ¹³**C NMR (151 MHz, Chloroform-***d***)** δ 196.80, 137.61, 132.46, 130.09, 128.31.

Figure S26 ¹H and ¹³C NMR spectrogram of benzophenone

4, 4-Dihydroxy-benzophenon

¹H NMR (600 MHz, DMSO- d_6) δ 10.30 (s, 2H), 7.62 (d, J = 8.7 Hz, 4H), 6.90 (d, J = 8.7 Hz, 4H). ¹³C NMR (151 MHz, DMSO- d_6) δ 193.56, 161.74, 132.54, 129.30, 115.52.

4, 4-Diaminobenzophenone

¹H NMR (600 MHz, DMSO-*d*₆) δ 7.47 (d, *J* = 8.4 Hz, 4H), 6.61 (d, *J* = 8.4 Hz, 4H), 5.93 (s, 4H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 150.44, 129.78, 123.45, 110.37.

Figure S28 ¹H and ¹³C NMR spectrogram of 4, 4-diaminobenzophenon

Xanthone

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.33 (d, *J* = 7.9 Hz, 2H), 7.71 (t, *J* = 7.8 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H). ¹³**C NMR (151 MHz, Chloroform-***d***)** δ 137.30, 132.27, 129.89, 129.27, 126.31, 125.99.

Thioxanthen-9-one

¹H NMR (600 MHz, Chloroform-*d*) δ 8.63 (s, 2H), 7.55 (d, *J* = 80.1 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 179.98, 137.30, 132.27, 129.89, 126.31, 125.99.

Benzaldehyde

¹**H NMR (600 MHz, Chloroform-***d***)** δ 10.02 (s, 1H), 7.88 (d, *J* = 7.9 Hz, 2H), 7.62 (q, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H). ¹³**C NMR (151 MHz, Chloroform-***d***)** δ 179.98, 137.30, 129.89, 129.27, 126.31, 125.99.

0.02	88 88 63 63 63 63 63 63 63 63 63 63 53 53
2	~~~~~
1	

Figure S31 ¹H and ¹³C NMR spectrogram of benzaldehyde

Cyclohexanone

¹**H NMR (600 MHz, Chloroform-***d***)** δ 9.70 (d, *J* = 7.7 Hz, 1H), 7.56 (dd, *J* = 7.3, 2.2 Hz, 2H), 7.52 - 7.33 (m, 4H), 6.72 (dd, *J* = 15.9, 7.7 Hz, 1H). ¹³**C NMR (151 MHz, Chloroform-***d***)** δ 211.98, 41.88, 26.93, 24.90.

 $\begin{array}{c} 9.70\\ 9.69\\ 7.57\\ 7.57\\ 7.57\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.49\\ 7.49\\ 7.49\\ 7.42\\$

Figure S32 ¹H and ¹³C NMR spectrogram of cyclohexanone

^{OH} ¹H NMR (400 MHz, DMSO- d_6) δ 9.35 (s, 1H), 7.20 – 7.16 (m, 2H), 6.80-6.76 (d, J = 8.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 157.82, 129.87, 119.30, 115.72.

Figure S33 ¹H and ¹³C NMR spectrogram of phenol

Benzaldehyde

н

¹**H NMR (600 MHz, Chloroform-***d***)** δ 10.03 (s, 1H), 7.89 (d, J = 8.1 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H). ¹³**C NMR (151 MHz, Chloroform-***d***)** δ 192.46, 136.41, 134.50, 129.77, 129.02.

Figure S34 ¹H and ¹³C NMR spectrogram of benzaldehyde

Phenylacetaldehyde

¹H NMR (600 MHz, Chloroform-*d*) δ 9.64 (s, 1H), 7.28 (t, *J* = 7.5 Hz, 2H), 7.22 (d, *J* = 7.3 Hz, 2H), 7.12 (d, *J* = 7.7 Hz, 2H), 3.58 (s, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 199.50, 131.90, 129.66, 129.04, 127.45, 50.60.

Cinnamaldehyde

¹H NMR (600 MHz, Chloroform-*d*) δ 9.70 (s, 1H), 7.56 (dd, J = 7.3, 2.2 Hz, 2H), 7.51 – 7.39 (m, 4H), 6.72 (dd, J = 15.9, 7.7 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 193.80, 152.88, 134.01, 131.32, 129.14, 128.57 (d, J = 9.7 Hz).

Furfural

¹H NMR (600 MHz, Chloroform-d) δ 9.67 (s, 1H), 7.71 (s, 1H), 6.62 (s, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 177.90, 153.01, 148.08, 121.01, 112.59.

Figure S38 ¹H and ¹³C NMR spectrogram of furfural

2, 5-Diformylfuran

¹H NMR (600 MHz, Chloroform-*d*) δ 9.87 (s, 2H), 7.35 (s, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 179.25, 154.22, 119.26.

Figure S39 ¹H and ¹³C NMR spectrogram of 2, 5-diformylfuran

5-Methyl furfural

¹H NMR (600 MHz, Chloroform-*d*) δ 9.51 (s, 1H), 7.17 (d, *J* = 3.5 Hz, 1H), 6.24 (d, *J* = 3.4 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 176.92, 159.86, 151.92, 109.50, 14.11.

Figure S40 ¹H and ¹³C NMR spectrogram of 5-methyl furfural

Figure S41 ¹H and ¹³C NMR spectrogram of 5-carboxy-2-formylfuran

2-Thiophene formaldehyde

Figure S42 ¹H and ¹³C NMR spectrogram of 2-thiophene formaldehyde

4-Quinolinecarboxaldehyde

¹H NMR (600 MHz, Chloroform-*d*) δ 10.53 (s, 1H), 9.22 (d, J = 4.2 Hz, 1H), 9.04 (d, J = 9.2 Hz, 1H), 8.24 (d, J = 8.4 Hz, 1H), 7.89 – 7.69 (m, 3H), 7.26 (s, 1H).¹³C NMR (151 MHz, Chloroform-*d*) δ 192.88, 150.46, 149.28, 136.78, 130.21, 130.05, 129.41, 125.82, 124.44, 123.89.

Figure S43 ¹H and ¹³C NMR spectrogram of 4-quinolinecarboxaldehyde

Indole-3-carboxaldehyde

¹**H NMR (600 MHz, Chloroform-***d***)** δ 10.08 (s, 1H), 8.73 (s, 1H), 8.33 (d, J = 8.6 Hz, 1H), 7.94 -7.71 (m, 1H), 7.45 (s, 1H), 7.36 - 7.30 (m, 2H).¹³**C NMR (151 MHz, DMSO-***d***₆)** δ 185.42, 138.92, 137.55, 124.61, 123.92, 122.58, 121.30, 118.65, 112.89.

Figure S45 ¹H and ¹³C NMR spectrogram of cyclohexanone

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Figure S46 ¹H and ¹³C NMR spectrogram of n-propionaldehyde

n-Butylaldehyde

¹H NMR (600 MHz, Chloroform-*d*) δ 9.77 (s, 1H), 2.42 (tdd, J = 7.3, 1.8, 0.8 Hz, 2H), 1.69 - 1.64 (m, 2H), 0.96 (dd, J = 7.4, 0.8 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 202.89, 45.71, 15.58, 13.64.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure S47 ¹H and ¹³C NMR spectrogram of n-butylaldehyde n-Hexanal

¹H NMR (600 MHz, Chloroform-*d*) δ 9.77 (s, 1H), 2.42 (dt, J = 7.5, 4.6 Hz, 2H), 1.64 (p, J = 7.4 Hz, 2H), 1.33 (td, J = 8.1, 7.0, 4.7 Hz, 4H), 0.92 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 203.02, 43.88, 31.30, 22.40, 21.75, 13.86.

S54

Figure S49 ¹H and ¹³C NMR spectrogram of n-decanal

6. HPLC/GC, GC-MS/HPLC-MS, AND ¹H NMR DATA Acetophenone

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 fl (ppm) HPLC, GC-MS, and ¹H NMR spectrogram of acetophenone

HPLC, GC-MS, and ¹H NMR spectrogram of 2-methylacetophenone

HPLC, GC-MS, and ¹H NMR spectrogram of 3-methylacetophenone

HPLC, GC-MS, and ¹H NMR spectrogram of 4-methoxy-acetophenone

S61

^{f1 (ppm)} HPLC, GC-MS, and ¹H NMR spectrogram of 2-hydroxyacetophenone

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 HPLC, GC-MS, and ¹H NMR spectrogram of 4-Iodoacetophenone

HPLC, GC-MS, and ¹H NMR spectrogram of 4-aminoacetophenone

Benzophenone

HPLC, GC-MS, and ¹H NMR spectrogram of benzophenone

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 HPLC, HPLC-MS, and ¹H NMR spectrogram of 4, 4-dihydroxybenzophenone

HPLC, HPLC-MS, and ¹H NMR spectrogram of 4, 4-diaminobenzophenone

9-Thioxanthone

HPLC, HPLC-MS, and ¹H NMR spectrogram of 9-thioxanthone
Benzaldehyde

HPLC, GC-MS, and ¹H NMR spectrogram of benzaldehyde

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 fl (ppm) GC, GC-MS, and ¹H NMR spectrogram of cyclohexanone

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 GC, GC-MS, and ¹H NMR spectrogram of phenol

Benzaldehyde

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 fl (ppm) HPLC, GC-MS, and ¹H NMR spectrogram of benzaldehyde

Phenyl acetaldehyde

HPLC, GC-MS, and ¹H NMR spectrogram of phenyl acetaldehyde

Cinnamaldehyde

HPLC, GC-MS, and ¹H NMR spectrogram of cinnamaldehyde

S79

HPLC, GC-MS, and ¹H NMR spectrogram of furfural

2, 5-Diformylfuran

HPLC, GC-MS, and ¹H NMR spectrogram of 2, 5-diformylfuran

HPLC, GC-MS, and ¹H NMR spectrogram of 5-methylfurfural

HPLC, GC-MS, and ¹H NMR spectrogram of 5-formylfuran-2-carboxylicacid

HPLC, GC-MS, and ¹H NMR spectrogram of 2-thiophene formal dehyde

HPLC, GC-MS, and ¹H NMR spectrogram of 4-quinoline formaldehyde

HPLC, GC-MS, and ¹H NMR spectrogram of 3-indolecarboxaldehyde

GC, GC-MS, and ¹H NMR spectrogram of n-butylaldehyde

GC, GC-MS, and ¹H NMR spectrogram of n-decanal