Supporting Information

Unified and Green Oxidation of Amides and Aldehydes for Hofmann and Curtius Rearrangements

Liyan Song^{*a}, Yufei Meng^a, Tongchao Zhao^a, Lifang Liu^a, Xiaohong Pan^a, Binbin Huang^a, Hongliang Yao^b, Ran Lin^{*a} and Rongbiao Tong^{*b,c}

^aKey Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China

^bGuangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Lab oratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sc iences, Guangzhou, Guangdong, China

^cDepartment of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.

Email (L. Song): <u>songliyan@fafu.edu.cn</u> Email (R. Lin): <u>linran@fafu.edu.cn</u>

Email (R. Tong): rtong@ust.hk

General Information	S-2
The References for Known Compounds	S-3
Preparation of Primary Amide Substrates	S-6
Preparation of <i>N</i> -Chlorobenzamide (2a)	S-6
Oxone-KCI Halogenation of Primary Amides for Hofmann Rearrangement	S-6
The Screening of Solvents	S-11
Oxone-KBr Mediated Azidation of Aldehydes for Curtius Rearrangement	S-12
Oxone-KBr Mediated Azidation of Aldehydes to Afford Acyl Azides	S-17
Hofmann Rearrangement with Alcohol/Amine/Amide	S-22
Curtius Rearrangement with Amines to Generate (Chiral) Ureas/Amides	S-23
Gram Scale Synthesis of Chiral Ligands 7i and 7j	S-29
Control Experiments	S-29

Table of Contents

References	S-31
¹ H and ¹³ C NMR Spectra	S-32

General Information: Reactions were carried out in oven or flame-dried glassware under a nitrogen atmosphere, unless otherwise noted. Tetrahydrofuran (THF) was freshly distilled before use from sodium using benzophenone as indicator. Dichloromethane was freshly distilled before use from calcium hydride (CaH₂). All other anhydrous solvents were dried over 3Å or 4Å molecular sieves. Solvents used in workup, extraction and column chromatography were used as received from commercial suppliers without prior purification. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC, 0.25 mm) on Liangchen pre-coated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size 0.040 – 0.062 mm) supplied by Liangchen. Infrared spectra were collected on a Bruker model TENSOR27 spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Bruker AVIII-400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, 376 MHz for ¹⁹F). Chemical shifts are reported in parts per million (ppm) as values relative to the internal chloroform (7.26 ppm for ¹H and 77.16 ppm for ¹³C) or DMSO (2.50 ppm for ¹H and 39.52 ppm for ¹³C). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad peak. Optical rotations were measured on a JASCO Perkin-Elmer model P-2000 polarimeter. High resolution mass spectra were measured at Keecloud Mass Spectrometry Service Company on either an Thermo Scientific LTQ Orbitrap XL system or a Bruker solariX System. Melting point was recorded on a Laboratory Devices model MEL-TEMP II melting point apparatus. The aldehyde substrates and (chiral) amines were purchased from Aldrich or J&K Scientific.

The References for Known Compounds

Compound	References
Urethylane	Moriyama, K.; Ishida, K.; Togo, H. Org. Lett. 2012 , <i>14</i> , 946-949.
anthranilate	
1ad	Flynn, D. L.; Caldwell, T. M.; Kaufman, M. D.; Patt, W. C.; Samarakoon, T.;
	Vogeti, L.; Yates, K. M. N-Acyl-N-(Pyridin-2-yl) Ureas and Analogs
	Exhibiting Anti-cancer and Anti-proliferative Activities. U.S. Patent
	2014/0275080, Sep. 18. 2014.
2a	Yu, X.; Chen, K.; Guo, S.; Shi, P.; Song, C.; Zhu, J. Org. Lett. 2017, 19,
	5348-5351.
1ac, 3a, 3c, 3e, 3f,	Li, J.; Xue, M.; Yan, X.; Liu, W.; Xu, K.; Zhang, S. Org. Biomol. Chem. 2018,
3g, 3h, 3j, 3m, 3o,	<i>16</i> , 4615.
3q, 3ac, 3ae, 3af,	
3ag, 3ao, 3ax	
3b, 3x, 3aa, 3ab	Yoshimura, A.; Middleton, K. R.; Luedtke, M. W.; Zhu, C.; Zhdankin, V. V.
	J. Org. Chem. 2012, 77, 11399.
3d	Xu, D.; Guan, J.; Xu, X.; Gong, S.; Xu. H. J. Heterocyclic Chem. 2016, 53,
	1469.
3r	Borah, A. J.; Phukan, P. <i>Tetrahedron Lett</i> . 2012 , <i>53</i> , 3035.
3i, 3l, 3n, 3ad, 3ak	Uhlig, N.; Li, CJ. Chem. Eur. J. 2014 , 20, 12066.
3р	Das, M.; Rodriguez, A.; Lo, P. K. T.; Moran, W. J. Adv. Syn. Catal. 2021,
	363, 1646.
3s	Wehman, P.; Borst, L.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Chem.
	Ber. 1997 , <i>130</i> , 13.
3t	Massacret, M.; Lhoste, P.; Sinou, D. Eur. J. Org. Chem. 1999, 1999, 129.
3z	Jew, Ss.; Park, H. G.; Park, HJ.; Park, Ms.; Cho, Ys. Tetrahedron Lett.
	1990 , <i>31</i> , 1559.

3ah	Germain, N.; Hermsen, M.; Schaub, T.; Trapp, O. Appl. Organometal.
	<i>Chem</i> . 2017 , <i>31</i> , e3733.
3ai	Yang, Q.; Robertson, A.; Alper, H. Org. Lett. 2008, 10, 5079.
3aj	Zhang, L.; Xiao, P.; Guan, X.; Huang, Z.; Zhang, J.; Bi, X. Org. Biomol.
	Chem. 2017 , <i>15</i> , 1580.
3an	Guan, ZH.; Lei, H.; Chen, M.; Ren, ZH.; Bai, Y.; Wang, YY. Adv. Synth.
	Catal. 2012 , 354, 489.
3ar	Wu, Y.; Ding, X.; Yang, Y.; Li, Y.; Qi, Y.; Hu, F.; Qin, M.; Liu, Y.; Sun, L.;
	Zhao, Y. <i>Eur. J. Med. Chem</i> . 2020 , <i>185</i> , 111781.
3au	Wang, B.; He, J.; Sun, R. C. Chin. Chem. Lett. 2010, 21, 794.
3av	Gogoi, P.; Konwar, D. Tetrahedron Lett. 2007, 48, 531.
3aw	Kim, JG.; Jang, D. O. Tetrahedron Lett. 2009, 50, 2688.
5a, 5b, 5c, 5d, 5e,	Joseph, D.; Lee, S. Org. Lett. 2022, 24, 6186.
5g, 5h, 5i, 5j, 5k, 5l,	
5m, 5o, 5u, 5ac, 5ad,	
5ae	
5f, 5p, 5n	Yu, TY.; Zheng, ZJ.; Dang, TT.; Zhang, FX.; Wei, H. J. Org. Chem.
	2018 , <i>83</i> , 10589.
5q	Bellotti, P.; Brocus, J.; Orf, F. E.; Selkti, M.; Konig, B.; Belmont, P.;
	Brachet, E. <i>J. Org. Chem.</i> 2019 , <i>84</i> , 6278.
5t	Arote, N. D.; Akamanchi, K. G. Tetrahedron Lett. 2007, 48, 5661.
5v	Bagal, D. B.; Park, SW.; Song, HJ.; Chang, S. Chem. Commun. 2017, 53,
	8798.
5w	Akae, Y.; Sogawa, H.; Takata, T. Eur. J. Org. Chem. 2019, 2019, 3605.
5z	Kang, T.; Kim, Y.; Lee, D.; Wang, Z.; Chang, S. J. Am. Chem. Soc. 2014,
	136, 4141.
5ab	Kumar, R.; Arigela, R. K.; Kundu, B. <i>Chem. Eur. J.</i> 2015 , <i>21</i> , 11807.
6a, 7a	Tiwari, L.; Kumar, V.; Kumar, B.; Mahajan, D. <i>RSC Adv</i> . 2018 , <i>8</i> , 21585.
6b	Zhang, C.; Liu, J.; Cheng, Z.; Li, J.; Song, S.; Jiao, N. Synlett 2023 , 34, 1534.

6c, 7b	Zhu, X.; Xu, M.; Sun, J.; Guo, D.; Zhang, Y.; Zhou, S.; Wang, S. Eur. J. Org.
	Chem. 2021 , 2021, 5213.
6d	Li, Z.; Xu, S.; Huang, B.; Yuan, C.; Chang, W.; Fu, B.; Jiao, L.; Wang, P.;
	Zhang, Z. J. Org. Chem. 2019, 84, 9497.
6e	Mackewitz, T.; Volland, M.; Paciello, R.; Schafer, A.; Breit, B.; Seiche, W.
	Hydrofomylation. U.S. Patent 7,049,473, May 23, 2006.
7c	Hu, Q.; Wang, L.; Wang, C.; Wu, Y.; Ding, Z.; Yuan, R. <i>RSC Adv</i> . 2017 , 7,
	37200.
7d	Marivel, S.; Arunachalam, M.; Ghosh, P. Cryst. Growth Des. 2011, 11,
	1642.
7e	Breitler, S.; Oldenhuis, N. J.; Fors, B. P.; Buchwald, S. L. Org. Lett. 2011,
	13, 3262.
7f	Wang, LM.; Du, BQ.; Zuo, DZ.; Cheng, MK.; Zhao, M.; Zhao, SJ.;
	Zhai, X.; Gong, P. Res. Chem. Intermed. 2016, 42, 3209.
7g	Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc.
7g	Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
7g 7i	Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. <i>J. Am. Chem. Soc.</i> 2005 , <i>127</i> , 119. Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. <i>Org.</i>
7g 7i	 Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. Org. Lett. 2014, 16, 4256.
7g 7i 7k	 Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. Org. Lett. 2014, 16, 4256. McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367.
7g 7i 7k 7l	 Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. Org. Lett. 2014, 16, 4256. McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367. Mallojjala, S. C.; Sarkar, R.; Karugu, R. W.; Manna, M. S.; Ray, S.;
7g 7i 7k 7l	 Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. Org. Lett. 2014, 16, 4256. McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367. Mallojjala, S. C.; Sarkar, R.; Karugu, R. W.; Manna, M. S.; Ray, S.; Mukherjee, S.; Hirschi, J. S. J. Am. Chem. Soc. 2022, 144, 17399.
7g 7i 7k 7l 7m	 Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. Org. Lett. 2014, 16, 4256. McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367. Mallojjala, S. C.; Sarkar, R.; Karugu, R. W.; Manna, M. S.; Ray, S.; Mukherjee, S.; Hirschi, J. S. J. Am. Chem. Soc. 2022, 144, 17399. Kohler, M. C.; Yost, J. M.; Garnsey, M. R.; Coltart, D. M. Org. Lett. 2010,
7g 7i 7k 7l 7m	 Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. Org. Lett. 2014, 16, 4256. McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367. Mallojjala, S. C.; Sarkar, R.; Karugu, R. W.; Manna, M. S.; Ray, S.; Mukherjee, S.; Hirschi, J. S. J. Am. Chem. Soc. 2022, 144, 17399. Kohler, M. C.; Yost, J. M.; Garnsey, M. R.; Coltart, D. M. Org. Lett. 2010, 12, 3376.
7g 7i 7k 7l 7m 8	 Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. Org. Lett. 2014, 16, 4256. McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367. Mallojjala, S. C.; Sarkar, R.; Karugu, R. W.; Manna, M. S.; Ray, S.; Mukherjee, S.; Hirschi, J. S. J. Am. Chem. Soc. 2022, 144, 17399. Kohler, M. C.; Yost, J. M.; Garnsey, M. R.; Coltart, D. M. Org. Lett. 2010, 12, 3376. Alzpurua, J. M.; Palomo, C. Synthesis 1982, 1982, 684.
7g 7i 7k 7l 7l 7m 8 10	 Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. Org. Lett. 2014, 16, 4256. McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367. Mallojjala, S. C.; Sarkar, R.; Karugu, R. W.; Manna, M. S.; Ray, S.; Mukherjee, S.; Hirschi, J. S. J. Am. Chem. Soc. 2022, 144, 17399. Kohler, M. C.; Yost, J. M.; Garnsey, M. R.; Coltart, D. M. Org. Lett. 2010, 12, 3376. Alzpurua, J. M.; Palomo, C. Synthesis 1982, 1982, 684. Liu, J.; Yi, H.; Zhang, X.; Liu, C.; Liu, R.; Zhang, G.; Lei, A. Chem. Commun.

Preparation of Primary Amide Substrates

The amide substrates are known compounds. Most of them are purchased from Aldrich or J&K Scientific directly. 1ac-1ad were prepared following the related procedures. Analytical data (¹H NMR and ¹³C NMR) matches with the literature.

Preparation of *N*-Chlorobenzamide (2a)

To a stirred solution of benzamide (36 mg, 0.3 mmol) in the MeCN/H₂O (10/1, 1.1 mL) at 0 °C were added KCI (34 mg, 0.45 mmol) and Oxone (138 mg, 0.45 mmol). After completion of the addition, the resulting mixture was stirred for 10 min before warmed to room temperature and stirred for an additional 4 h. When the aromatic amide substrate was fully consumed as determined by TLC analysis, the mixture was quenched by addition of water (5 mL). The aqueous mixture was extracted with EA (3 X 10 mL). The combined organic fractions were washed with brine, dried over Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 10/1) to provide the desired compound 2a (38 mg, 81% yield) as an off-white solid.

¹H NMR (400 MHz, CDCl₃) δ: 8.19 (s, br), 7.80-7.77 (m, 2H), 7.54-7.50 H NMR (400 MHz, CDCl₃) 6: 8.19 (S, b1), 7.80-7.77 (m, 2H), 7.54-7.50 (m, 1H), 7.42-7.39 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ : 167.5, 132.6, ^{2a} 121.0, 138.0 (2xC), 127.8 (2xC) 131.9, 128.9 (2×C), 127.8 (2×C).

Oxone-KCI Halogenation of Primary Amides for Hofmann Rearrangement

General Procedure A: To a stirred solution of aromatic amide substrate (0.3 mmol) in the MeCN/H₂O (10/1, 1.1 mL) at 0 °C were added KCI (34 mg, 0.45 mmol) and Oxone (138 mg, 0.45 mmol). After completion of the addition, the resulting mixture was stirred for 10 min before warmed to room temperature and stirred for an additional 2 h. When the aromatic amide substrate was fully consumed as determined by TLC analysis, methanol (0.6 mL) and NaOH (18 mg, 0.45 mmol) was added sequentially. The mixture was allowed to be stirred for 5 hrs and quenched by addition of sat. aq. Na₂SO₃ (5 mL). The volatiles (mainly methanol and MeCN) was removed under reduced pressure and the aqueous mixture was extracted with EA (3 X 10 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 10/1) to provide the desired compound **3**.

Urethylane anthranilate

Urethylane anthranilate. 24 mg, 38% yield; white solid. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta$: 10.5 (br, 1H), 8.42 (dd, J = 8.4, 0.4 Hz, 1H), 8.00 (dd, J = 8.4, 1.6 Hz, 1H), 7.55-7.51 (m, 1H), 7.04-7.00 (m, 1H), 3.91 (s, 3H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 168.6, 154.2, 141.9, 134.7, 131.0, 121.7, 118.9, 114.6, 52.4.

3a. 40 mg, 89% yield; white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.40-7.37 (m, 2H), 7.33-7.28 (m, 2H), 7.09-7.04 (m, 1H), 6.70 (br, s), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.2, 137.9, 129.2 (2×C), 123.6 (2×C), 118.8, 52.5.

ö Me 3c

F₃CC 3d

118.2 (2×C), 52.8.

3c. 41 mg, 83% yield; white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.26 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 6.62 (br, 1H),

3.76 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.3, 135.3, 133.2, 129.7 (2×C), 118.9 (2×C), 52.4, 20.9. **3d**. 59 mg, 84% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ :

7.40 (d, J = 8.8 Hz, 2H), 7.15 (d, J = 8.8 Hz, 2H), 6.89 (br, 1H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.2, 144.9, 136.7, 122.0 (2×C), 120.6 (q, J = 255 Hz), 119.9 (2×C), 52.6.

3e. 44 mg, 87% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.36-7.30 (m, 2H), 7.02-6.96 (m, 2H), 6.78 (br, 1H), 3.76 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 159.1 (d, J = 241 Hz), 154.4, 133.9, 120.6 (2×C), 115.8 (d, J = 23 Hz, 2×C), 52.5.

3f. 46 mg, 83% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.36-7.33 (m, 2H), 7.28-7.25 (m, 2H), 6.77 (br, 1H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.1, 136.6, 129.1 (2×C), 128.5, 120.0 (2×C), 52.6.

3g. 58 mg, 84% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.40 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.8 Hz, 2H), 6.79 (br, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.0, 137.1, 132.1 (2×C), 120.3 (2×C), 116.0, 52.6.

3h. 49 mg, 75% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.55 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.8 Hz, 2H), 6.93 (br, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.8, 141.1, 126.5 $(q, J = 3.4 \text{ Hz}, 2 \times \text{C}), 125.3 (q, J = 33 \text{ Hz}), 124.3 (q, J = 270 \text{ Hz}),$

3i. 34 mg, 58% yield; yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.20 (d, J = 9.2 Hz, 2H), 7.56 (d, J = 9.2 Hz, 2H), 7.04 (br, 1H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.4, 144.0, 143.1, 125.4 (2×C), 117.8 (2×C), 53.1.

3j. 40 mg, 81% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.23 (s, 1H), 7.21-7.17 (m, 2H), 6.89-6.87 (m, 1H), 6.70 (br, 1H), 3.77 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.2, 139.1, 137.8, 129.0, 124.4, 119.4, 115.9, 52.4, 21.6.

3k. 56.5 mg, 80% yield; white solid. m.p. = 79-81 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.43 (s, 1H), 7.31-7.22 (m, 2H), 6.97 (br, 1H), 6.92-6.89 (m, 1H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 154.0, 149.8 (q, J = 1.9 Hz), 139.5, 130.2, 120.5 (q, J = 256

Hz), 116.8, 115.6, 111.5, 52.7. ¹⁹**F NMR** (376 MHz, CDCl₃) δ: -57.8 (3×F). **HRMS** (ESI) m/z calculated for C₉H₉O₃NF₃⁺ [M+H]⁺ 236.0529, found 236.0530.

3I. 42 mg, 83% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.35 (d, *J* = 10.8 Hz, 1H), 7.25 (td, *J* = 8.4, 6.8 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.86 (br, 1H), 6.78 (tdd, *J* = 8.4, 2.4, 0.8 Hz, 1H), 3.80 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 163.3 (d, *J* = 243 Hz),

153.9, 139.6 (d, *J* = 11 Hz), 130.3 (d, *J* = 9.5 Hz), 114.0, 110.2 (d, *J* = 21 Hz), 106.2 (d, *J* = 26 Hz), 52.6.

3m. 42 mg, 76% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.50 (s, 1H), 7.22-7.18 (m, 2H), 7.04-7.01 (m, 1H), 6.81 (br, 1H), 3.77 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 153.9, 139.2, 134.8, 130.1, 123.6, 118.8, 116.7, 52.6.

3n. 54.5 mg, 83% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.71 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 6.96 (br, 1H), 3.79 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 154.1, 138.6, 131.6 (q, *J* = 32 Hz), 129.7, 124.0

(q, *J* = 271 Hz), 121.7, 120.1 (q, *J* = 3.7 Hz), 115.4, 52.7.

3o. 41 mg, 82% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.76 (br, 1H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.16 (d, *J* = 7.2 Hz, 1H), 7.04 (t, *J* = 7.2 Hz, 1H), 6.46 (s, 1H), 3.78 (s, 3H), 2.25 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 154.5, 135.9, 130.5 (2×C), 127.0, 124.3, 121.3, 52.5,

ö

3q

3p. 54 mg, 76% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 8.19 (d, J = 7.6 Hz, 1H), 7.30-7.22 (m, 2H), 7.07-7.03 (m, 1H), 6.96 (br, 1H), 3.80 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 153.7, 137.8, 130.8, 127.7, 123.4, 120.7 (q, J = 258 Hz), 120.5 (q, J = 1.0 Hz), 120.4, 52.7. **3q**. 39.5 mg, 78% yield; colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ : 8.13-8.03 (m, 1H), 7.14-6.96 (m, 3H), 6.89 (br, 1H), 3.79(s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 153.8, 152.2 (d, J = 241 Hz), 126.5 (d, J = 10 Hz), 124.7 (d, J = 3.7 Hz), 123.5 (d, J = 7.2 Hz), 120.3, 114.9 (d, J

= 18.9 Hz), 52.7. ¹⁹**F NMR** (376 MHz, CDCl₃) δ: -129.9.

3r. 44.5 mg, 80% yield; colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ : 8.18 (d, *J* = 8.0 Hz, 1H), 7.36 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.29 (td, *J* = 8.0, 1.2 Hz, 1H), 7.18 (br, 1H), 7.01 (td, *J* = 8.0, 1.6 Hz, 1H), 3.82 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 153.8, 134.8, 129.2, 127.9, 123.8, 122.2, 120.0, 52.7.

3s. 51 mg, 77% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 8.12 (d, J = 8.0 Hz, 1H), 7.58-7.82 (m, 2H), 7.17 (t, J = 8.0 Hz, 1H), 6.95 (br, 1H), 3.80 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 154.0, 135.7, 133.1, 126.2 (q, J = 5.3 Hz), 124.2 (q, J = 271 Hz), 123.6, 122.6, 119.3

(q, J = 28.5 Hz), 52.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ: -60.8 (3×F).

3t. 42 mg, 63% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 10.51 (br, 1H), 8.42 (dd, J = 8.4, 0.8 Hz, 1H), 8.00 (dd, J = 8.4, 1.6 Hz, 1H), 7.53 (ddd, J = 8.4, 7.6, 1.6 Hz, 1H), 7.04-7.00 (m, 1H), 3.91 (s, 3H), 3.78 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 168.6, 154.2, 141.9, 134.7, 131.0, 121.7, 118.9, 114.6, 52.4

3u. 49 mg, 53% yield; colorless oil. ¹H NMR (400 MHz, CDCl₃) δ: 8.69 (br, 1H), 7.40-7.33(m, 6H), 7.21-7.12 (m, 3H), 3.68 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 156.2, 153.4, 153.2, 138.5, 138.0, 131.1, 129.8, 129.3 (2×C), 128.9, 128.3, 127.2, 126.1, 128.8 (2×C), 52.8, 21.4. HRMS (ESI) *m/z*

calculated for $C_{17}H_{17}O_2N_4^+$ [M+H]⁺ 309.1346, found 309.1344.

General Procedure B: To a stirred solution of aliphatic amide substrate (0.3 mmol) in the MeCN/H₂O (10/1, 1.1 mL) at 0 °C were added KCI (34 mg, 0.45 mmol) and Oxone (138 mg, 0.45 mmol). After completion of the addition, the resulting mixture was stirred for 10 min before warmed to room temperature and stirred for an additional 2 h. When the aromatic amide substrate was fully consumed as determined by TLC analysis, methanol (1.5 mL) and Cs₂CO₃ (147 mg, 0.45 mmol) was added sequentially. The mixture was allowed to be stirred for 5 hrs and quenched by addition of sat. aq. Na₂SO₃ (5 mL). Voletiles (mainly methanol and MeCN) was removed under reduced pressure and the aqueous mixture was extracted with EA (3 X 10 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure summer the residue was purified by flash column chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 10/1) to provide the desired compound **3**.

3b. 44 mg, 89% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.37-7.27 (m, 5H), 5.18 (br, 1H), 4.38 (d, *J* = 6.0 Hz, 2H), 3.71 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 157.2, 138.6, 128.7 (2×C), 127.6, 127.5 (2×C), 52.3, 45.1.

3v. 60 mg, 87% yield; white solid. m.p. = 49-51 °C. ¹H NMR (400 MHz, CDCl₃) δ: 4.71 (br, 1H), 3.64 (s, 3H), 3.15 (q, *J* = 6.8 Hz, 2H), 1.50-1.43 (m, 2H), 1.30-1.23 (m, 16H), 0.86 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 157.2, 52.1, 41.2, 32.0, 30.1, 29.7 (2×C),

29.6, 29.5, 29.4, 26.8, 22.8, 14.2. **HRMS** (ESI) *m*/*z* calculated for C₁₃H₂₈O₂N⁺ [M+H]⁺ 230.2115, found 230.2116.

3w. 83 mg, 88% yield; white solid. m.p. = 51-53 °C. ¹H NMR (400 MHz, CDCl₃) δ : 4.71 (br, 1H), 3.64 (s, 3H), 3.14 (q, *J* = 6.8 Hz, 2H), 1.48-1.23 (m, 30H), 0.86 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 157.2, 52.1, 41.2, 32.0, 30.1, 29.81 (2×C), 29.79 (2×C),

29.78 (2×C), 29.76, 29.7, 29.6, 29.5, 29.4, 26.8, 22.8, 14.2. HRMS (ESI) m/z calculated for C₁₉H₄₀O₂N⁺ [M+H]⁺ 314.3054, found 314.3049.

3x. 46 mg, 86% yield; colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.33-7.29 (m, 2H), 7.25-7.18 (m, 3H), 4.71 (br, 1H), 3.65 (s, 3H), 3.42 (q, *J* = 6.8 Hz, 2H), 2.81 (t, *J* = 6.8 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 157.1, 138.9, 128.9 (2×C), 128.8 (2×C), 126.6, 52.2, 42.3,

36.3.

3y. 34.5 mg, 79% yield; colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ : 4.49 (br, 1H), 3.70-3.64 (m, 1H), 3.63 (s, 3H), 1.41-1.27 (m, 4H), 1.11 (d, *J* = 6.4 Hz, 3H), 0.89 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 156.6, 51.9, 46.9, 39.5, 21.4, 19.3, 14.0. **HRMS** (ESI) *m*/*z* $H_{16}O_{2}N^{+}$ [M+H]⁺ 146 1176 found 146 1177

calculated for $C_7H_{16}O_2N^+$ [M+H]⁺ 146.1176, found 146.1177.

3z. 46 mg, 88% yield; colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ: 4.45 (br, 1H), 3.63 (s, 3H), 3.54-3.47 (m, 1H), 1.54-1.24 (m, 8H), 0.89-0.85 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 157.0, 52.7, 52.0, 34.7, 28.2, 28.1, 22.7, 14.1, 10.2.

3aa. 33 mg, 76% yield; colorless oil. ¹H NMR (400 MHz, CDCl₃) δ: 4.66 (br, 1H), 3.97-3.95 (m, 1H), 3.63 (s, 3H), 1.97-1.89 (m, 2H), 1.69-1.52 (m, 4H), 1.41-1.33 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 156.7, 52.9, 52.0, 33.3 (2×C), 23.6 (2×C).

3ab. 37 mg, 78% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ: 4.64 (br, 1H), 3.62 (s, 3H), 3.49-3.41 (m, 1H), 1.92-1.88 (m, 2H), 1.70-1.64 (m, 2H), 1.59-1.54 (m, 1H), 1.36-1.23 (m, 2H), 1.18-1.05 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 156.3, 51.9, 49.9, 33.5, 25.6 (2×C), 24.9

(2×C).

3ac. 50 mg, 84% yield; colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ : 4.57 (br, 1H), 3.62 (s, 3H), 3.43-3.23 (m, 1H), 2.03-1.94 (m, 2H), 1.74-1.67 (m, 2H), 1.46-1.34 (m, 1H), 1.10-0.95 (m, 5H), 0.83 (d, *J* = 6.8 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 156.4,

51.9, 50.5, 43.3, 33.7, 32.6 (2×C), 28.5 (2×C), 20.0 (2×C).

3ad. 24.5 mg, 56% yield; colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ : 4.53 (br, 1H), 3.60 (s, 3H), 1.65 (q, *J* = 7.6 Hz, 2H), 1.26 (s, 6H), 0.85 (t, *J* = 7.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 155.5, 53.0, 51.5, 33.2, 29.8, 26.7, 8.5. **HRMS** (ESI) *m*/*z* calculated for C₇H₁₆O₂N⁺

[M+H]⁺ 146.1176, found 146.1176.

3ae. 45 mg, 72% yield; white solid. ¹**H NMR** (400 MHz, CDCl₃) δ: 4.55 (br, 1H), 3.58 (s, 3H), 2.05 (s, 3H), 1.90 (d, *J* = 1.6 Hz, 6H), 1.64 (t, *J* = 3.2 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 155.1, 51.4, 50.7, 41.9 (3×C), 36.4 (3×C), 29.5 (3×C).

The Screening of Solvents

Many solvents were applied to the oxidation of aldehydes for Curtius rearrangements. The results were summarized in Table 1. We found that PhCF₃ outperformed other solvents (except CCl₄) to secure the best yield. Octafluorotoluene is much more expensive than PhCF₃.

Entry	Solvent	Yield (%)
1	CHCI ₃	68
2	CH_2CI_2	57
3	CCI ₄	76
4	pentane	50
5	hexane	46
6	heptane	33
7	octane	27
8	nonane	26
9	decane	20
10	petroleum ether (60-90)	26
11	naphthane	38
12	cyclohexane	45
13	Methylcyclohexane	46
14	Ethylcyclohexane	45
15	toluene	53
16	cumene	21
17	DMF	0
18	THF	0

19	MeCN	0
20	ethyl acetate	0
21	ether	0
22	1,4-dioxane	0
23	anisole	0
24	isopropanol	0
25	<i>t</i> BuOH	0
26	methanol	0
27	ethanol	0
28	CF ₃ CH ₂ OH	38
29	perfluorohexane	58
30	perfluorobenzene	65
31	PhCF₃	71
32	octafluorotoluene	71

^aCondition: to a solution of **4f** (0.3 mmol) in the solvent (3 mL, ACS grade and used as received) at rt were added KBr (0.45 mmol), Oxone (0.45 mmol) and NaN₃ (0.6 mmol). After stirring for 24 hrs, the reaction mixture was filtered and the filtrate was concentrated. The residue was dissolved in dry toluene/MeOH [10:1 (v/v), 3.3 mL] and stirred at 100 $^{\circ}$ C for 2 hrs. The reaction progress was monitored by TLC.

Oxone-KBr Mediated Azidation of Aldehydes for Curtius Rearrangement

General Procedure C: To a stirred solution of aromatic aldehyde substrate (0.3 mmol) in the PhCF₃ (analytical grade, 3.0 mL) or CCl₄ (analytical grade, 3.0 mL) at 0 °C were added KBr (54 mg, 0.45 mmol) and Oxone (166 mg, 0.54 mmol) and stirred for 5 min. Then sodium azide (49 mg, 0.75 mmol or 43 mg, 0.66 mmol) was added. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and vigorously stirred for an additional 24-36 h. When the aromatic aldehyde substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was used for the next step without further purification. An oven-dried pressure tube under nitrogen atmosphere was charged with the residue and dry toluene (3 mL) and MeOH (0.3 mL). The reaction mixture was heated to 100°C for 2 hours and then cooled to room temperature. The solvent (toluene and methanol) was removed under reduced pressure and the residue distribute mathematication was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 10/1) to provide the desired compound **3**.

3a. 38.5 mg, 85% yield (PhCF₃); 40 mg, 89% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.40-7.37 (m, 2H), 7.33-7.28 (m, 2H), 7.09-7.04 (m, 1H), 6.70 (br, s), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.2, 137.9, 129.2 (2×C), 123.6 (2×C), 118.8, 52.5.

3c. 41 mg, 83% yield (PhCF₃); 37.5 mg, 76% yield (CCl₄); white solid. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.26 (d, *J* = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 6.62 (br, 1H), 3.76 (s, 3H), 2.30 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ: 154.3, 135.3, 133.2, 129.7 (2×C),

118.9 (2×C), 52.4, 20.9.

3e. 36 mg, 71% yield (PhCF₃); 39.5 mg, 78% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.36-7.30 (m, 2H), 7.02-6.96 (m, 2H), 6.78 (br, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 159.1 (d, J = 241 Hz), 154.4, 133.9, 120.6 (2×C), 115.8 (d, J = 23

Hz, 2×C), 52.5.

3f. 45.5 mg, 82% yield (PhCF₃); 48 mg, 86% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.36-7.33 (m, 2H), 7.28-7.25 (m, 2H), 6.77 (br, 1H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.1, 136.6, 129.1 (2×C), 128.5, 120.0 (2×C), 52.6.

3g. 50.5 mg, 73% yield (PhCF₃); 57.5 mg, 83% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.40 (d, *J* = 8.8 Hz, 2H), 7.28 (d, J = 8.8 Hz, 2H), 6.79 (br, 1H), 3.76 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 154.0, 137.1, 132.1 (2×C), 120.3 (2×C), 116.0, 52.6.

3h. 45 mg, 68% yield (PhCF₃); 50 mg, 76% yield (CCl₄); white solid. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.55 (d, *J* = 8.8 Hz, 2H), 7.50 (d, J = 8.8 Hz, 2H), 6.93 (br, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.8, 141.1, 126.5 (q, *J* = 3.4 Hz, 2×C), 125.3 (q, J = 33 Hz), 124.3 (q, J = 270 Hz), 118.2 (2xC), 52.8.

3i. 39 mg, 66% yield (PhCF₃); 34 mg, 58% yield (CCl₄); yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.20 (d, J = 9.2 Hz, 2H), 7.56 (d, J = 9.2 Hz, 2H), 7.04 (br, 1H), 3.82 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ: 153.4, 144.0, 143.1, 125.4 (2×C), 117.8 (2×C),

53.1.

3j. 39 mg, 79% yield (PhCF₃); 38 mg, 77% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.23 (s, 1H), 7.21-7.17 (m, 2H), 6.89-6.87 (m, 1H), 6.70 (br, 1H), 3.77 (s, 3H), 2.33 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ: 154.2, 139.1, 137.8, 129.0, 124.4,

119.4, 115.9, 52.4, 21.6.

3I. 40 mg, 79% yield (PhCF₃); 39 mg, 77% yield (CCl₄); white solid. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.35 (d, J = 10.8 Hz, 1H), 7.25 (td, J= 8.4, 6.8 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 6.86 (br, 1H), 6.78 (tdd, J = 8.4, 2.4, 0.8 Hz, 1H), 3.80 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃)

δ: 163.3 (d, J = 243 Hz), 153.9, 139.6 (d, J = 11 Hz), 130.3 (d, J = 9.5 Hz), 114.0, 110.2 (d, J = 21 Hz), 106.2 (d, J = 26 Hz), 52.6.

3m. 43.5 mg, 78% yield (PhCF₃); 48 mg, 86% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.50 (s, 1H), 7.22-7.18 (m, 2H), 7.04-7.01 (m, 1H), 6.81 (br, 1H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.9, 139.2, 134.8, 130.1, 123.6, 118.8, 116.7,

52.6.

3n. 58 mg, 88% yield (PhCF₃); 50.5 mg, 77% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.71 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 6.96 (br, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.1, 138.6,

131.6 (q, J = 32 Hz), 129.7, 124.0 (q, J = 271 Hz), 121.7, 120.1 (q, J = 3.7 Hz), 115.4, 52.7.

3q. 0 mg, 0% yield (PhCF₃); 27 mg, 53% yield (CCl₄); colorless oil. ¹H NMR (400 MHz, CDCl₃) δ: 8.13-8.03 (m, 1H), 7.14-6.96 (m, 3H), 6.89 (br, 1H), 3.79(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.8, 152.2 (d, J = 241 Hz), 126.5 (d, J = 10 Hz), 124.7 (d, J = 3.7 Hz), 123.5 (d, J = 7.2 Hz), 120.3, 114.9 (d, J = 18.9 Hz), 52.7. ¹⁹F NMR (376 MHz, CDCl₃) δ : -129.9.

ОМе MeO 3ag

3af. 49 mg, 79% yield (PhCF₃); 48.5 mg, 78% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.32 (s, 4H), 6.74 (br, 1H), 3.77 (s, 3H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.3, 146.5, 135.3, 126.0 (2×C), 118.6 (2×C), 52.4, 34.4, 31.5 (3×C).

3ag. 33.5 mg, 62% yield (PhCF₃); 44.5 mg, 82% yield (CCl₄); white solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.28 (d, *J* = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.66 (br, 1H), 3.78 (s, 3H), 3.75 (s,

3H). ¹³C NMR (100 MHz, CDCl₃) δ: 156.0, 155.0, 131.0, 120.8 (2×C), 114.3 (2×C), 55.6, 52.4.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.57 (d, *J* = 8.8 Hz, 2H), 7.16 (d, *J* = 8.8 Hz, 2H), 6.84 (br, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.0, 138.0 (2×C), 137.8, 120.6 (2×C), 86.4, 52.6. 3ai. 35.5 mg, 67% yield (PhCF₃); 40 mg, 75% yield (CCl₄); white

3ah. 60 mg, 72% yield (PhCF₃); 68 mg, 82% yield (CCl₄); white solid.

solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.58 (d, J = 8.8 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 7.19 (br, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.6, 142.3, 133.4 (2×C), 119.1, 118.4 (2×C), 106.1, 52.9.

3aj. 54.5 mg, 80% yield (PhCF₃); 54 mg, 79% yield (CCl₄); yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.58-7.54 (m, 4H), 7.47-7.41 (m, 4H), 7.35-7.30 (m, 1H), 6.74 (br, 1H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.2, 140.6, 137.2, 136.5, 128.9

(2xC), 127.8 (2xC), 127.2 (2xC), 126.9 (2xC), 119.1, 52.6.

 $\begin{array}{c} \text{MeO} \\ \begin{array}{c} & \text{H} \\ & \text{OMe} \\ & \text{Sak} \end{array} \end{array} \begin{array}{c} \text{3ak. 35.5 mg, 65\% yield (PhCF_3); 46 mg, 85\% yield (CCl_4);} \\ & \text{yellowish solid. } ^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta: 7.18 (t, J = 8.4 \text{ Hz}, \\ & \text{1H}), 7.12 (s, 1\text{H}), 6.86 (dd, J = 8.4, 1.2 \text{ Hz}, 1\text{H}), 6.78 (br, 1\text{H}), \end{array}$

6.61 (ddd, J = 8.4, 2.4, 0.8 Hz, 1H), 3.79 (s, 3H), 3.76 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 160.3, 154.1, 139.2, 129.8, 110.9, 109.3, 104.4, 55.4, 52.4.

3am

3am. 64 mg, 77% yield (PhCF₃); 67 mg, 81% yield (CCl₄); white solid. m.p. = 66-68 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.79 (s, 1H), 7.39 (ddd, *J* = 8.0, 1.6, 0.8 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.01

(t, J = 8.0 Hz, 1H), 670 (br, 1H), 3.77 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ : 153.8, 139.1, 132.6, 130.6, 127.4, 117.9, 94.4, 53.7. HRMS (ESI) m/z calculated for $C_8H_9O_2NI^+[M+H]^+$ 277.9673, found 277.9673.

3an. 34 mg, 58% yield (PhCF₃); 35 mg, 59% yield (CCl₄); yellowish solid. ¹**H NMR** (400 MHz, CDCl₃) δ : 8.29 (t, *J* = 2.0 Hz, 1H), 7.91 (ddd, *J* = 8.4, 2.0, 0.8 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H),

7.47 (t, J = 8.4 Hz, 1H), 6.96 (br, 1H), 3.82 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 153.8, 148.8, 139.2, 130.0, 124.2, 118.2, 113.4, 52.9.

3ao. 56 mg, 85% yield (PhCF₃); 55 mg, 83% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.34 (d, *J* = 1.2 Hz, 2H), 7.05 (t, *J* = 2.0 Hz, 1H), 6.67 (br, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 153.6, 139.8, 135.5 (2×C), 123.5 (2×C), 116.9, 52.9.

3ap. 67 mg, 72% yield (PhCF₃); 75 mg, 81% yield (CCl₄); white solid. m.p. = 41-43 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (s, 2H), 7.33 (t, *J* = 1.6 Hz, 1H), 6.89 (br, 1H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 153.7, 140.2, 128.9 (2×C), 123.2 (2×C), 120.2,

52.9. HRMS (ESI) *m*/*z* calculated for C₈H₈O₂NBr₂ [M+H]⁺ 307.8916, found 307.8917.

Br 3ap

3aq. 51 mg, 84% yield (PhCF₃); 50 mg, 82% yield (CCl₄); white solid. m.p. = 88-90 °C. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.56-7.52 (m, 1H), 7.20-7.17 (m, 1H), 7.05 (t, *J* = 8.8 Hz, 1H), 6.87 (br, 1H), 3.77

(s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 154.4 (d, J = 243 Hz), 154.2, 134.6, 121.2 (d, J = 19 Hz), 121.0, 118.4, 116.7 (d, J = 22 Hz), 52.7. ¹⁹**F NMR** (376 MHz, CDCl₃) δ : -122.1. **HRMS** (ESI) m/z calculated for C₈H₈O₂NCIF [M+H]⁺ 204.0222, found 204.0223.9

3ar. 52 mg, 70% yield (PhCF₃); 59 mg, 79% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.41 (dd, *J* = 8.8, 7.6 Hz, 2H), 6.96 (dd, *J* = 8.8, 1.6 Hz, 1H), 6.90 (br, 1H), 3.77 (s, 3H). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCI}_3) \delta$: 159.3 (d, J = 244 Hz), 153.8, 138.8 (d, J = 10 Hz), 133.4 (d, J = 10 Hz), 153.8 (d, J = 10 Hz), 133.4 (d, J = 10 \text{ Hz}), 133.4 (d, J = 10 \text{ Hz}), 133.4 (d, J = 10 \text{ H 1.3 Hz), 115.2, 107.2 (d, J = 28 Hz), 102.3 (d, J = 21 Hz), 52.8. ¹⁹F NMR (376 MHz, CDCl₃) δ: -105.4.

3as. 53 mg, 74% yield (PhCF₃); 56 mg, 79% yield (CCl₄); white F₃C solid. m.p. = 68-70 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.66-7.64 3as (m, 1H), 7.58-7.55 (m, 1H), 7.13 (t, J = 9.2 Hz, 1H), 6.86 (br, 1H),3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 155.7 (d, J = 253 Hz), 154.4, 134.2 (d, J = 2.0 Hz), 128.7 (d, J = 82 Hz), 124.0, 122.4 (q, J = 270 Hz), 118.6 (qd, J = 33, 14 Hz), 117.5 (d, J = 22 Hz), 52.7. ¹⁹F NMR (376 MHz, CDCl₃) δ: -61.7 (d, J = 12 Hz, 3×F), -121.5. **HRMS** (ESI) m/z calculated for C₉H₈O₂NF₄ [M+H]⁺ 238.0486, found 238.0486.

ОМе 3at

3at. 43.5 mg, 79% yield (PhCF₃); 41 mg, 75% yield (CCl₄); white solid. m.p. = 41-43 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.23-7.19 (m, 1H), 7.13-7.10 (m, 1H), 6.92 (t, J = 9.2 Hz, 1H), 6.63 (br, 1H), 3.76

(s, 3H), 2.24 (d, J = 2.0 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ : 157.7 (d, J = 240 Hz), 154.4, 133.5, 125.5 (d, J = 18 Hz), 122.1, 117.8, 115.3 (d, J = 23 Hz), 52.5, 14.8 (d, J = 3.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ: -123.8. HRMS (ESI) m/z calculated for C₉H₁₁O₂NF [M+H]⁺ 184.0768, found 184.0769.

Me 3au

yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.16-7.04 (m, 3H), 6.58 (br, 1H), 3.76 (s, 3H), 2.23 (s, 3H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.3, 137.4, 135.6, 131.9, 130.1, 120.2, 116.3, 52.4, 30.0, 19.2.

3au. 44.5 mg, 83% yield (PhCF₃); 43 mg, 80% yield (CCl₄);

3av. 39 mg, 62% yield (PhCF₃); 46 mg, 73% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.17 (br, 1H), 6.78-6.73 (m, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.5, 149.2, 145.3, 131.5, 111.5, 110.7, 103.9, 56.2,

3aw. 22 mg, 47% yield (PhCF₃); 31.5 mg, 67% yield (CCl₄); white solid. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.34 (br, 1H), 6.86 (d, J = 5.2 Hz, 1H), 6.81 (dd, J = 5.2, 3.6 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.2, 139.9, 124.7, 117.7, 112.5, 53.0.

3ax. 48 mg, 79% yield (PhCF₃); 48 mg, 79% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.99 (s, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.76 (d, J = 8.0 Hz, 1H), 7.47-7.37 (m, 3H), 6.91 (br, 1H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.3, 135.4, 134.0,

130.3, 129.0, 127.7, 127.5, 126.6, 124.8, 119.3, 115.0, 52.6.

Oxone-KBr Mediated Azidation of Aldehydes to Afford Acyl Azides

General Procedure D: To a stirred solution of aromatic aldehyde substrate (0.3 mmol) in the PhCF₃ (analytical grade, 3.0 mL) or CCl₄ (analytical grade, 3.0 mL) at 0 °C were added KBr (54 mg, 0.45 mmol) and Oxone (166 mg, 0.54 mmol) and stirred for 5 min. Then sodium azide (49 mg, 0.75 mmol or 43 mg, 0.66 mmol) was added. After the completion of the addition, the resulting mixture was vigorously stirred for 5 min before warmed to room temperature and stirred for an additional 24-36 h. When the aromatic aldehyde substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 50/1) to provide the desired compound **5**.

5a. 37 mg, 84% yield (PhCF₃); 38 mg, 86% yield (CCl₄); colorless oil. ¹H NMR (400 MHz, CDCl₃) δ: 8.04-8.01 (m, 2H), 7.64-7.60 (m, 1H), 7.48-7.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 172.7, 134.5, 130.8, 129.6 (2×C), 128.8 (2×C).

5b. 32 mg, 66% yield (PhCF₃); 34.5 mg, 71% yield (CCl₄); colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.92 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 172.5, 145.6, 129.7 (2×C), 129.5 (2×C), 128.1, 21.9.

5c. 49 mg, 80% yield (PhCF₃); 44.5 mg, 73% yield (CCl₄); white solid. **1** H NMR (400 MHz, CDCl₃) δ : 7.96 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.8 Hz, 2H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ : 172.5, 158.5, 129.5 (2×C), 128.1, 125.8 (2×C), 35.4, 31.2 (3×C).

5d. 31 mg, 58% yield (PhCF₃); 41 mg, 77% yield (CCl₄); white solid. **1H NMR** (400 MHz, CDCl₃) δ : 7.97 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 171.8, 164.7, 131.8 (2×C), 123.3, 114.0 (2×C), 55.6.

5e. 35.5 mg, 72% yield (PhCF₃); 36 mg, 73% yield (CCl₄); white solid. **1H NMR** (400 MHz, CDCl₃) δ : 8.08-8.03 (m, 2H), 7.16-7.10 (m, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ : 171.5, 166.8 (d, J = 255 Hz), 132.3 (d, J = 9.5 Hz, 2×C), 127.1 (d, J = 2.8 Hz), 116.1 (d, J = 22 Hz, 2×C). ¹⁹F NMR (376 MHz, CDCl₃) δ : -103.0.

5f. 42.5 mg, 78% yield (PhCF₃); 45 mg, 83% yield (CCl₄); white solid. **1H NMR** (400 MHz, CDCl₃) δ : 7.95 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.8Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 171.7, 141.1, 130.9 (2×C), 129.2, 129.1 (2×C).

5g. 47 mg, 69% yield (PhCF₃); 53 mg, 78% yield (CCl₄); white solid. **1H NMR** (400 MHz, CDCl₃) δ : 7.88 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.8Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 171.9, 132.2 (2×C), 131.0 (2×C), 129.9, 129.6.

5h. 61.5 mg, 75% yield (PhCF₃); 63 mg, 77% yield (CCl₄); white solid. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.82 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.4Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 172.2, 138.2 (2×C), 130.8 (2×C), 130.2, 102.8.

5i. 53 mg, 82% yield (PhCF₃); 44.5 mg, 69% yield (CCl₄); colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ: 8.14 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 171.6, 135.7 (q, J = 32.5 5i

Hz), 133.8, 130.0 (2×C), 125.9 (q, J = 3.6 Hz, 2×C), 123.6 (q, J = 271 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ: -63.3 (3×F).

5j. 34.5 mg, 60% yield (PhCF₃); 33 mg, 57% yield (CCl₄); yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.30 (d, J = 9.2 Hz, 2H), 8.20 (d, O_2N J = 9.2 Hz, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ : 171.0, 151.3, 135.8, 5i 130.7 (2×C), 123.9 (2×C).

5k. 36 mg, 70% yield (PhCF₃); 34.5 mg, 67% yield (CCl₄); white solid. ¹**H NMR** (400 MHz, CDCl₃) δ: 8.13 (d, *J* = 8.8 Hz, 2H), 7.76 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 171.3, 134.3, 132.6 (2×C), 5k 130.0 (2×C), 117.8, 117.7.

5I. 51 mg, 76% yield (PhCF₃); 47.5 mg, 71% yield (CCl₄); white solid. ¹**H NMR** (400 MHz, CDCl₃) δ: 8.10 (d, *J* = 8.8 Hz, 2H), 7.68 (d, *J* = 8.8 Hz, 2H), 7.64-7.61 (m, 2H), 7.51-7.46 (m, 2H), 7.44-7.40 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 172.4, 147.2, 139.7, 130.1 (2×C), 129.5,

129.1 (2×C), 128.6, 127.4 (4×C).

5m. 39 mg, 81% yield (PhCF₃); 35 mg, 72% yield (CCl₄); colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.85-7.81 (m, 2H), 7.43 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) 5m δ: 172.8, 138.7, 135.3, 130.7, 130.1, 128.7, 126.8, 21.4.

Me

5n. 32.5 mg, 61% yield (PhCF₃); 43 mg, 81% yield (CCl₄); colorless oil. ¹H NMR (400 MHz, CDCl₃) δ: 7.62 (ddd, J = 8.0, 1.6, 1.2 Hz, 1H), 7.54 (dd, J = 2.4, 1.6 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.16 (ddd, J =

8.0, 2.8, 0.8 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 172.6, 159.9, 132.0, 129.8, 122.1, 121.2, 113.6, 55.6.

50. 38.5 mg, 78% yield (PhCF₃); 36 mg, 72% yield (CCl₄); colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.83 (ddd, *J* = 7.6, 1.6, 1.2 Hz, 1H), 7.71 (ddd, J = 9.2, 2.4, 1.6 Hz, 1H), 7.45 (td, J = 8.0, 5.6 Hz, 1H), 7.32 (tdd, J = 9.0, 5.6 Hz, 1H),J = 8.4, 2.8, 1.2 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 171.6 (d, J =

3.0 Hz), 162.7 (d, J = 247 Hz), 132.8 (d, J = 7.4 Hz), 130.5 (d, J = 7.6 Hz), 125.3 (d, J = 3.2 Hz), 121.5 (d, J = 21 Hz), 116.4 (d, J = 23 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ : -111.6.

5p. 41 mg, 75% yield (PhCF₃); 43.5 mg, 80% yield (CCl₄); colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ : 8.01 (t, *J* = 1.6 Hz, 1H), 7.91 (ddd, *J* = 8.0, 1.6, 1.2 Hz, 1H), 7.59 (ddd, *J* = 8.0, 2.0, 1.2 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 171.6, 135.1, 134.4, 129.6, 127.7

132.4, 130.1, 129.6, 127.7.

5q. 47.5 mg, 70% yield (PhCF₃); 52 mg, 77% yield (CCl₄); colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.16 (t, *J* = 1.6 Hz, 1H), 7.95 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.74 (ddd, *J* = 8.0, 2.0, 1.2 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 171.4, 137.3, 132.6, 132.5,

130.4, 128.1, 122.9.

5r. 66 mg, 81% yield (PhCF₃); 62 mg, 76% yield (CCl₄); colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ: 8.35 (t, *J* = 1.6 Hz, 1H), 7.98 (ddd, *J* = 8.0, 1.6, 1.2 Hz, 1H), 7.93 (ddd, *J* = 8.0, 1.6, 1.2 Hz, 1H), 7.20 (t, *J* = 8.0 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 171.2, 143.2, 138.3, 132.5, 130.4,

128.7, 94.1.

5s. 50.5 mg, 78% yield (PhCF₃); 44 mg, 68% yield (CCl₄); colorless oil. ¹H NMR (400 MHz, CDCl₃) δ: 8.29 (s, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 7.88 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.62 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 171.5, 132.7, 131.6, 131.5 (q, *J* = 33 Hz), 130.9

(q, J = 3.6 Hz), 129.6, 126.5 (q, J = 3.8 Hz), 123.6 (q, J = 271 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ : -62.9 (3×F).

5t. 33.5 mg, 58% yield (PhCF₃); 32 mg, 56% yield (CCl₄); yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.86 (t, *J* = 2.0 Hz, 1H), 8.47 (ddd, *J* = 8.0, 2.4, 1.2 Hz, 1H), 8.36 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.69 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 170.7, 148.5, 135.0,

132.4, 130.1, 128.7, 124.5.

5u. 0 mg, 0% yield (PhCF₃); 26 mg, 53% yield (CCl₄); colorless oil. ¹H **NMR** (400 MHz, CDCl₃) δ : 7.93 (td, *J* = 7.6, 2.0 Hz, 1H), 7.61-7.55 (m, 1H), 7.22 (td, *J* = 8.0, 1.2 Hz, 1H), 7.16 (ddd, *J* = 10.8, 8.4, 1.2 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ: 170.0 (d, J = 4.4 Hz), 162.3 (d, J = 261 Hz), 136.0 (d, J = 9.2 Hz), 132.0, 124.3 (d, J = 3.8 Hz), 119.2 (d, J = 8.6 Hz), 117.4 (d, J = 22 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ: -131.0.

5v. 52.5 mg, 81% yield (PhCF₃); 50.5 mg, 78% yield (CCl₄); white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.89 (d, *J* = 2.0 Hz, 2H), 7.59 (t, *J* = 2.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ: 170.5, 135.8, 134.1 (2×C), 133.4, 127.9 (2×C). Br N₃ Br 5w **5w**. 61 mg, 67% yield (PhCF₃); 68 mg, 74% yield (CCl₄); yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.08 (d, *J* = 1.6 Hz, 2H), 7.89 (t, *J* = 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.2, 139.6 (2×C), 133.8, 131.2 (2×C), 123.5.

5x. 50 mg, 83% yield (PhCF₃); 47 mg, 78% yield (CCl₄); colorless oil. **b** N_3 **b** I **h NMR** (400 MHz, CDCl₃) δ : 8.11 (dd, J = 7.2, 2.0 Hz, 1H), 7.94 (ddd, J = 8.8, 4.8, 2.0 Hz, 1H), 7.22 (t, J = 8.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 170.6, 162.1 (d, J = 257 Hz), 132.4, 130.0 (d, J = 8.7 Hz), 128.0 (d, J = 3.5Hz), 122.1 (d, J = 18 Hz), 117.2 (d, J = 22 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ : -105.3.

5y. 49 mg, 67% yield (PhCF₃); 53 mg, 73% yield (CCl₄); colorless oil. **1H NMR** (400 MHz, CDCl₃) δ : 7.74 (dd, J = 8.8, 1.6 Hz, 1H), 7.70-7.63 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 170.9 (d, J = 2.7 Hz), 159.2 (d, J = 248 Hz), 134.2, 131.8 (d, J = 6.7 Hz), 126.1 (d, J = 3.7 Hz), 117.2 (d, J = 24 Hz), 116.7 (d, J = 21 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ : -105.1.

5z. 45 mg, 64% yield (PhCF₃); 50 mg, 71% yield (CCl₄); colorless oil. **b 5z**. 45 mg, 64% yield (PhCF₃); 50 mg, 71% yield (CCl₄); colorless oil. **b 1 H NMR** (400 MHz, CDCl₃) δ : 8.32 (dd, J = 6.8, 2.0 Hz, 1H), 8.25 (ddd, J = 8.4, 4.8, 2.0 Hz, 1H), 7.30 (t, J = 9.2 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 170.5, 163.5 (dq, J = 264, 1.6 Hz), 135.6 (d, J = 10 Hz), 129.3 (dq, J = 4.4, 3.0 Hz), 127.3 (d, J = 3.5 Hz), 122.0 (q, J = 271 Hz), 119.4 (qd, J = 33.8, 13.3 Hz), 117.8 (d, J = 21 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ : -61.8 (d, J = 12.7 Hz, 3×F), -104.6 (q, J = 12.7 Hz).

5aa. 42 mg, 78% yield (PhCF₃); 39 mg, 72% yield (CCl₄); colorless oil. **N**₃ **¹H NMR** (400 MHz, CDCl₃) δ : 7.90-7.83 (m, 2H), 7.05 (t, *J* = 8.8 Hz, **1**H), 2.31 (d, *J* = 2.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 171.7, 165.4 (d, *J* = 254 Hz), 133.3 (d, *J* = 7.0 Hz), 129.6 (d, *J* = 9.6 Hz), 126.7 (d, *J* = 3.0 Hz), 125.8 (d, 18 Hz), 115.6 (d, *J* = 23 Hz), 14.6 (d, *J* = 3.5 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ : -107.1.

5ac. 36 mg, 58% yield (PhCF₃); 42 mg, 68% yield (CCI₄); white solid. **5ac.** 36 mg, 58% yield (PhCF₃); 42 mg, 68% yield (CCI₄); white solid. **1 H NMR** (400 MHz, CDCI₃) δ : 7.66 (dd, J = 8.4, 2.0 Hz, 1H), 7.50 (d, **J** = 2.0 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 3.94 (s, 3H), 3.92 (s, 3H). **1 C NMR** (100 MHz, CDCI₃) δ : 171.8, 154.4, 149.0, 124.1, 123.4, 111.5, 110.4, 56.2, 56.1.

5ad. 19 mg, 41% yield (PhCF₃); 28 mg, 61% yield (CCl₄); colorless oil. ¹H NMR (400 MHz, CDCl₃) δ: 7.85 (dd, *J* = 4.0, 1.2 Hz, 1H), 7.67 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.14 (dd, *J* = 4.8, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 166.8, 135.0, 134.9, 134.6, 128.6.

5ae. 40 mg, 68% yield (PhCF₃); 44 mg, 74% yield (CCl₄); colorless oil. ¹H NMR (400 MHz, CDCl₃) δ: 8.60 (s, 1H), 8.03 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.96 (dd, *J* = 8.0, 0.4 Hz, 1H), 7.89 (d, *J* = 8.8 Hz, 2H), 7.65-7.54 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 172.7, 136.3, 132.5,

131.6, 129.8, 129.1, 128.7, 128.0, 127.9, 127.1, 124.7.

Hofmann rearrangement with amine: To a stirred solution of benzamide **1a** (37 mg, 0.3 mmol) in the MeCN/H₂O (10/1, 1.1 mL) at 0 °C were added KCI (34 mg, 0.45 mmol) and Oxone (138 mg, 0.45 mmol). After completion of the addition, the resulting mixture was stirred for 10 min before warmed to room temperature and stirred for an additional 2 h. When the benzamide **1a** was fully consumed as determined by TLC analysis, ammonia solution (25%, 0.2 mL) or methylamine solution (40%, 0.2 mL) or cyclohexyl amine (0.173 mL, 1.5 mmol) was added. The mixture was allowed to be stirred for 5 hrs and quenched by addition of sat. aq. Na₂SO₃ (5 mL). Volatiles (mainly MeCN) was removed under reduced pressure and the aqueous mixture was extracted with EA (3 X 10 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 5/1) to provide the desired urea **6a-6c**.

 $\begin{array}{c} \begin{array}{c} & \text{H} \\ & \text{Ph} \\ & \text{Ph} \\ & \text{Ph} \\ & \text{Ph} \\ & \text{Ga} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{Ga. 33.5 mg, 82\% yield, white solid. }^{1}\text{H NMR} (400 \text{ MHz, DMSO-} d_6) \ \delta : 8.50 \\ & (\text{br, 1H}), \ 7.40 \\ & (\text{br, 2H}), \ 7.40 \\ & (\text{r, 2H}), \ 7.40 \\ & (100 \text{ MHz, DMSO-} d_6) \ \delta : 156.0, \ 140.6, \ 128.6 \ (2\times C), \\ 121.1, \ 117.7 \ (2\times C). \end{array} \end{array}$

6b. 37 mg, 83% yield, white solid. ¹**H NMR** (400 MHz, DMSO- d_6) δ : 8.48 (br, 1H), 7.38 (d, J = 7.6 Hz, 2H), 7.20 (t, J = 7.6 Hz, 2H), 6.87 (t, J = 7.6 Hz, 1H), 5.98 (q, J = 4.4 Hz, 1H), 2.63 (d, J = 4.4 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ : 155.9, 140.7, 128.7 (2×C), 121.0, 117.7 (2×C), 26.3.

 6c. 53 mg, 81% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.32-7.27 (m, 4H), 7.09-7.03 (m, 1H), 6.94 (br, 1H), 5.11 (br, 1H), 3.71-3.62 (m, 1H), 1.97-1.93 (m, 2H), 1.71-1.66 (m, 2H), 1.62-1.57 (m, 1H),
 1.38-1.27 (m, 2H), 1.19-1.06 (m, 3H), ¹³C NMR (100 MHz, CDCl₃) δ: 155.5, 139.0,
 129.3 (2×C), 123.5, 120.8 (2×C), 49.0, 33.8 (2×C), 25.7, 25.0 (2×C).

Hofmann rearrangement with amide or alcohol: To a stirred solution of benzamide **1a** (37 mg, 0.3 mmol) in the MeCN/H₂O (10/1, 1.1 mL) at 0 °C were added KCI (34 mg, 0.45 mmol) and Oxone (138 mg, 0.45 mmol). After completion of the addition, the resulting mixture was stirred for 10 min before warmed to room temperature and stirred for an additional 2 h. When the benzamide **1a** was fully consumed as determined by TLC analysis, benzamide (55 mg, 0.45 mmol, to afford **6d**) or homoallyl alcohol (0.6 mL, to afford **6e**) and NaOH (18 mg, 0.45 mmol) was added sequentially. The mixture was allowed to be stirred for 5 hrs and quenched by addition of sat. aq. Na₂SO₃ (5 mL). Volatiles (mainly MeCN and homoallyl alcohol) was removed under reduced pressure and the aqueous mixture was extracted with EA (3 X 10 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 5/1) to provide the desired compounds **6d-6e**.

NMR (100 MHz, CDCl₃) δ: 168.7, 152.0, 137.3, 133.5, 132.2, 129.1 (2×C), 129.0 (2×C), 128.1 (2×C), 124.6, 120.6 (2×C).

6e. 49 mg, 85% yield, yellowish oil. ¹**H NMR** (400 MHz, CDCl₃) δ : **6e.** 49 mg, 85% yield, yellowish oil. ¹**H NMR** (400 MHz, CDCl₃) δ : **7.40-7.37** (m, 2H), **7.32-7.28** (m, 2H), **7.08-7.04** (m, 1H), 6.67 (br, 1H), 5.83 (ddt, J = 17.2, 10.4, 6.8 Hz, 1H), 5.18-5.08 (m, 2H), 4.23 (t, J = 6.8 Hz, 2H), 2.44 (qt, J = 6.8, 1.2 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 153.6, 138.0, 134.2 (2×C), 129.2 (2×C), 123.5, 118.7, 117.5, 64.4, 33.5.

Curtius Rearrangement with Amines to Generate (Chiral) Ureas/Amides

Curtius rearrangement with benzoic acid to generate amide: To a stirred solution of aromatic aldehyde substrate (0.2 mmol) in the PhCF₃ (analytical grade, 2.0 mL) or CCl₄ (analytical grade, 2.0 mL) at 0 °C were added KBr (36 mg, 0.3 mmol) and Oxone (111 mg, 0.36 mmol) and stirred for 5 min. Then sodium azide (29 mg, 0.44 mmol) was added. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 24-36 h. When the aromatic aldehyde substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was used for the next step without further purification. Following Mahajan's protocol¹, an oven-dried pressure tube under nitrogen atmosphere was charged with the residue, benzoic acid (27 mg, 0.22 mmol), DBU (31 mg, 0.2 mmol) and dry toluene (1 mL). The reaction mixture was heated to 100°C for 2 hours and then cooled to room temperature. The solvent (toluene) was removed under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 10/1) to provide the desired amide 7c (34 mg, 73% yield or 37.5 mg, 81% yield) as a white solid.

^{CI} n_{H} n_{Tc} ^IH NMR (400 MHz, DMSO- d_{6}) δ : 10.39 (br, 1H), 7.96-7.93 (m, 2H), 7.82 (d, J = 8.8 Hz, 2H), 7.62-7.58 (m, 1H), 7.56-7.51 (m, 2H), 7.41 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_{6}) δ : 165.7, 138.2, 134.7, 131.8, 128.6 (2×C), 128.5 (2×C), 127.7 (2×C), 127.3, 121.8 (2×C).

Curtius rearrangement with amines to generate (*chiral*) *ureas*: To a stirred solution of aromatic aldehyde substrate (0.2 mmol) in the PhCF₃ (analytical grade, 2.0 mL) or CCl₄ (analytical grade, 2.0 mL) at 0 °C were added KBr (36 mg, 0.3 mmol) and Oxone (111 mg, 0.36 mmol) and stirred for 5 min. Then sodium azide (29 mg, 0.44 mmol) was added. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 24-36 h. When the aromatic aldehyde substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was used for the next step without further purification. An oven-dried pressure tube under nitrogen atmosphere was charged with the residue and dry toluene (1 mL). The reaction mixture was heated to 100°C for 2 hours and

then cooled to room temperature. The corresponding amine (0.22 mmol) was dissolved in dry toluene (1 mL) and added in one portion into the pressure tube under a positive pressure of nitrogen flow [in the case of **7a**, ammonia solution (25%, 0.1 mL) was used instead]. The resulting mixture was stirred at rt for 24 hours. The volatiles were removed under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 10/1) to provide the desired urea **7**.

7a. 26 mg, 76% yield (PhCF₃); 28 mg, 83% yield (CCl₄); white solid. **¹H NMR** (400 MHz, DMSO- d_6) δ : 8.67 (br, 1H), 7.42 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 5.91 (br, 2H). ¹³**C NMR** (100 MHz,

DMSO-*d*₆) δ: 155.9, 139.6, 128.5 (2×C), 124.5, 119.2 (2×C).

7b. 38.5 mg, 78% yield (PhCF₃); 42 mg, 85% yield (CCl₄); white solid. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ : 8.81 (s, 1H), 8.70 (s, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.46-7.43 (m, 2H), 7.32 (d, *J* = 8.8 Hz, 2H), 7.30-7.25 (m, 2H), 6.97 (t, *J* = 7.2 Hz, 1H). ¹³**C NMR** (100

MHz, DMSO-*d*₆) δ: 152.5, 139.6, 138.8, 128.9 (2×C), 128.7 (2×C), 125.3, 122.0, 119.7 (2×C), 118.3 (2×C).

7d. 46 mg, 84% yield (PhCF₃); 45 mg, 82% yield (CCl₄); white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 9.47 (s, 1H), 8.54 (d, *J* = 1.6 Hz, 1H), 8.46 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.14 (d, *J* = 9.2 Hz, 2H), 7.72 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.64 (d, *J*

= 9.2 Hz, 2H), 7.36 (ddd, J = 7.6, 4.8, 0.4 Hz, 1H), 7.04 (t, J = 6.0 Hz, 1H), 4.35 (d, J = 6.0 Hz, 2H). ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ : 154.6, 148.8, 148.2, 147.1, 140.5, 135.5, 135.1, 125.2 (2×C), 123.5, 117.0 (2×C), 40.6. HRMS (ESI) *m*/*z* calculated for C₁₃H₁₃O₃N₄⁺[M+H]⁺ 273.0982, found 273.0976.

7e. 78 mg, 84% yield (PhCF₃); 80 mg, 86% yield (CCl₄); yellowish solid. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ : 9.22 (s, 1H), 9.01 (s, 1H), 8.79 (q, *J* = 4.8 Hz, 1H), 8.49 (d, *J* = 5.6 Hz, 1H), 8.12 (d, *J* = 2.4 Hz, 1H), 7.67-7.59 (m,

2H), 7.60 (d, J = 9.2 Hz, 2H), 7.38 (d, J = 2.4 Hz, 1H), 7.17 (d, J = 9.2 Hz, 2H), 7.14 (dd, J = 5.6, 2.8 Hz, 1H), 2.78 (d, J = 4.8 Hz, 3H). ¹³**C** NMR (100 MHz, DMSO- d_6) δ : 166.0, 163.9, 125.5, 125.4, 150.4, 147.9, 139.4, 137.1, 132.0, 126.8 (q, J = 30 Hz), 123.1, 122.9 (q, J = 273 Hz), 122.4, 121.5 (2×C), 120.6 (2×C), 116.8 (q, J = 5.7 Hz), 114.1, 108.7, 26.1. ¹⁹**F** NMR (376 MHz, DMSO- d_6) δ : -61.5 (3×F). HRMS (ESI) m/z calculated for C₂₁H₁₇O₃N₄F₃Cl⁺ [M+H]⁺ 465.0936, found 465.0929.

7f. 82 mg, 85% yield (PhCF₃); 85 mg, 88% yield (CCl₄); yellowish solid. ¹**H NMR** (400 MHz, DMSO- d_6) δ : 9.53 (s, 1H), 8.81 (q, J = 4.8 Hz, 1H), 8.75 (d, J = 2.0 Hz, 1H), 8.52 (d, J = 5.6 Hz, 1H), 8.16 (t, J = 9.2 Hz, 1H),

8.12 (s, 1H), 7.62 (s, 2H), 7.41 (d, J = 2.4 Hz, 1H), 7.34 (dd, J = 11.6, 2.8 Hz, 1H), 7.18 (dd, J = 5.6, 2.8 Hz, 1H), 7.07 (ddd, J = 9.2, 2.8, 1.2 Hz, 1H), 2.79 (d, J = 4.8 Hz, 3H). ¹³**C** NMR (100 MHz, DMSO- d_6) δ : 165.5, 163.8, 152.8 (d, J = 244 Hz), 152.6, 152.2, 150.5, 148.1 (d, J = 10.3 Hz), 139.0, 132.2, 126.8 (q, J = 30 Hz), 125.0 (d, J = 10.8 Hz), 123.0, 122.8 (q, J = 271 Hz), 122.6 (d, J = 2.3 Hz), 122.5 (d, J = 2.2 Hz), 117.2 (d, J = 2.9 Hz), 116.6 (q, J = 5.6 Hz), 114.2, 109.2 (d, J = 22 Hz), 108.9, 26.1. ¹⁹F NMR (376 MHz, DMSO- d_6) δ : -61.6 (3×F), -124.6. HRMS (ESI) m/z calculated for $C_{21}H_{16}O_3N_4F_4CI^+[M+H]^+$ 483.0842, found 483.0843.

7g. 64 mg, 80% yield (PhCF₃); 62 mg, 78% yield (CCl₄); white solid. $[\alpha]_D^{25}$ = +33.5 (*c* 0.93, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ: 8.48 (br, 1H), 7.84 (s, 2H), 7.37 (s, 1H), 5.95 (br, 1H), 3.69-3.61 (m, 1H), 3.56-3.51 (m, 1H), 2.50 (td, *J* = 10.8,

2.8 Hz, 1H), 2.40 (s, 6H), 2.30 (d, J = 10.8 Hz, 1H), 1.92 (d, J = 12.4 Hz, 1H), 1.86 (d, J = 12.4 Hz, 1H), 1.72 (d, J = 12.4 Hz, 1H), 1.27-1.16 (m, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ : 155.5, 141.3, 132.0 (q, J = 33 Hz, 2×C), 123.4 (q, J = 271 Hz, 2×C), 118.2 (q, J = 3.3 Hz, 2×C), 115.3 (quint, J = 3.8 Hz), 67.4, 51.2, 40.0 (2×C), 33.9, 24.9, 24.8, 21.9. ¹⁹F NMR (376 MHz, CDCl₃) δ : -63.1 (6×F). HRMS (ESI) *m*/*z* calculated for C₁₇H₂₂ON₃F₆⁺ [M+H]⁺ 398.1662, found 398.1666.

7h. 48 mg, 83% yield (PhCF₃); 49 mg, 85% yield (CCl₄); yellowish oil. $[\alpha]_D^{25}$ = +51.9 (*c* 1.02, CHCl₃)³. ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (s, 1H), 6.98 (s, 2H), 6.64 (s, 1H), 6.01 (d, *J* = 5.6 Hz, 1H), 3.60 (s, 1H), 3.56-3.48 (m, 1H), 2.39-2.30

(m, 2H), 2.27 (s, 6H), 2.24 (s, 6H), 1.83-1.77 (m, 2H), 1.67-1.63 (m, 1H), 1.20-1.06 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 156.6, 139.3, 138.7 (2×C), 124.7, 118.0 (2×C), 66.8, 51.4, 39.9 (2×C), 34.0, 25.1, 24.8, 21.6, 21.5 (2×C). **HRMS** (ESI) *m*/*z* calculated for C₁₇H₂₈ON₃⁺ [M+H]⁺ 290.2227, found 290.2232.

7i. 42 mg, 81% yield (PhCF₃); 42 mg, 81% yield (CCl₄); white solid. $[\alpha]_D^{25}$ = +58.3 (*c* 0.65, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ :

7.54 (br, 1H), 7.35-7.32 (m, 2H), 7.29-7.24 (m, 2H), 7.04-6.99 (m, 1H), 5.79 (br, 1H), 3.54-3.46 (m, 1H), 3.73-3.68 (m, 1H), 2.45-2.41 (m, 1H), 2.29 (dd,

J = 10.8, 3.2 Hz, 1H), 2.25 (s, 6H), 1.87-1.79 (m, 2H), 1.70-1.66 (m, 1H), 1.36-1.25 (m, 1H), 1.23-1.07 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 156.7, 139.5, 129.1 (2×C), 123.0, 120.3 (2×C), 66.9, 51.8, 40.1 (2×C), 34.0, 25.3, 24.8, 21.6. **HRMS** (ESI) *m/z* calculated for C₁₅H₂₄ON₃⁺ [M+H]⁺ 262.1914, found 262.1914.

F₃CO F_3 CO T_j . 59.5 mg, 86% yield (PhCF₃); 61 mg, 88% yield (CCl₄); white solid. m.p. = 90-92 °C. $[\alpha]_D^{25}$ = +29.8 (*c* 0.65, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ: 7.68 (br, 1H), 7.34 (d, *J* = 8.8

Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 5.68 (br, 1H), 3.54-3.46 (m, 1H), 2.78-2.75 (m, 1H), 2.38-2.34 (m, 1H), 2.30 (dd, J = 11.2, 3.2 Hz, 1H), 2.27 (s, 6H), 1.88-1.79 (m, 2H), 1.70-1.66 (m, 1H), 1.32-1.07 (m, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ : 156.3, 144.2 (q, J = 2.0 Hz), 138.3, 121.8 (2×C), 120.6 (q, J = 255 Hz), 120.5 (2×C), 67.3, 51.7, 40.2 (2×C), 34.0, 25.2, 24.8, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ : -58.2 (3×F). HRMS (ESI) m/z calculated for C₁₆H₂₃O₂N₃F₃⁺ [M+H]⁺ 346.1737, found 346.1731.

7k. 93 mg, 80% yield (PhCF₃); 89 mg, 77% yield (CCl₄); white solid. $[\alpha]_D^{25}$ = -21.6 (*c* 0.36, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ : 9.43 (br, 1H), 8.79 (d, *J* = 4.8 Hz, 1H), 8.01 (d, *J* = 9.2 Hz, 1H), 7.84 (s, 2H), 7.72 (s, 1H), 7.49 (d, *J* = 4.8 Hz, 1H), 7.38 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.29

(s, 1H), 5.91 (br, 1H), 4.18-4.08 (m, 2H), 3.98 (s, 3H), 3.65 (dd, J = 13.2, 10.4 Hz, 1H), 3.18-3.10 (m, 1H), 2.83 (dd, J = 12.0, 7.2 Hz, 1H), 2.14-2.04 (m, 1H), 1.96 (s, 2H), 1.92-1.85 (m, 2H), 1.38-1.31 (m, 2H), 1.26 (d, J = 12.4 Hz, 1H), 1.19-1.15 (m, 1H), 0.85 (t, J = 7.2 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ : 158.8, 154.8, 147.7, 145.0, 142.4, 141.1, 131.9, 131.7 (q, J = 33 Hz, 2xC), 128.2, 123.3 (q, J = 271 Hz, 2xC), 122.7, 117.7 (2xC), 116.0, 115.2, 101.7, 59.6, 56.7, 56.0, 41.5, 35.4, 29.7, 26.5, 25.8, 25.0, 24.7, 11.6. ¹⁹**F** NMR (376 MHz, CDCl₃) δ : -58.3 (6xF). **HRMS** (ESI) *m*/*z* calculated for C₂₉H₃₁O₂N₄F₆⁺ [M+H]⁺ 581.2346, found 581.2351.

7I. 76 mg, 80% yield (PhCF₃); 74 mg, 78% yield (CCl₄); white solid. $[\alpha]_D^{25}$ = +8.4 (*c* 0.5, CHCl₃). ¹**H** NMR (400 MHz, CDCl₃) δ : 8.76 (d, *J* = 4.8 Hz, 1H), 8.54 (br, 1H), 7.97 (d, *J* = 9.2 Hz, 1H), 7.74 (d, *J* = 2.4 Hz, 1H), 7.59 (d, *J* = 4.8 Hz, 1H), 7.34 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.08

(s, 2H), 6.55 (s, 1H), 5.87 (br, 1H), 4.22-4.16 (m, 1H), 4.11-4.05 (m, 1H), 4.00 (s, 3H), 3.59 (dd, J = 13.2, 10.4 Hz, 1H), 3.19-3.11 (m, 1H), 2.75 (dd, J = 11.6, 6.8 Hz, 1H), 2.18 (s, 6H), 2.02-1.95 (m, 1H), 1.84 (s, 2H), 1.81-1.64 (m, 2H), 1.27-1.19 (m, 3H), 1.11-1.07 (m, 1H), 0.77 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 158.7, 155.4,

147.8, 144.8, 142.2, 139.4, 138.4 (2×C), 131.7, 128.1, 124.3, 122.5, 119.7, 116.5 (2×C), 101.7, 59.8, 56.1, 56.0, 50.5, 41.7, 34.8, 29.7, 25.9, 25.0, 24.4, 21.5 (2×C), 11.5. **HRMS** (ESI) *m*/*z* calculated for $C_{29}H_{37}O_2N_4^+$ [M+H]⁺ 473.2911, found 473.2911.

7m. 73 mg, 82% yield (PhCF₃); 70 mg, 79% yield (CCl₄); white solid. $[\alpha]_D^{25}$ = +12.4 (*c* 0.5, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ : 8.75 (d, *J* = 4.8 Hz, 1H), 8.52 (br, 1H), 7.98 (d, *J* = 9.2 Hz, 1H), 7.75 (d, *J* = 2.0 Hz, 1H), 7.54 (d, *J* = 4.8 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.35 (dd, *J* = 9.2, 2.4 Hz,

1H), 7.16 (t, J = 7.6 Hz, 2H), 6.91 (t, J = 7.6 Hz, 1H), 5.88 (br, 1H), 4.25-4.19 (m, 1H), 4.13-4.07 (m, 1H), 3.98 (s, 3H), 3.57 (d, J = 12.4, 10.8 Hz, 1H), 3.19-3.11 (m, 1H), 2.82 (dd, J = 11.6, 6.8 Hz, 1H), 2.03-1.96 (m, 1H), 1.86 (s, 2H), 1.81-1.70 (m, 2H), 1.24-1.18 (m, 3H), 1.12-1.08 (m, 1H), 0.79 (t, J = 7.2 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ : 158.8, 155.4, 147.8, 144.9, 142.0, 139.5, 131.8, 128.9 (2×C), 128.2, 122.6, 122.5, 119.7, 119.0 (2×C), 101.7, 59.7, 56.1 (2×C), 41.8, 34.8, 29.8, 26.0, 24.9, 24.5, 24.4, 11.6. HRMS (ESI) *m*/*z* calculated for C₂₇H₃₃O₂N₄⁺ [M+H]⁺ 445.2598, found 445.2592.

7n. 82.5 mg, 78% yield (PhCF₃); 84.5 mg, 80% yield (CCl₄); white solid. m.p. = 168-170 °C. $[\alpha]_D^{25}$ = +3.8 (*c* 0.5, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ : 8.82 (d, *J* = 4.8 Hz, 1H), 8.77 (br, 1H), 7.89 (d, *J* = 9.2 Hz, 1H), 7.70 (s, 1H), 7.69 (s, 1H), 7.35 (d, *J* =

8.8 Hz, 2H), 7.28 (dd, J = 9.2, 2.4 Hz, 1H), 6.89 (d, J = 8.8 Hz, 2H), 5.85 (br, 1H), 4.54-4.48 (m, 1H), 4.21-4.15 (m, 1H), 3.94 (s, 3H), 3.56 (dd, J = 12.8, 10.4 Hz, 1H), 3.17-3.09 (m, 1H), 3.01 (dd, J = 12.0, 7.6 Hz, 1H), 2.00-1.93 (m, 1H), 1.86-1.68 (m, 4H), 1.32-1.15 (m, 3H), 1.01-0.97 (m, 1H), 0.70 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 158.8, 155.3, 148.0, 144.5, 143.9, 141.9, 138.2, 131.4, 128.2, 122.8, 121.5 (2×C), 120.5 (q, J = 255 Hz), 119.8, 119.7 (2×C), 101.6, 59.5, 56.1, 56.0, 49.6, 41.8, 35.0, 25.9, 25.0, 24.7, 24.6, 11.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ: -63.0 (3×F). **HRMS** (ESI) m/z calculated for C₂₈H₃₂O₃N₄F₃⁺ [M+H]⁺ 529.2421, found 529.2426.

Gram Scale Synthesis of Chiral Ligands 7i and 7j

To a stirred solution of aromatic aldehyde substrate (6 mmol) in the PhCF₃ (analytical grade, 60 mL) at 0 °C were added KBr (1.06 g, 9 mmol) and Oxone (3.32 g, 10.8 mmol) and stirred for 5 min. Then sodium azide (975 mg, 15 mmol) was added. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 36 h. When the aromatic aldehyde substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was used for the next step without further purification. An oven-dried pressure tube under nitrogen atmosphere was charged with the residue and dry toluene (25 mL). The reaction mixture was heated to 100°C for 4 hours and then cooled to room temperature. The chiral amine (852 mg, 6 mmol) was dissolved in dry toluene (5 mL) and added dropwise into the pressure tube under a positive pressure of nitrogen flow. The resulting mixture was stirred at rt for 24 hours. The volatiles were removed under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 10/1) to provide the desired chiral ligand **7i** (1.17 g, 75% yield) and **7j** (1.66 g, 80%).

Control Experiments

*In situ generation of BrN*₃ *from oxone-KBr-NaN*₃: Following our previous procedure², a round bottom flask equipped with a stir bar was immersed in ice-water bath and charged with Oxone (666 mg, 2.16 mmol, 7.2 equiv.) and KBr (213 mg, 1.8 mmol, 6 equiv.). PhCF₃ (10 mL) or CCl₄ (10 mL) was added to the round bottom in one portion. The reaction mixture was stirred and kept at 0 °C and protected from light. After 5 minutes, sodium azide (195 mg, 3.0 mmol, 10 equiv. or 172 mg, 2.64 mmol, 8.8 equiv.) was added in one portion. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 2 h. The mixture was filtered through a pad of celite and the filtrate was added to a round bottom flask. To the resulting solution *p*-chlorobenzaldehyde **4f** (43 mg, 0.3 mmol, 1 equiv.) was added. The solution was allowed to stir at rt until the starting material had been totally consumed (as monitored by TLC). Saturated aqueous

Na₂SO₃ solution (10 mL) was added. The resulting mixture was extracted with CH₂Cl₂ (3 × 10 mL). Organic layer was collected, then washed with brine, dried by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 50/1) to provide the desired compound **5f** (32.5 mg, 60% yield or 37 mg, 68% yield) as a white solid.

Oxidation of aldehyde with Oxone-KBr: To a stirred solution of aromatic aldehyde **4f** (42 mg, 0.3 mmol) in the PhCF₃ (analytical grade, 3.0 mL) or CCl₄ (analytical grade, 3.0 mL) at 0 °C were added KBr (54 mg, 0.45 mmol) and Oxone (166 mg, 0.54 mmol). After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 2 h. When the aromatic aldehyde **4f** was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure to afford the benzoyl bromide **8** (47 mg, 72% yield or 58 mg, 88% yield) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ : 8.01 (d, *J* = 8.8 Hz, 2H), 7.51 (d, *J* = 8.8 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 162.3, 141.3, 131.3 (2×C), 129.5 (2×C), 123.9.

Preparation of acyl azide from benzoyl bromide: To a stirred solution of selfprepared benzoyl bromide **8** (55 mg, 0.25 mmol) in the PhCF₃ (analytical grade, 3.0 mL) or CCl₄ (analytical grade, 2.5 mL) at 0 °C were added sodium azide (41 mg, 0.625 mmol or 36 mg, 0.55 mmol). After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 24 h. The mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 50/1) to provide the desired acyl azide **5f** (41 mg, 90% yield or 42 mg, 93% yield) as a white solid.

Radical cyclization reaction: To a stirred solution of aromatic aldehyde **9** (44 mg, 0.3 mmol) in the PhCF₃ (analytical grade, 3.0 mL) or CCl₄ (analytical grade, 3.0 mL) at 0 °C were added KBr (54 mg, 0.45 mmol) and Oxone (166 mg, 0.54 mmol) and stirred for 5 min. Then sodium azide (49 mg, 0.75 mmol or 43 mg, 0.66 mmol) was added. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 24 h. When the substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate = 40/1) to provide the desired compound **10** (9 mg, 20% yield or 10 mg, 23% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.86 (dd, *J* = 7.6, 0.4 Hz, 1H), 7.60 (td, *J* = 7.6, 1.2 Hz, 1H), 7.49 (dt, *J* = 7.6, 0.8 Hz, 1H), 7.42-7.38 (m, 1H), 6.36 (td, *J* = 2.4, 0.8 Hz, 1H), 5.64 (td, *J* = 2.0, 0.8 Hz, 1H), 3.75 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 193.6, 150.0, 143.4, 138.3, 135.0, 127.7, 126.5, 124.7, 119.5, 31.9.

References

1. Kumar, A.; Kumar, N.; Sharma, R.; Bhargava, G.; Mahajan, D. *J. Org. Chem.* **2019**, *84*, 11323-11334.

2. Ren, J.; Tong, R. Org. Biomol. Chem. 2013, 11, 4312.

3. Berkessel, A.; Mukherjee, S.; Müller, T. N.; Cleemann, F.; Roland, K.; Brandenberg, M.; Neudörfl, J.-M.; Lex, J. *Org. Biomol. Chem.* **2006**, *4*, 4319-4330.

		2 C V		NAME NHCL EXPNO 2 PROCNO 1
	167.5.	132.6	77.168 76.84	F2 - Acquisition Farameters Date_ 20230927 Time 1.47 h INSTRUM spect PROBHD 2116098_0653 (PULPROG zgpg30
0				TD 65536 SOLVENT CDC13 NS 2333 DS 4 SWH 24038.461 Hz
N				FIDRES 0.733596 Hz AQ 1.3631488 sec RG 198.36 DW 20.800 usec DE 6.50 usec
orobenzamide (2a) MR (100 MHz, CDCl ₃)			1	TE 294.4 K D1 2.0000000 sec D11 0.03000000 sec TD0 1 SF01 100.6228298 MHz
				NUC1 13C P1 10.00 usec PLW1 75.84400177 W SF02 SF02 400.1316005 MHz NUC2
				CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 16.43099976 W PLW12 0.20286000 W PLW13 0.10204000 W
				F2 - Processing parameters SI 32768 SF 100.6127586 MHz
				WDW ER SSB 0 LB 1.00 Hz GB 0 PC 1.40

SI 32768 SF 100.6127620 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40	Me J 30 NMR (100 MHz, CDCI ₃)	T5+51 —	135.88	 		77.47	76.84		Cur: NAMI EXPI F2. F2. F2. F2. F2. F2. F2. F2. F2. F2.	rent Da No CNO - Acqui e_ C FRUM ZROG VENT RES VENT RES 1 1 1 2 2 2 2 1 2 1 3 - Proce	ta Parameters S8 2 1 sition Parameters 2020923 5.20 h spect 116098_0653 (20930 65536 CDC13 1888 4 24038.461 Hz 0.733596 Hz 1.3631488 sec 198.36 20.800 use 6.50 use 295.2 K 2.00000000 sec 100.6228298 MHz 13C 13C 13C 13C 13C 13C 13C 13C
				 L.					SI SF WDW SSB LB GB PC		32768 100.6127620 MHz EM 0 1.00 Hz 0 1.40

							Current Data Parameters NAME S30 EXPNO 2 PROCNO 1
MeO NH H N O Me O St ¹³ C NMR (100 MHz, CDCl ₃)					77.47 76.84		F2 - Acquisition Parameters Date_ 20221206 Time 21.56 h INSTRUM spect PROBHD 2116098_0653 (PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 88 DS 4 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 1.3631488 sec RG 198.36 DW 20.800 usec DE 6.50 usec DI 2.00000000 sec D1 0.03000000 sec D1 0.03000000 sec D1 0.0000000 sec D1 100.6228298 MHz NUC1 13C P1 10.00 usec P1 10.00 usec
1660-016-016-016-016-016-016-016-016-016	and the second	n (e de la constantina de la constanti	11-11 - 11-12 - 11-12 - 11-12 - 11-12 - 12-12				CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 16.43099976 W PLW12 0.20286000 W PLW13 0.10204000 W F2 - Processing parameters SF 100.6127586 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40
190 180	170 1	60 150	140 130	120 110	100 90 80 70	60 50 40) 30 20 ppm

	a					Current Data Parameters NAME S31 EXPNO 2 PROCNO 1
He J J J C NMR (100 MHz, CDCl ₃)	0 150 140 130	120 110 100	90 80 70	52°05	0 30 2	5 F2 - Acquisition Farameters Date_ 20221215 Time 17.52 h INSTRUM spect PROBHD 2116098_0653 (PULPROG 2gg30 TD 65536 SOLVENT CDC13 NS 3333 DS 4 SWH 24038.461 FIDRES 0.733596 AQ 1.3631488 DW 20.800 DE 6.50 UW 20.800 DE 6.50 DE 6.50 DI 2.0000000 sec DI 2.0000000 sec DI 0.000000 sec PI 100.6228298 NUC1 13C PI 10.000 SF01 100.6228298 NUC2 14 NUC2 90.00 US2 14 CPDPRG[2 waltz16 PCPD2 90.00 PLW12 0.20286000 W PLW13 0.10204000 W F2 Proc

		77.48 77.16 76.84	51.39 50.69 41.92 36.38	PROCNO 1 F2 - Acquisition Parameters Date_ 20221009 Time 0.40 h NSTRUM spect PROBHD 2116098_0653 (PULPROG 2gpg30 TD 65536 SOLVENT CDC13
NHCOOMe Jae C NMR (100 MHz, CDCI ₃)				NS 3888 DS 4 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 1.3631488 sec RG 198.36 DW 20.800 usec DE 6.50 usec DE 20.800 usec DI 2.0000000 sec DI 2.0000000 sec DI 100.6228298 MHz NUC1 13C PI 10.00 usec PLW1 75.84400177 W SFC02 400.1316005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec FLW1 0.20286000 W FLW13 0.10204000 W F2 Processing parameters SI 32768 SF 100.6127593 MHz WDW EM SSEB 0 LB 1.00 Hz GB 0 PC 1.40

				Current Data Parameters NAME 1hz-20211105-4 EXPNO 2 PROCNO 1
⁰ N ₃ 5a ¹³ C NMR (100 MHz, 0		134.49 77 129.60 128.81	77.48 77.16	F2 - Acquisition Parameters Date_ 20211105 Time 22.37 h INSTRUM spect PROBHD 2116098_06533 (PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 133 DS 4 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 1.3631488 sec RG 198.36 DW 20.800 usec DE 6.50 usec TE 293.9 K D1 2.00000000 sec D1 0.0300000 sec TD0 1 SF01 100.6228298 MHz
				NUC1 13C P1 10.00 usec PLW1 75.84400177 W SF02 400.1316005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW12 16.43099976 W PLW13 0.10204000 W F2 - Processing parameters
				SI 32768 SF 100.6127579 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40
190	180 170 16			50 40 30 20 ppm
				er is to me ppin

- 11 - 6	132.20 1123.00 129.64 129.64	77.48 77.16 76.84	NAME 1hz-20211106-1 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20211106 Time 23.15 h INSTRUM spect PROBHD 2116098_0653 (FULFROG 2gpg30
Br 5g 3C NMR (100 MHz, CDCl ₃)			TD 65536 SOLVENT CDC13 NS 133 DS 4 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 1.3631488 sec RG 198.36 DW 20.800 usec DE 6.50 usec TE 294.1 K D1 2.0000000 sec D11 0.03000000 sec D11 0.0300000 sec D11 10.6228298 MHz NUC1 13C F1 10.00 usec PLW1 75.84400177 W SFO2 400.1316005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 16.43099976 W PLW13 0.10204000 W
ander-andre andre and		**************************************	F2 - Processing parameters SI 32768 SF 100.6127572 WDW EM SSB 0 LB 1.00 GB 0 PC 1.40

	7.832 7.727 7.260 7.260	Current Data Parameters NAME 1hz-202201005-1 EXPNO 1 PROCNO 1
\int_{1}^{0} \int_{1}^{1} \int_{1		PROCNO 1 F2 - Acquisition Parameters Date20221005 Time21.28 h INSTRUM
9.5 9.0 8.5	8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0	1.5 1.0 ppm

	154 736 260 260	Current Data Parameters NAME lhz-20211117-3 EXPNO l PROCNO l
F ₃ C 5i H NMR (400 MHz, CDCl ₃)		F2 - Acquisition Parameters Date_ 2021117 Time 22.11 h INSTRUM spect PROBHD 2116094_0653 (PUDPROG zg30 TD 65536 SOLVENT CDC13 NS 8 DS 2 SWH 8012.820 Hz FIDRES 0.244532 Hz AQ 4.0894465 sec RG 143.4 DW 62.400 usec DE 6.50 usec TE 292.4 K D1 1.00000000 sec TD0 1 SFC1 400.1324708 MHz NUC1 1H P1 10.000 usec PLW1 16.43099976 W
		F2 - Processing parameters SI 65536 SF 400.1300098 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00

	.311 .289 .213		097.											Cur NAM EXP PRO	rent I E NO CNO	Data Parameters 1hz-20211106-2 1 1	A 75
	$\mathbb{V} \mathbb{V}$	ſ												Dat Tim INS PRO PUL TD	e_ e IRUM BHD PROG	20211106 22.40 spect 2116098_0653 (2g30 65536	h
														SOL' NS DS SWH FID: AQ RG DW	VENT RES	CDC13 8 2 8012.820 0.244532 4.0894465 127.66 62.400	Hz Hz sec usec
¹ H NMR (400 MHz, CDCl ₃)	I													TE D1 TD0 SF0 NUC	1	6.50 293.2 1.0000000 400.1324708 1H 10.00	usec K sec MHz usec
														PLW F2 SI SF WDW SSB LB GB PC	l – Prod	16.43099976 cessing paramete 65536 400.1300098 0 0 0.30 0 1.00	W ers MHz Hz
9.5 9.0 8	3.5 8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	ppm	

^{D2} N ⁻ ∽ 5j NMR (100 MHz, CDCl ₃)	PCPD2 90.00 use. PLW2 16.43099976 W PLW12 0.20286000 W PLW13 0.10204000 W F2 - Processing parameters SF 100.6127586 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40
₂N´ ∽ 5j NMR (100 MHz, CDCI₃)	PCPD2 90.00 use PLW2 16.43099976 W PLW12 0.20286000 W PLW13 0.10204000 W F2 - Processing parameters SI 32768 SF 100.6127586 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40
₂N´ ´´ 5j JMR (100 MHz, CDCl₃)	PCPD2 90.00 use PLW2 16.43099976 W
	D1 2.0000000 sec D11 0.0300000 sec TD0 1 100.6228298 MHz NUC1 13C P1 10.00 use PLW1 75.84400177 W SF02 400.1316005 MHz NUC2 1H CPDPRG[2 waltz16
N ₃	PULPROG zgpg30 TD 65536 SOLVENT CDC13 DS 133 DS 4 SWH 24038.461 Hz FIDRES 0.733596 Hz AQ 1.3631488 sec RG 198.36 DW 20.800 use DE 6.50 use TE 293.9 K
- 171.00 - 151.31 - 151.31 - 135.78 - 133.78 - 133.78 - 133.67 - 133.67 - 123.93 - 67 - 77.47 - 77.46 - 77.47 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.46 - 77.47 - 77.4	FROCNO 1 F2 - Acquisition Parameters Date_ 20211106 Time 23.26 h INSTRUM spect PROBHD 2116098_0653 (DULPEOG

8.2294 8.2294 7.638865 7.5599 7.5599 7.5599 7.5599	Current Data Parameters NAME lhz-20211119-5 EXPNO 1 PROCNO 1
$F_{3}C \underbrace{\downarrow}_{5s} N_{3}$ $^{1}H NMR (400 MHz, CDCl_{3})$	F2 - Acquisition Parameters Date_ 2021119 Time 23.42 h INSTRUM spect PROBHD 2116098_0653 (PULPROG zg30 TD 65536 SOLVENT CDC13 NS 8 DS 2 SWH 8012.820 Hz FIDRES 0.244532 Hz AQ 4.0894465 sec RG 112.15 DW 62.400 usec DE 6.50 usec TE 292.0 K D1 1.0000000 sec TD0 1 SF01 400.1324708 MHz NUC1 1H P1 10.00 usec PLW1 16.43099976 W
	F2 - Processing parameters SI 65536 SF 400.1300099 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.4	5 2.0 1.5 1.0 ppm

	155.90	139.60						40.14 39.94 39.52 39.53 39.10 38.89	Current D NAME EXPNO PROCNO F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG	ata Parameters 1hz-20221201-1 2 1 isition Parameters 20221202 3.03 h spect 2116098_0653 (2gpq30
CI T T T T T C NMR (100 MHz, DMSO-d ₆)									FOLFROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 P1 PLW1 SF02 NUC2 PLPRG[2 PCPD2 PLW2 PLW12 PLW12 PLW13 F2 - Proc SF WDW SSB LB GB PC	29930 65536 DMSC 1333 4 24038.461 Hz 0.733596 Hz 1.3631488 sec 198.36 20.800 usec 6.50 usec 293.6 K 20000000 sec 0.03000000 sec 100.6228298 MHz 13C 10.00 usec 75.84400177 W 400.1316005 MHz 1H waltz16 90.00 usec 16.43099976 W 0.20286000 W 0.10204000 W essing parameters 32768 100.6128110 MHz EM 0 1.40
	160 150	140	130 120	110	100 90	80	70 60	50 40 3	30 20	ppm

								Current I NAME EXPNO PROCNO	Data Parameters 1hz-20221128-1 2 1
CI、 🏡		139.56	122.85 125.34 125.34 1122.03 1119.73				40.14 39.93 39.51 39.51 39.89	F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH	Aisition Parameters 20221128 21.50 h spect 2116098_0653 (2gpg30 65536 CDC13 188 4 24038_461 Hz
O Ph 7b ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆)								FIDRES AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 P1 PLW1 SF02 NUC2 CPDPRG[2 FCFD2 PLW2 PLW12 PLW13	
								F2 - Proc SI SF WDW SSB LB GB FC	tessing parameters 32768 100.6132885 MHz EM 0 1.00 Hz 0 1.40
Januari 10 00 metaini 1900 metaini		market with a second		4072201121	ulaupatan sering tang tang tang tang tang tang tang ta	un yang managan kanang managan kanang manang man		et/agsture-egresture-agresture-agrest	
190 180 170	160 150	140	130 120	110 100	90 80	70 60	50 40 3	0 20	ppm

									Current D NAME EXPNO	ata Parameters 1hz-20221220-8 2
	99.99 190	138.19 134.73 131.76 131.76 131.76 128.47 128.47	121.84					40.14 39.94 39.52 39.31 39.31	PROCNO F2 - Acqu Date_ INSTRUM PROBHD PULPROG	1 isition Parameters 20221220 23.17 h spect 2116098_0653 (2gpg30 65526
$CI \qquad \qquad Ph \qquad \qquad Ph \qquad \qquad 7c$ ¹³ C NMR (100 MHz, DMSO- d_6)									TD SOLVENT NS DS SWH FIDRES AQ DW DE TE D1 D11 TD0 SF01 NUC1 P1 FLW1 SF02 PLW12 PLW12 PLW12 PLW12 PLW13 F2 - Proc SF WDW SSB LB GB PC	65536 DMSC 1024 4 24038.461 Hz 0.733596 Hz 1.3631488 sec 198.36 20.800 usec 293.6 K 2.0000000 sec 100.6228298 MHz 13C 10.00 usec 75.84400177 W 400.1316005 MHz HH waltz16 90.00 usec 16.43099976 W 0.20286000 W 0.10204000 W essing parameters 32768 100.6128124 MHz EM 0 1.00 Hz 0 1.40
	160 150	140 130	120 110	100	90	80 70	60	50 40	30 20	maa

	60 110 15 10 10	2 19 0 21 8	Current Data Parameters NAME 1hz-20230501-1 EXPNO 2 PROCNO 1
O_2N N Vacor (7d) $^{13}C NMR (100 MHz, DMSO-d_6)$	154.60 148.80 147.10 147.10 140.55		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		, , , , , , , , , , , , , , , , , , ,	BB 1.00 H2 PC 1.40 PC 1.40

