Supporting Information

Unified and Green Oxidation of Amides and Aldehydes for Hofmann and Curtius Rearrangements

Liyan Song*a, Yufei Meng ${ }^{\text {a }}$, Tongchao Zhao ${ }^{\text {a }}$, Lifang Liu ${ }^{\text {a }}$, Xiaohong Pan ${ }^{\text {a }}$, Binbin Huang ${ }^{\text {a }}$, Hongliang Yao ${ }^{\text {b }}$, Ran Lin*a and Rongbiao Tong*b,c
${ }^{\text {a }}$ Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
${ }^{\mathrm{b}}$ Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Lab oratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sc iences, Guangzhou, Guangdong, China
${ }^{\text {c }}$ Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
Email (L. Song): songliyan@fafu.edu.cn Email (R. Lin): linran@fafu.edu.cn
Email (R. Tong): rtong@ust.hk

Table of Contents

General Information	S-2
The References for Known Compounds	S-3
Preparation of Primary Amide Substrates	S-6
Preparation of N-Chlorobenzamide (2a)	S-6
Oxone-KCl Rearrangement	Salogenation of Primary
The Screening of Solvents	for
Oxone-KBr Mediated Azidation of Aldehydes for Curtius Rearrangement	S-12
Oxone-KBr Mediated Azidation of Aldehydes to Afford Acyl Azides	S-17
Hofmann Rearrangement with Alcohol/Amine/Amide	S-22
Curtius Rearrangement with Amines to Generate (Chiral) Ureas/Amides	S-23
Gram Scale Synthesis of Chiral Ligands 7i and 7j	S-29
Control Experiments	S-29

References	S-31
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra	S-32

General Information: Reactions were carried out in oven or flame-dried glassware under a nitrogen atmosphere, unless otherwise noted. Tetrahydrofuran (THF) was freshly distilled before use from sodium using benzophenone as indicator. Dichloromethane was freshly distilled before use from calcium hydride $\left(\mathrm{CaH}_{2}\right)$. All other anhydrous solvents were dried over $3 \AA$ or $4 \AA$ molecular sieves. Solvents used in workup, extraction and column chromatography were used as received from commercial suppliers without prior purification. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC, 0.25 mm) on Liangchen pre-coated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size $0.040-0.062 \mathrm{~mm}$) supplied by Liangchen. Infrared spectra were collected on a Bruker model TENSOR27 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVIII-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 376 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}$). Chemical shifts are reported in parts per million (ppm) as values relative to the internal chloroform (7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.16 ppm for ${ }^{13} \mathrm{C}$) or DMSO (2.50 ppm for ${ }^{1} \mathrm{H}$ and 39.52 ppm for ${ }^{13} \mathrm{C}$). Abbreviations for signal coupling are as follows: s, singlet; d , doublet; t, triplet; q, quartet; m, multiplet; br, broad peak. Optical rotations were measured on a JASCO Perkin-Elmer model P-2000 polarimeter. High resolution mass spectra were measured at Keecloud Mass Spectrometry Service Company on either an Thermo Scientific LTQ Orbitrap XL system or a Bruker solariX System. Melting point was recorded on a Laboratory Devices model MEL-TEMP II melting point apparatus. The aldehyde substrates and (chiral) amines were purchased from Aldrich or J\&K Scientific.

The References for Known Compounds

Compound	References
Urethylane anthranilate	Moriyama, K.; Ishida, K.; Togo, H. Org. Lett. 2012, 14, 946-949.
1ad	Flynn, D. L.; Caldwell, T. M.; Kaufman, M. D.; Patt, W. C.; Samarakoon, T.; Vogeti, L.; Yates, K. M. N-Acyl-N-(Pyridin-2-yl) Ureas and Analogs Exhibiting Anti-cancer and Anti-proliferative Activities. U.S. Patent 2014/0275080, Sep. 18. 2014.
2a	Yu, X.; Chen, K.; Guo, S.; Shi, P.; Song, C.; Zhu, J. Org. Lett. 2017, 19, 5348-5351.
$1 \mathrm{ac}, 3 \mathrm{a}, 3 \mathrm{c}, 3 \mathrm{e}, 3 \mathrm{f}$, $3 \mathrm{~g}, 3 \mathrm{~h}, 3 \mathrm{j}, 3 \mathrm{~m}, 3 \mathrm{o}$, 3q, 3ac, 3ae, 3af, 3ag, 3ao, 3ax	Li, J.; Xue, M.; Yan, X.; Liu, W.; Xu, K.; Zhang, S. Org. Biomol. Chem. 2018, $16,4615$.
3b, 3x, 3aa, 3ab	Yoshimura, A.; Middleton, K. R.; Luedtke, M. W.; Zhu, C.; Zhdankin, V. V. J. Org. Chem. 2012, 77, 11399.
3d	Xu, D.; Guan, J.; Xu, X.; Gong, S.; Xu. H. J. Heterocyclic Chem. 2016, 53, 1469.
3 r	Borah, A. J.; Phukan, P. Tetrahedron Lett. 2012, 53, 3035.
3i, 3I, 3n, 3ad, 3ak	Uhlig, N.; Li, C.-J. Chem. Eur. J. 2014, 20, 12066.
3p	Das, M.; Rodriguez, A.; Lo, P. K. T.; Moran, W. J. Adv. Syn. Catal. 2021, 363, 1646.
3s	Wehman, P.; Borst, L.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Chem. Ber. 1997, 130, 13.
3 t	Massacret, M.; Lhoste, P.; Sinou, D. Eur. J. Org. Chem. 1999, 1999, 129.
$3 z$	Jew, S.-s.; Park, H. G.; Park, H.-J.; Park, M.-s.; Cho, Y.-s. Tetrahedron Lett. 1990, 31, 1559.

3 h	Germain, N.; Hermsen, M.; Schaub, T.; Trapp, O. Appl. Organometal. Chem. 2017, 31, e3733.
3ai	Yang, Q.; Robertson, A.; Alper, H. Org. Lett. 2008, 10, 5079.
3aj	Zhang, L.; Xiao, P.; Guan, X.; Huang, Z.; Zhang, J.; Bi, X. Org. Biomol. Chem. 2017, 15, 1580.
3 n	Guan, Z.-H.; Lei, H.; Chen, M.; Ren, Z.-H.; Bai, Y.; Wang, Y.-Y. Adv. Synth. Catal. 2012, 354, 489.
3ar	Wu, Y.; Ding, X.; Yang, Y.; Li, Y.; Qi, Y.; Hu, F.; Qin, M.; Liu, Y.; Sun, L.; Zhao, Y. Eur. J. Med. Chem. 2020, 185, 111781.
3 u	Wang, B.; He, J.; Sun, R. C. Chin. Chem. Lett. 2010, 21, 794.
3 v	Gogoi, P.; Konwar, D. Tetrahedron Lett. 2007, 48, 531.
3aw	Kim, J.-G.; Jang, D. O. Tetrahedron Lett. 2009, 50, 2688.
$5 a, 5 b, 5 c, 5 d, 5 e$, $5 \mathrm{~g}, 5 \mathrm{~h}, 5 \mathrm{i}, 5 \mathrm{j}, 5 \mathrm{k}, 5 \mathrm{I}$, 5m, 5o, 5u, 5ac, 5ad, 5ae	Joseph, D.; Lee, S. Org. Lett. 2022, 24, 6186.
5f, 5p, 5n	Yu, T.-Y.; Zheng, Z.-J.; Dang, T.-T.; Zhang, F.-X.; Wei, H. J. Org. Chem. 2018, 83, 10589.
$5 q$	Bellotti, P.; Brocus, J.; Orf, F. E.; Selkti, M.; Konig, B.; Belmont, P.; Brachet, E. J. Org. Chem. 2019, 84, 6278.
5t	Arote, N. D.; Akamanchi, K. G. Tetrahedron Lett. 2007, 48, 5661.
5v	Bagal, D. B.; Park, S.-W.; Song, H.-J.; Chang, S. Chem. Commun. 2017, 53, 8798.
5w	Akae, Y.; Sogawa, H.; Takata, T. Eur. J. Org. Chem. 2019, 2019, 3605.
$5 z$	Kang, T.; Kim, Y.; Lee, D.; Wang, Z.; Chang, S. J. Am. Chem. Soc. 2014, 136, 4141.
5ab	Kumar, R.; Arigela, R. K.; Kundu, B. Chem. Eur. J. 2015, 21, 11807.
6a, 7a	Tiwari, L.; Kumar, V.; Kumar, B.; Mahajan, D. RSC Adv. 2018, 8, 21585.
6b	Zhang, C.; Liu, J.; Cheng, Z.; Li, J.; Song, S.; Jiao, N. Synlett 2023, 34, 1534.

6c, 7b	Zhu, X.; Xu, M.; Sun, J.; Guo, D.; Zhang, Y.; Zhou, S.; Wang, S. Eur. J. Org. Chem. 2021, 2021, 5213.
6d	Li, Z.; Xu, S.; Huang, B.; Yuan, C.; Chang, W.; Fu, B.; Jiao, L.; Wang, P.; Zhang, Z. J. Org. Chem. 2019, 84, 9497.
6 e	Mackewitz, T.; Volland, M.; Paciello, R.; Schafer, A.; Breit, B.; Seiche, W. Hydrofomylation. U.S. Patent 7,049,473, May 23, 2006.
7c	Hu, Q.; Wang, L.; Wang, C.; Wu, Y.; Ding, Z.; Yuan, R. RSC Adv. 2017, 7, 37200.
7d	Marivel, S.; Arunachalam, M.; Ghosh, P. Cryst. Growth Des. 2011, 11, 1642.
7 e	Breitler, S.; Oldenhuis, N. J.; Fors, B. P.; Buchwald, S. L. Org. Lett. 2011, 13, 3262.
7f	Wang, L.-M.; Du, B.-Q.; Zuo, D.-Z.; Cheng, M.-K.; Zhao, M.; Zhao, S.-J.; Zhai, X.; Gong, P. Res. Chem. Intermed. 2016, 42, 3209.
7 g	Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
$7 i$	Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. Org. Lett. 2014, 16, 4256.
7k	McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367.
71	Mallojjala, S. C.; Sarkar, R.; Karugu, R. W.; Manna, M. S.; Ray, S.; Mukherjee, S.; Hirschi, J. S. J. Am. Chem. Soc. 2022, 144, 17399.
7m	Kohler, M. C.; Yost, J. M.; Garnsey, M. R.; Coltart, D. M. Org. Lett. 2010, $12,3376$.
8	Alzpurua, J. M.; Palomo, C. Synthesis 1982, 1982, 684.
10	Liu, J.; Yi, H.; Zhang, X.; Liu, C.; Liu, R.; Zhang, G.; Lei, A. Chem. Commun. 2014, 50, 7636-7638.

Preparation of Primary Amide Substrates

The amide substrates are known compounds. Most of them are purchased from Aldrich or J\&K Scientific directly. 1ac-1ad were prepared following the related procedures. Analytical data (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) matches with the literature.

Preparation of N -Chlorobenzamide (2a)

To a stirred solution of benzamide ($36 \mathrm{mg}, 0.3 \mathrm{mmol}$) in the $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(10 / 1,1.1$ mL) at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KCl}(34 \mathrm{mg}, 0.45 \mathrm{mmol})$ and Oxone ($138 \mathrm{mg}, 0.45 \mathrm{mmol}$). After completion of the addition, the resulting mixture was stirred for 10 min before warmed to room temperature and stirred for an additional 4 h . When the aromatic amide substrate was fully consumed as determined by TLC analysis, the mixture was quenched by addition of water (5 mL). The aqueous mixture was extracted with EA (3 X 10 mL). The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=10 / 1$) to provide the desired compound $\mathbf{2 a}$ ($38 \mathrm{mg}, 81 \%$ yield) as an off-white solid.

Oxone-KCl Halogenation of Primary Amides for Hofmann Rearrangement

General Procedure A: To a stirred solution of aromatic amide substrate (0.3 mmol) in the $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(10 / 1,1.1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KCl}(34 \mathrm{mg}, 0.45 \mathrm{mmol})$ and Oxone ($138 \mathrm{mg}, 0.45 \mathrm{mmol}$). After completion of the addition, the resulting mixture was stirred for 10 min before warmed to room temperature and stirred for an additional 2 h . When the aromatic amide substrate was fully consumed as determined by TLC analysis, methanol (0.6 mL) and $\mathrm{NaOH}(18 \mathrm{mg}, 0.45 \mathrm{mmol})$ was added sequentially. The mixture was allowed to be stirred for 5 hrs and quenched by addition of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$. The volatiles (mainly methanol and MeCN) was removed under reduced pressure and the aqueous mixture was extracted with EA ($3 \times 10 \mathrm{~mL}$). The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=10 / 1$) to provide the desired compound 3 .

Urethylane anthranilate

Urethylane anthranilate. $24 \mathrm{mg}, 38 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 10.5$ (br, 1 H), 8.42 (dd, $J=8.4,0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.00 (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51$ (m, 1H), 7.04-7.00 (m, 1 H), 3.91 (s, 3H), 3.78 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:$ 168.6, 154.2, 141.9, 134.7, 131.0, 121.7, 118.9, 114.6, 52.4.

3a. $40 \mathrm{mg}, 89 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40-$ 7.37 (m, 2H), 7.33-7.28 (m, 2H), 7.09-7.04 (m, 1H), 6.70 (br, s), 3.78 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.2,137.9,129.2(2 \times \mathrm{C})$, $123.6(2 \times C), 118.8,52.5$.

3c

3d

3e

$3 f$

$3 g$

3h $118.2(2 \times \mathrm{C}), 52.8$.

3i. 34 mg , 58% yield; yellowish solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 8.20 ($\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.04 (br, 1 H), 3.82 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{\delta}$: 153.4, 144.0, 143.1, $125.4(2 \times C), 117.8(2 \times C), 53.1$.

3j
3c. $41 \mathrm{mg}, 83 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.26 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.11 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.62 (br, 1H), 3.76 (s, 3H), 2.30 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.3$, 135.3, 133.2, $129.7(2 \times C)$, $118.9(2 \times \mathrm{C})$, 52.4, 20.9.

3d. $59 \mathrm{mg}, 84 \%$ yield; white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.40 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.15 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{br}, 1 \mathrm{H})$, 3.77 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.2,144.9,136.7$, $122.0(2 \times C), 120.6(q, J=255 \mathrm{~Hz}), 119.9(2 \times C), 52.6$.
3e. $44 \mathrm{mg}, 87 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.36-7.30 (m, 2H), 7.02-6.96 (m, 2H), 6.78 (br, 1H), 3.76 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 159.1$ (d, $J=241 \mathrm{~Hz}$), 154.4, 133.9, $120.6(2 \times C), 115.8(d, J=23 \mathrm{~Hz}, 2 \times C), 52.5$.

3f. $46 \mathrm{mg}, 83 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.36-7.33 (m, 2H), 7.28-7.25 (m, 2H), 6.77 (br, 1H), 3.78 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.1,136.6,129.1(2 \times \mathrm{C}), 128.5$, $120.0(2 \times C), 52.6$.

3g. 58 mg , 84\% yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.40 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.79 (br, 1H), 3.76 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 154.0, 137.1, 132.1 $(2 \times C), 120.3(2 \times C), 116.0,52.6$.

3h. $49 \mathrm{mg}, 75 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.55 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (br, 1H), 3.79 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 153.8, 141.1, 126.5 ($q, J=3.4 \mathrm{~Hz}, 2 \times C), 125.3(q, J=33 \mathrm{~Hz}), 124.3(q, J=270 \mathrm{~Hz})$,

3j. $40 \mathrm{mg}, 81 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.23 (s, 1H), 7.21-7.17 (m, 2H), 6.89-6.87 (m, 1H), 6.70 (br, 1H), 3.77 (s, 3H), 2.33 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.2$, 139.1, 137.8, 129.0, 124.4, 119.4, 115.9, 52.4, 21.6.

3k. $56.5 \mathrm{mg}, 80 \%$ yield; white solid. m.p. $=79-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 7.43 (s, 1H), 7.31-7.22 (m, 2H), 6.97 (br, $1 \mathrm{H})$, 6.92-6.89 (m, 1H), 3.78 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.0,149.8$ (q, $J=1.9 \mathrm{~Hz}), 139.5,130.2,120.5$ (q, $J=256$ $\mathrm{Hz}), 116.8,115.6,111.5,52.7 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-57.8$ ($3 \times \mathrm{F}$). HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{NF}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$236.0529, found 236.0530 .

31
31. $42 \mathrm{mg}, 83 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.35 (d, J= $10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (td, $J=8.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{br}, 1 \mathrm{H}), 6.78$ (tdd, $J=8.4,2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.80 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.3$ (d, $\mathrm{J}=243 \mathrm{~Hz}$), 153.9, 139.6 (d, $J=11 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 114.0,110.2(\mathrm{~d}, J=21 \mathrm{~Hz}), 106.2$ (d, $J=26 \mathrm{~Hz}$), 52.6.

3m

3m. $42 \mathrm{mg}, 76 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.50 (s, 1H), 7.22-7.18 (m, 2H), 7.04-7.01 (m, 1H), 6.81 (br, 1H), 3.77 (s, 3H). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 153.9,139.2,134.8$, 130.1, 123.6, 118.8, 116.7, 52.6.

3n. $54.5 \mathrm{mg}, 83 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б: 7.71 (s, 1H), 7.56 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.31 (d, J= $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.96 (br, 1H), 3.79 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.1,138.6,131.6(q, J=32 \mathrm{~Hz}), 129.7,124.0$ ($q, J=271 \mathrm{~Hz}$), 121.7, 120.1 ($q, J=3.7 \mathrm{~Hz}$), 115.4, 52.7.

30
30. $41 \mathrm{mg}, 82 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.76$ (br, 1H), $7.21(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.46 (s, 1H), 3.78 (s, 3H), 2.25 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 154.5, 135.9, 130.5 (2×C), 127.0, 124.3, 121.3, 52.5, 17.7.

$3 q$

3p. $54 \mathrm{mg}, 76 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.19$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30-7.22 (m, 2H), 7.07-7.03 (m, 1H), 6.96 (br, 1H), 3.80 (s, 3H). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 153.7,137.8,130.8$, 127.7, $123.4,120.7$ (q, $J=258 \mathrm{~Hz}), 120.5(\mathrm{q}, J=1.0 \mathrm{~Hz}), 120.4,52.7$. 3q. $39.5 \mathrm{mg}, 78 \%$ yield; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 8.13-8.03 (m, 1H), 7.14-6.96 (m, 3H), 6.89 (br, 1H), 3.79(s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 153.8,152.2$ (d, $J=241 \mathrm{~Hz}$), 126.5 (d, $J=$ $10 \mathrm{~Hz}), 124.7(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 123.5(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 120.3,114.9(\mathrm{~d}, J$ $=18.9 \mathrm{~Hz}$), 52.7. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : -129.9.

3r. $44.5 \mathrm{mg}, 80 \%$ yield; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 8.18 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (td, $J=$ $8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{br}, 1 \mathrm{H}), 7.01$ (td, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}$,

3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 153.8,134.8,129.2,127.9,123.8,122.2,120.0$, 52.7.

3s. $51 \mathrm{mg}, 77 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{\delta}$: 8.12 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (br, 1H), 3.80 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.0,135.7$, $133.1,126.2(q, J=5.3 \mathrm{~Hz}), 124.2(\mathrm{q}, J=271 \mathrm{~Hz}), 123.6,122.6,119.3$ ($q, J=28.5 \mathrm{~Hz}$), 52.8. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-60.8(3 \times \mathrm{F})$.

3t
($2 \times \mathrm{C}$).

3t. $42 \mathrm{mg}, 63 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{\delta}$: 10.51 (br, 1H), 8.42 (dd, $J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00$ (dd, $J=8.4$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53 (ddd, $J=8.4,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.00$ (m, 1H), 3.91 (s, 3H), 3.78 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 168.6, 154.2, 141.9, 134.7, 131.0, 121.7, 118.9, 114.6, 52.4

3u. $49 \mathrm{mg}, 53 \%$ yield; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б: 8.69 (br, 1H), 7.40-7.33(m, 6H), 7.21-7.12 (m, 3H), 3.68 (s, 3H), 2.29 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.2,153.4$, 153.2, 138.5, 138.0, 131.1, 129.8, 129.3 ($2 \times$ C), 128.9, 128.3, 127.2, 126.1, $128.8(2 \times \mathrm{C})$, 52.8, 21.4. HRMS (ESI) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 309.1346$, found 309.1344 .
General Procedure B: To a stirred solution of aliphatic amide substrate (0.3 mmol) in the $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(10 / 1,1.1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KCl}(34 \mathrm{mg}, 0.45 \mathrm{mmol})$ and Oxone ($138 \mathrm{mg}, 0.45 \mathrm{mmol}$). After completion of the addition, the resulting mixture was stirred for 10 min before warmed to room temperature and stirred for an additional 2 h . When the aromatic amide substrate was fully consumed as determined by TLC analysis, methanol (1.5 mL) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(147 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added sequentially. The mixture was allowed to be stirred for 5 hrs and quenched by addition of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ $(5 \mathrm{~mL})$. Voletiles (mainly methanol and MeCN) was removed under reduced pressure and the aqueous mixture was extracted with EA (3 X 10 mL). The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=10 / 1$) to provide the desired compound 3 .

3b. $44 \mathrm{mg}, 89 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{\delta}$: 7.377.27 (m, 5H), 5.18 (br, 1H), 4.38 (d, J=6.0 Hz, 2H), 3.71 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 157.2,138.6,128.7(2 \times \mathrm{C}), 127.6,127.5$ ($2 \times \mathrm{C}$), 52.3, 45.1.

3v. $60 \mathrm{mg}, 87 \%$ yield; white solid. m.p. $=49-51^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.71$ (br, 1H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 1.50-1.43 (m, 2H), 1.30-1.23 (m, 16H), $0.86(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 157.2,52.1,41.2,32.0,30.1,29.7(2 \times \mathrm{C})$,
29.6, 29.5, 29.4, 26.8, 22.8, 14.2. HRMS (ESI) m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 230.2115, found 230.2116.

3w

3w. $83 \mathrm{mg}, 88 \%$ yield; white solid. m.p. $=51-53{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.71(\mathrm{br}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 1.48-1.23 (m, 30H), $0.86(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) : 157.2, 52.1, 41.2, 32.0, 30.1, $29.81(2 \times \mathrm{C})$, $29.79(2 \times \mathrm{C})$, $29.78(2 \times C), 29.76,29.7,29.6,29.5,29.4,26.8,22.8,14.2$. HRMS (ESI) m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+} 314.3054$, found 314.3049 .

3x

3x. $46 \mathrm{mg}, 86 \%$ yield; colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.33-7.29 (m, 2H), 7.25-7.18 (m, 3H), 4.71 (br, 1H), 3.65 (s, 3H), 3.42 ($\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$: 157.1, 138.9, $128.9(2 \times \mathrm{C}), 128.8(2 \times \mathrm{C}), 126.6,52.2,42.3$, 36.3.

3y. $34.5 \mathrm{mg}, 79 \%$ yield; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 4.49 (br, 1H), 3.70-3.64 (m, 1H), 3.63 (s, 3H), 1.41-1.27 (m, 4H), 1.11 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$), 0.89 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta: 156.6,51.9,46.9,39.5,21.4,19.3,14.0$. HRMS (ESI) m/z calculated for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$146.1176, found 146.1177.

3z. $46 \mathrm{mg}, 88 \%$ yield; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 4.45 (br, 1H), 3.63 (s, 3H), 3.54-3.47 (m, 1H), 1.54-1.24 (m, 8H), 0.89-0.85 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 157.0,52.7,52.0$, 34.7, 28.2, 28.1, 22.7, 14.1, 10.2.

3aa. $33 \mathrm{mg}, 76 \%$ yield; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 4.66 (br, 1H), 3.97-3.95 (m, 1H), 3.63 (s, 3H), 1.97-1.89 (m, 2H), 1.69$1.52(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{\delta}: 156.7$, 52.9, 52.0, $33.3(2 \times \mathrm{C}), 23.6(2 \times \mathrm{C})$.

3ab. $37 \mathrm{mg}, 78 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.64$ (br, 1H), 3.62 (s, 3H), 3.49-3.41 (m, 1H), 1.92-1.88 (m, 2H), 1.70-1.64 (m, 2H), 1.59-1.54 (m, 1H), 1.36-1.23 (m, 2H), 1.18-1.05 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{\delta}: 156.3,51.9,49.9,33.5,25.6(2 \times \mathrm{C}), 24.9$ $(2 \times C)$.

3ac. $50 \mathrm{mg}, 84 \%$ yield; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 4.57 (br, 1H), 3.62 (s, 3H), 3.43-3.23 (m, 1H), 2.03-1.94 (m, 2H), 1.74-1.67 (m, 2H), 1.46-1.34 (m, 1H), 1.10-0.95 (m, 5H), $0.83(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.4$, 51.9, 50.5, 43.3, 33.7, $32.6(2 \times$ C), $28.5(2 \times \mathrm{C}), 20.0(2 \times \mathrm{C})$.

3ad. $24.5 \mathrm{mg}, 56 \%$ yield; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 4.53 (br, 1H), 3.60 (s, 3H), 1.65 ($\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.26 (s, 6H), 0.85 (t, J = 7.6 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.5,53.0,51.5$, 33.2, 29.8, 26.7, 8.5. HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$146.1176, found 146.1176.

3ae. $45 \mathrm{mg}, 72 \%$ yield; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.55$ (br, 1H), 3.58 (s, 3H), 2.05 (s, 3H), 1.90 (d, J = $1.6 \mathrm{~Hz}, 6 \mathrm{H}$), 1.64 (t, $J=$ $3.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 155.1, $51.4,50.7,41.9(3 \times \mathrm{C})$, $36.4(3 \times C), 29.5(3 \times C)$.

The Screening of Solvents

Many solvents were applied to the oxidation of aldehydes for Curtius rearrangements. The results were summarized in Table 1. We found that PhCF_{3} outperformed other solvents (except CCl_{4}) to secure the best yield. Octafluorotoluene is much more expensive than PhCF_{3}.

Entry	Solvent	Yield (\%)
1	CHCl_{3}	68
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	57
3	CCl_{4}	76
4	pentane	50
5	hexane	46
6	heptane	33
7	octane	27
8	nonane	26
9	decane	20
10	petroleum ether (60-90)	26
11	naphthane	38
12	cyclohexane	45
13	Methylcyclohexane	46
14	Ethylcyclohexane	45
15	toluene	53
16	cumene	21
17	DMF	0
18	THF	0

19	MeCN	0
20	ethyl acetate	0
21	ether	0
22	1,4 -dioxane	0
23	anisole	0
24	isopropanol	0
25	tBuOH	0
26	methanol	0
27	ethanol	0
28	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	38
29	perfluorohexane	58
30	perfluorobenzene	65
31	PhCF	71
32	octafluorotoluene	71

${ }^{a}$ Condition: to a solution of $\mathbf{4 f}(0.3 \mathrm{mmol})$ in the solvent (3 mL , ACS grade and used as received) at rt were added $\mathrm{KBr}(0.45 \mathrm{mmol})$, Oxone (0.45 mmol) and NaN_{3} (0.6 mmol). After stirring for 24 hrs , the reaction mixture was filtered and the filtrate was concentrated. The residue was dissolved in dry toluene/ MeOH [10:1 (v/v), 3.3 mL] and stirred at $100{ }^{\circ} \mathrm{C}$ for 2 hrs . The reaction progress was monitored by TLC.

Oxone-KBr Mediated Azidation of Aldehydes for Curtius Rearrangement

General Procedure \boldsymbol{C} : To a stirred solution of aromatic aldehyde substrate (0.3 mmol) in the PhCF_{3} (analytical grade, 3.0 mL) or CCl_{4} (analytical grade, 3.0 mL) at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KBr}(54 \mathrm{mg}, 0.45 \mathrm{mmol})$ and Oxone ($166 \mathrm{mg}, 0.54 \mathrm{mmol}$) and stirred for 5 min . Then sodium azide ($49 \mathrm{mg}, 0.75 \mathrm{mmol}$ or $43 \mathrm{mg}, 0.66 \mathrm{mmol}$) was added. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and vigorously stirred for an additional 24-36 h. When the aromatic aldehyde substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was used for the next step without further purification. An oven-dried pressure tube under nitrogen atmosphere was charged with the residue and dry toluene (3 mL) and $\mathrm{MeOH}\left(0.3 \mathrm{~mL}\right.$). The reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 2 hours and then cooled to room temperature. The solvent (toluene and methanol) was removed under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=10 / 1$) to provide the desired compound 3.

3a

3a. $38.5 \mathrm{mg}, 85 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 40 \mathrm{mg}, 89 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 7.40-7.37 (m, 2H), 7.33-7.28 (m, 2H), 7.09-7.04 (m, 1H), 6.70 (br, s), 3.78 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 154.2,137.9,129.2(2 \times \mathrm{C}), 123.6(2 \times \mathrm{C}), 118.8,52.5$.

3c

3c. $41 \mathrm{mg}, 83 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 37.5 \mathrm{mg}, 76 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.26 (d, $\mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.11 (d, J=8.4 Hz, 2H), 6.62 (br, 1H), 3.76 (s, 3H), 2.30 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 154.3,135.3,133.2,129.7(2 \times \mathrm{C})$, $118.9(2 \times C), 52.4,20.9$.

3e. $36 \mathrm{mg}, 71 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 39.5 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 7.36-7.30 (m, 2H), 7.02-6.96 (m, 2H), $6.78(\mathrm{br}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 159.1 ($\mathrm{d}, \mathrm{J}=241 \mathrm{~Hz}$), 154.4, 133.9, 120.6 ($2 \times \mathrm{C}$), 115.8 ($\mathrm{d}, J=23$ $\mathrm{Hz}, 2 \times \mathrm{C})$, 52.5.

3f. $45.5 \mathrm{mg}, 82 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 48 \mathrm{mg}, 86 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 7.36-7.33 (m, 2H), 7.28-7.25 (m, 2H), 6.77 (br, 1H), $3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 154.1, 136.6, 129.1 ($2 \times$ C), 128.5, 120.0 ($2 \times$ C), 52.6.

3g
$3 \mathrm{~g} .50 .5 \mathrm{mg}, 73 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 57.5 \mathrm{mg}, 83 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (d, J=8.8 Hz, 2H), 6.79 (br, 1H), 3.76 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 154.0,137.1,132.1(2 \times \mathrm{C}), 120.3(2 \times \mathrm{C}), 116.0,52.6$.

3h 3h. $45 \mathrm{mg}, 68 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 50 \mathrm{mg}, 76 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.55(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.93 (br, 1H), 3.79 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 153.8,141.1,126.5(\mathrm{q}, \mathrm{J}=3.4 \mathrm{~Hz}, 2 \times \mathrm{C}), 125.3$ ($q, J=33 \mathrm{~Hz}$), $124.3(\mathrm{q}, J=270 \mathrm{~Hz}), 118.2(2 \times \mathrm{C}), 52.8$.

3i. $39 \mathrm{mg}, 66 \%$ yield $\left(\mathrm{PhCF}_{3}\right)$; $34 \mathrm{mg}, 58 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.20$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.04 (br, 1H), 3.82 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 153.4,144.0,143.1,125.4(2 \times \mathrm{C}), 117.8(2 \times \mathrm{C})$, 53.1.

3j

3j. $39 \mathrm{mg}, 79 \%$ yield $\left(\mathrm{PhCF}_{3}\right)$; $38 \mathrm{mg}, 77 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.23$ (s, 1H), 7.21-7.17 (m, 2H), 6.89-6.87 (m, 1H), 6.70 (br, 1H), 3.77 (s, 3H), 2.33 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.2,139.1,137.8,129.0,124.4$, 119.4, 115.9, 52.4, 21.6.

31. $40 \mathrm{mg}, 79 \%$ yield $\left(\mathrm{PhCF}_{3}\right)$; $39 \mathrm{mg}, 77 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35$ (d, J= $10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (td, J $=8.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (br, 1H), 6.78 (tdd, $J=8.4,2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.3(\mathrm{~d}, J=243 \mathrm{~Hz}), 153.9,139.6(\mathrm{~d}, J=11 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 114.0,110.2$ (d, $J=21 \mathrm{~Hz}$), 106.2 (d, $J=26 \mathrm{~Hz}), 52.6$.

$3 \mathrm{~m} .43 .5 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 48 \mathrm{mg}, 86 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.18$ (m, 2H), 7.04-7.01 (m, 1H), 6.81 (br, 1H), 3.77 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 153.9,139.2,134.8,130.1,123.6,118.8,116.7$, 52.6.

3n. $58 \mathrm{mg}, 88 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 50.5 \mathrm{mg}, 77 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.71$ (s, 1H), 7.56 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (br, 1H), 3.79 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{\delta}: 154.1,138.6$, $131.6(\mathrm{q}, J=32 \mathrm{~Hz}), 129.7,124.0(\mathrm{q}, J=271 \mathrm{~Hz}), 121.7,120.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 115.4$, 52.7.

3q. $0 \mathrm{mg}, 0 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 27 \mathrm{mg}, 53 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$) : 8.13-8.03 (m, 1H), 7.14-6.96 (m, 3H), 6.89 (br, 1H), 3.79(s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 153.8,152.2$ (d, $J=241 \mathrm{~Hz}), 126.5(\mathrm{~d}, J=10 \mathrm{~Hz}), 124.7(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 123.5(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}), 120.3,114.9(\mathrm{~d}, \mathrm{~J}=18.9 \mathrm{~Hz}), 52.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-129.9$.

3af. $49 \mathrm{mg}, 79 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 48.5 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.32$ (s, 4H), 6.74 (br, 1H), 3.77 (s, 3H), 1.31 (s, 9H). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.3$, $146.5,135.3,126.0(2 \times C), 118.6(2 \times C), 52.4,34.4,31.5(3 \times C)$.

3ag. $33.5 \mathrm{mg}, 62 \%$ yield $\left(\mathrm{PhCF}_{3}\right)$; $44.5 \mathrm{mg}, 82 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.28$ (d, $J=8.8 \mathrm{~Hz}$, 2 H), 6.84 (d, J= $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.66 (br, 1H), 3.78 (s, 3H), 3.75 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.0,155.0,131.0,120.8(2 \times \mathrm{C}), 114.3(2 \times \mathrm{C})$, 55.6, 52.4.

3ah

3ah. $60 \mathrm{mg}, 72 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 68 \mathrm{mg}, 82 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.57$ ($\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 ($\mathrm{d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.84 (br, 1H), 3.76 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ: 154.0, $138.0(2 \times C), 137.8,120.6(2 \times C), 86.4,52.6$.

3ai. $35.5 \mathrm{mg}, 67 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 40 \mathrm{mg}, 75 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.58(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (br, 1H), 3.79 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ס: 153.6, 142.3, $133.4(2 \times \mathrm{C}), 119.1,118.4(2 \times \mathrm{C}), 106.1,52.9$.

3aj

3aj. $54.5 \mathrm{mg}, 80 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 54 \mathrm{mg}, 79 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $7.58-7.54(\mathrm{~m}, 4 \mathrm{H})$, 7.47-7.41 (m, 4H), 7.35-7.30 (m, 1H), 6.74 (br, 1H), 3.80 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.2,140.6,137.2,136.5,128.9$ $(2 \times C), 127.8(2 \times C), 127.2(2 \times C), 126.9(2 \times C), 119.1,52.6$.

3ak

3ak. $35.5 \mathrm{mg}, 65 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 46 \mathrm{mg}, 85 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.18(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12$ (s, 1H), 6.86 (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (br, 1H), 6.61 (ddd, $J=8.4,2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3 H), 3.76 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) : 160.3, 154.1, 139.2, 129.8, 110.9, 109.3, 104.4, 55.4, 52.4.

3al

3al. $59 \mathrm{mg}, 85 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 57 \mathrm{mg}, 82 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.64$ (s, 1H), 7.28 (d, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.13$ (m, 2H), 6.80 (br, 1H), 3.77 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 153.9, 139.3, 130.4, 126.5, 122.8, 121.6, 117.2, 52.7.

3am. $64 \mathrm{mg}, 77 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 67 \mathrm{mg}, 81 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. m.p. $=66-68{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.79(\mathrm{~s}, 1 \mathrm{H})$, 7.39 (ddd, $J=8.0,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.01 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 670(\mathrm{br}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 153.8$, 139.1, 132.6, 130.6, 127.4, 117.9, 94.4, 53.7. HRMS (ESI) m/z calculated for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Nl}^{+}[\mathrm{M}+\mathrm{H}]^{+}$277.9673, found 277.9673.

3an

3an. $34 \mathrm{mg}, 58 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 35 \mathrm{mg}, 59 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.29(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91$ (ddd, $J=8.4,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (t, J=8.4 Hz, 1H), 6.96 (br, 1 H), $3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 153.8, 148.8, 139.2, 130.0, 124.2, 118.2, 113.4, 52.9.

3ao. $56 \mathrm{mg}, 85 \%$ yield $\left(\mathrm{PhCF}_{3}\right)$; $55 \mathrm{mg}, 83 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.34$ (d, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.05 (t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.67(\mathrm{br}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 153.6,139.8,135.5(2 \times \mathrm{C}), 123.5(2 \times \mathrm{C}), 116.9,52.9$.

3ap. $67 \mathrm{mg}, 72 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 75 \mathrm{mg}, 81 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. m.p. $=41-43^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.52(\mathrm{~s}, 2 \mathrm{H})$, $7.33(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{br}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 153.7,140.2,128.9(2 \times \mathrm{C})$, $123.2(2 \times \mathrm{C}), 120.2$, 52.9. HRMS (ESI) m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{NBr}_{2}[\mathrm{M}+\mathrm{H}]^{+} 307.8916$, found 307.8917 .

3aq. $51 \mathrm{mg}, 84 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 50 \mathrm{mg}, 82 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. m.p. $=88-90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ठ: $7.56-7.52(\mathrm{~m}$, 1 H), 7.20-7.17 (m, 1H), $7.05(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{br}, 1 \mathrm{H}), 3.77$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.4$ (d, J= 243 Hz), 154.2, 134.6, 121.2 (d, J $=19 \mathrm{~Hz}), 121.0,118.4,116.7(\mathrm{~d}, \mathrm{~J}=22 \mathrm{~Hz}), 52.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-$ 122.1. HRMS (ESI) m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{NCIF}[\mathrm{M}+\mathrm{H}]^{+}$204.0222, found 204.0223.9

3ar. $52 \mathrm{mg}, 70 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 59 \mathrm{mg}, 79 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.41$ (dd, $J=8.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.96 (dd, J = 8.8, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.90 (br, 1H), 3.77 (s, 3H). ${ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 159.3(\mathrm{~d}, J=244 \mathrm{~Hz}), 153.8,138.8(\mathrm{~d}, ~ J=10 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}), 115.2,107.2(\mathrm{~d}, J=28 \mathrm{~Hz}), 102.3(\mathrm{~d}, J=21 \mathrm{~Hz}), 52.8 .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, CDCl_{3}) : -105.4.

3as. $53 \mathrm{mg}, 74 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 56 \mathrm{mg}, 79 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. m.p. $=68-70{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.66-7.64$ (m, 1H), 7.58-7.55 (m, 1H), 7.13 (t, J=9.2 Hz, 1H), 6.86 (br, 1H), 3.78 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.7$ ($\mathrm{d}, J=253 \mathrm{~Hz}$), 154.4, 134.2 ($\mathrm{d}, J=$ $2.0 \mathrm{~Hz}), 128.7$ (d, $J=82 \mathrm{~Hz}), 124.0,122.4(\mathrm{q}, J=270 \mathrm{~Hz}), 118.6$ (qd, $J=33,14 \mathrm{~Hz})$, 117.5 (d, $J=22 \mathrm{~Hz}$), 52.7. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-61.7$ ($\mathrm{d}, J=12 \mathrm{~Hz}, 3 \times \mathrm{F}$), 121.5. HRMS (ESI) m/z calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{NF}_{4}[\mathrm{M}+\mathrm{H}]^{+}$238.0486, found 238.0486.
 3at. $43.5 \mathrm{mg}, 79 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 41 \mathrm{mg}, 75 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. m.p. $=41-43^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.23-7.19$ (m , $1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{br}, 1 \mathrm{H}), 3.76$ (s, 3H), 2.24 (d, J=2.0 Hz, 3H). ${ }^{33}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 157.7 (d, J=240 Hz), 154.4, 133.5, 125.5 (d, $J=18 \mathrm{~Hz}), 122.1,117.8,115.3(\mathrm{~d}, J=23 \mathrm{~Hz}), 52.5,14.8(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-123.8$. HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{NF}[\mathrm{M}+\mathrm{H}]^{+}$184.0768, found 184.0769.

3au. $44.5 \mathrm{mg}, 83 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 43 \mathrm{mg}, 80 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.16-7.04(\mathrm{~m}, 3 \mathrm{H})$, 6.58 (br, 1H), 3.76 (s, 3H), 2.23 (s, 3H), 2.21 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.3,137.4,135.6,131.9,130.1,120.2,116.3,52.4,30.0,19.2$.

$3 a v$
55.9, 52.4. 3av. $39 \mathrm{mg}, 62 \%$ yield $\left(\mathrm{PhCF}_{3}\right)$; $46 \mathrm{mg}, 73 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.17$ (br, 1H), 6.78-6.73 (m, 3 H), 3.84 (s, 3H), 3.82 (s, 3H), 3.74 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) : 154.5, 149.2, 145.3, 131.5, 111.5, 110.7, 103.9, 56.2,

3aw

3aw. $22 \mathrm{mg}, 47 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 31.5 \mathrm{mg}, 67 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.34$ (br, 1H), 6.86 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.81 (dd, $J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.2,139.9,124.7,117.7,112.5,53.0$.

3ax

3ax. $48 \mathrm{mg}, 79 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 48 \mathrm{mg}, 79 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.99 (s, 1H), 7.77 (d, $J=8.8$ Hz, 2H), 7.76 (d, J= $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.37$ (m, 3H), 6.91 (br, 1H), 3.82 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.3,135.4,134.0$, 130.3, 129.0, 127.7, 127.5, 126.6, 124.8, 119.3, 115.0, 52.6.

Oxone-KBr Mediated Azidation of Aldehydes to Afford Acyl Azides

General Procedure D: To a stirred solution of aromatic aldehyde substrate (0.3 mmol) in the PhCF_{3} (analytical grade, 3.0 mL) or CCl_{4} (analytical grade, 3.0 mL) at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KBr}(54 \mathrm{mg}, 0.45 \mathrm{mmol})$ and Oxone ($166 \mathrm{mg}, 0.54 \mathrm{mmol}$) and stirred for 5 min .

Then sodium azide ($49 \mathrm{mg}, 0.75 \mathrm{mmol}$ or $43 \mathrm{mg}, 0.66 \mathrm{mmol}$) was added. After the completion of the addition, the resulting mixture was vigorously stirred for 5 min before warmed to room temperature and stirred for an additional 24-36 h . When the aromatic aldehyde substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=50 / 1$) to provide the desired compound 5 .

$5 \mathrm{a} .37 \mathrm{mg}, 84 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 38 \mathrm{mg}, 86 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.04-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.48-$ $7.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.7,134.5,130.8,129.6$ $(2 \times C), 128.8(2 \times C)$.

5b. $32 \mathrm{mg}, 66 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 34.5 \mathrm{mg}, 71 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.5$, 145.6, $129.7(2 \times C)$, $129.5(2 \times C)$, 128.1, 21.9.

5c. $49 \mathrm{mg}, 80 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 44.5 \mathrm{mg}, 73 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.96$ (d, $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.47$ (d, J= 8.8 $129.5(2 \times C)$, 128.1, $125.8(2 \times \mathrm{C}), 35.4,31.2(3 \times \mathrm{C})$.
 5d. $31 \mathrm{mg}, 58 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 41 \mathrm{mg}$, 77% yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.97$ (d, $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.91$ (d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.86 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.8,164.7$, $131.8(2 \times C), 123.3,114.0(2 \times C), 55.6$.

$5 \mathrm{e} .35 .5 \mathrm{mg}, 72 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 36 \mathrm{mg}, 73 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 8.08-8.03 (m, 2H), 7.16-7.10 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.5,166.8(\mathrm{~d}, ~ J=255 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 2 \times \mathrm{C}), 127.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 116.1(\mathrm{~d}, \mathrm{~J}=22 \mathrm{~Hz}, 2 \times \mathrm{C}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) : -103.0.

5f. $42.5 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 45 \mathrm{mg}, 83 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.8$
$\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.7,141.1,130.9(2 \times \mathrm{C})$, 129.2, 129.1 ($2 \times$ C).

$5 \mathrm{~g} .47 \mathrm{mg}, 69 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 53 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.88$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.9,132.2(2 \times \mathrm{C}), 131.0$ ($2 \times$ C), 129.9, 129.6.

5h. $61.5 \mathrm{mg}, 75 \%$ yield $\left(\mathrm{PhCF}_{3}\right)$; $63 \mathrm{mg}, 77 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.82$ ($\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 172.2, $138.2(2 \times \mathrm{C}), 130.8(2 \times \mathrm{C})$, 130.2, 102.8.

5i. $53 \mathrm{mg}, 82 \%$ yield $\left(\mathrm{PhCF}_{3}\right)$; $44.5 \mathrm{mg}, 69 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.14$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.6,135.7$ ($\mathrm{q}, \mathrm{J}=32.5$ $\mathrm{Hz}), 133.8,130.0(2 \times \mathrm{C}), 125.9(\mathrm{q}, J=3.6 \mathrm{~Hz}, 2 \times \mathrm{C}), 123.6(\mathrm{q}, J=271 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $-63.3(3 \times \mathrm{F})$.

5j. $34.5 \mathrm{mg}, 60 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 33 \mathrm{mg}, 57 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.30(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.20 (d , $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.0,151.3,135.8$, $130.7(2 \times C)$, $123.9(2 \times C)$.
 $130.0(2 \times C), 117.8,117.7$.
$51.51 \mathrm{mg}, 76 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 47.5 \mathrm{mg}, 71 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.64-7.61$ (m, 2H), 7.51-7.46 (m, 2H), 7.44-7.40 (m, 1H). ${ }^{13} \mathrm{C}$
NMR (100 MHz, CDCl 3) $\delta: 172.4,147.2,139.7,130.1(2 \times C), 129.5$, $129.1(2 \times C), 128.6,127.4(4 \times C)$.

5m. $39 \mathrm{mg}, 81 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 35 \mathrm{mg}, 72 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б: 172.8, 138.7, 135.3, 130.7, 130.1, 128.7, 126.8, 21.4.

5n. $32.5 \mathrm{mg}, 61 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 43 \mathrm{mg}, 81 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.62$ (ddd, $J=8.0,1.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (dd, $J=2.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (ddd, $J=$ 8.0, 2.8, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.6,159.9,132.0$, 129.8, 122.1, 121.2, 113.6, 55.6.

50
50. $38.5 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 36 \mathrm{mg}, 72 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.83$ (ddd, $J=7.6,1.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (ddd, $J=9.2,2.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (td, $J=8.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (tdd, $J=8.4,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.6(\mathrm{~d}, \mathrm{~J}=$ $3.0 \mathrm{~Hz}), 162.7$ (d, $J=247 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 125.3(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}), 121.5(\mathrm{~d}, J=21 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=23 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($\left.376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-$ 111.6.

5p. $41 \mathrm{mg}, 75 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 43.5 \mathrm{mg}, 80 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.01(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (ddd, J $=8.0,1.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (ddd, $J=8.0,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.41(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.6,135.1,134.4$, 132.4, 130.1, 129.6, 127.7.

5q

5q. $47.5 \mathrm{mg}, 70 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 52 \mathrm{mg}, 77 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.16(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dt}, J=$ $8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (ddd, $J=8.0,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (t, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.4,137.3,132.6,132.5$, 130.4, 128.1, 122.9.

5r

5r. $66 \mathrm{mg}, 81 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 62 \mathrm{mg}, 76 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.35(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ (ddd, $J=8.0$, $1.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (ddd, $J=8.0,1.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.2,143.2,138.3,132.5,130.4$,
128.7, 94.1.

5 s

5s. $50.5 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 44 \mathrm{mg}, 68 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.29$ (s, 1H), 8.22 (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88$ (dd, $J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.5,132.7,131.6,131.5(\mathrm{q}, \mathrm{J}=33 \mathrm{~Hz}), 130.9$ ($q, J=3.6 \mathrm{~Hz}$), 129.6, $126.5(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.6(\mathrm{q}, J=271 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) : - $62.9(3 \times \mathrm{F})$.

5t. $33.5 \mathrm{mg}, 58 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 32 \mathrm{mg}, 56 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.86(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47$ (ddd, $J=8.0,2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=$ 8.0 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.7,148.5,135.0$, 132.4, 130.1, 128.7, 124.5.

5u

5u. $0 \mathrm{mg}, 0 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 26 \mathrm{mg}, 53 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathbf{H}$
NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.93$ (td, $J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61-7.55 (m, 1 H), 7.22 (td, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (ddd, $J=10.8,8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 162.3(\mathrm{~d}, J=261 \mathrm{~Hz})$, 136.0 (d, $J=9.2 \mathrm{~Hz}$), 132.0, 124.3 (d, $J=3.8 \mathrm{~Hz}$), 119.2 (d, $J=8.6 \mathrm{~Hz}$), 117.4 (d, $J=$ $22 \mathrm{~Hz}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{\delta}:-131.0$.

$5 \mathrm{v} .52 .5 \mathrm{mg}, 81 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 50.5 \mathrm{mg}$, 78% yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.89(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=2.0$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.5,135.8,134.1(2 \times \mathrm{C}), 133.4$, $127.9(2 \times C)$.

5w. $61 \mathrm{mg}, 67 \%$ yield $\left(\mathrm{PhCF}_{3}\right)$; $68 \mathrm{mg}, 74 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.08(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס: 170.2, 139.6 ($2 \times \mathrm{C}$), 133.8, $131.2(2 \times C)$, 123.5.

$5 x .50 \mathrm{mg}, 83 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 47 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.11$ (dd, $J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (ddd, $J=8.8,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 170.6,162.1(\mathrm{~d}, J=257 \mathrm{~Hz}), 132.4,130.0(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=3.5$ $\mathrm{Hz}), 122.1(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}), 117.2(\mathrm{~d}, J=22 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : -105.3.

$5 y .49 \mathrm{mg}, 67 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 53 \mathrm{mg}, 73 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.74$ (dd, $J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.70-7.63$ ($\mathrm{m}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.9(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 159.2(\mathrm{~d}$, $J=248 \mathrm{~Hz}), 134.2,131.8(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 126.1(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 117.2(\mathrm{~d}, J=24 \mathrm{~Hz})$, 116.7 (d, $J=21 \mathrm{~Hz}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : -105.1.

$5 \mathrm{z} .45 \mathrm{mg}, 64 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 50 \mathrm{mg}, 71 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.32$ (dd, $J=6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.25 (ddd, $J=8.4,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 170.5,163.5(\mathrm{dq}, J=264,1.6 \mathrm{~Hz}), 135.6(\mathrm{~d}, J=10 \mathrm{~Hz}), 129.3(\mathrm{dq}, J=4.4$, $3.0 \mathrm{~Hz}), 127.3(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 122.0(\mathrm{q}, J=271 \mathrm{~Hz}), 119.4(\mathrm{qd}, J=33.8,13.3 \mathrm{~Hz})$, $117.8(\mathrm{~d}, \mathrm{~J}=21 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-61.8(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 3 \times \mathrm{F}),-104.6$ (q, $J=12.7 \mathrm{~Hz}$).

5aa. $42 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 39 \mathrm{mg}, 72 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.90-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.7$, $165.4(\mathrm{~d}, J=254 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 125.8(\mathrm{~d}, 18 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=23 \mathrm{~Hz}), 14.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}) .{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ס: -107.1.

5ab. $42.5 \mathrm{mg}, 81 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 40 \mathrm{mg}, 76 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.79$ (s, 1H), 7.75 (dd, $J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.7,144.3,137.3,130.6,130.1,128.4,127.3,20.3 .19 .8$.

$5 \mathrm{5ac} .36 \mathrm{mg}, 58 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 42 \mathrm{mg}$, 68% yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.66(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}{ }^{\mathbf{C}}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.8,154.4,149.0,124.1,123.4,111.5,110.4,56.2$, 56.1 .

5ad. $19 \mathrm{mg}, 41 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 28 \mathrm{mg}, 61 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.85$ (dd, $J=4.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (dd, $J=4.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dd, $J=4.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 166.8, 135.0, 134.9, 134.6, 128.6.

5ae. $40 \mathrm{mg}, 68 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 44 \mathrm{mg}, 74 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 8.60 (s, 1H), 8.03 (dd, $J=8.8,2.0$
Hz, 1H), 7.96 (dd, $J=8.0,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-$ 7.54 ($\mathrm{m}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.7,136.3,132.5$, 131.6, 129.8, 129.1, 128.7, 128.0, 127.9, 127.1, 124.7.

Hofmann Rearrangement with Alcohol/Amine/Amide

Hofmann rearrangement with amine: To a stirred solution of benzamide $\mathbf{1 a}(37 \mathrm{mg}$, $0.3 \mathrm{mmol})$ in the $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(10 / 1,1.1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KCl}(34 \mathrm{mg}, 0.45 \mathrm{mmol})$ and Oxone ($138 \mathrm{mg}, 0.45 \mathrm{mmol}$). After completion of the addition, the resulting mixture was stirred for 10 min before warmed to room temperature and stirred for an additional 2 h . When the benzamide 1a was fully consumed as determined by TLC analysis, ammonia solution ($25 \%, 0.2 \mathrm{~mL}$) or methylamine solution ($40 \%, 0.2 \mathrm{~mL}$) or cyclohexyl amine ($0.173 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added. The mixture was allowed to be stirred for 5 hrs and quenched by addition of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$. Volatiles (mainly MeCN) was removed under reduced pressure and the aqueous mixture was extracted with EA (3 X 10 mL). The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=5 / 1$) to provide the desired urea 6a-6c.

6a

6a. $33.5 \mathrm{mg}, 82 \%$ yield, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 8.50$ (br, 1H), 7.40-7.37 (m, 2H), 7.23-7.18 (m, 2H), 6.90-6.86 (m, 1H), 5.84 (br, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 156.0,140.6,128.6(2 \times \mathrm{C})$, 121.1, $117.7(2 \times \mathrm{C})$.

6b. $37 \mathrm{mg}, 83 \%$ yield, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\mathrm{\delta}: 8.48$ (br, 1H), 7.38 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ (t, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{q}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 155.9,140.7,128.7(2 \times C), 121.0,117.7(2 \times C), 26.3$.

6c. $53 \mathrm{mg}, 81 \%$ yield, white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.32-$ $7.27(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{br}, 1 \mathrm{H}), 5.11(\mathrm{br}, 1 \mathrm{H}), 3.71-$ $3.62(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 1 \mathrm{H})$, 1.38-1.27 (m, 2H), 1.19-1.06 (m, 3H), ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.5,139.0$, $129.3(2 \times C), 123.5,120.8(2 \times C), 49.0,33.8(2 \times C), 25.7,25.0(2 \times C)$.

Hofmann rearrangement with amide or alcohol: To a stirred solution of benzamide $1 \mathbf{a}(37 \mathrm{mg}, 0.3 \mathrm{mmol})$ in the $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(10 / 1,1.1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added $\mathrm{KCl}(34 \mathrm{mg}$, 0.45 mmol) and Oxone ($138 \mathrm{mg}, 0.45 \mathrm{mmol}$). After completion of the addition, the resulting mixture was stirred for 10 min before warmed to room temperature and stirred for an additional 2 h . When the benzamide 1a was fully consumed as determined by TLC analysis, benzamide ($55 \mathrm{mg}, 0.45 \mathrm{mmol}$, to afford $\mathbf{6 d}$) or homoallyl alcohol (0.6 mL , to afford $6 \mathbf{e}$) and $\mathrm{NaOH}(18 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added sequentially. The mixture was allowed to be stirred for 5 hrs and quenched by addition of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$. Volatiles (mainly MeCN and homoallyl alcohol) was removed under reduced pressure and the aqueous mixture was extracted with EA (3 X 10 mL). The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=5 / 1$) to provide the desired compounds $6 \mathbf{d}-6 \mathbf{e}$.

6d

6d. $51 \mathrm{mg}, 78 \%$ yield, brownish solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 10.97 (br, 1H), 9.80 (br, 1H), 8.08-8.04 (m, 2H), 7.67-7.59 (m, 3H), 7.53 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 168.7,152.0,137.3,133.5,132.2,129.1(2 \times \mathrm{C}), 129.0(2 \times \mathrm{C})$, $128.1(2 \times C), 124.6,120.6(2 \times C)$.

6e. $49 \mathrm{mg}, 85 \%$ yield, yellowish oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.40-7.37 (m, 2H), 7.32-7.28 (m, 2H), 7.08-7.04 (m, 1H), 6.67 (br, 1 H), 5.83 (ddt, $J=17.2,10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{qt}, J=6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 153.6$, 138.0, $134.2(2 \times \mathrm{C})$, $129.2(2 \times \mathrm{C}), 123.5,118.7,117.5,64.4,33.5$.

Curtius Rearrangement with Amines to Generate (Chiral) Ureas/Amides

Curtius rearrangement with benzoic acid to generate amide: To a stirred solution of aromatic aldehyde substrate (0.2 mmol) in the PhCF_{3} (analytical grade, 2.0 mL) or CCl_{4} (analytical grade, 2.0 mL) at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KBr}(36 \mathrm{mg}, 0.3 \mathrm{mmol})$ and Oxone ($111 \mathrm{mg}, 0.36 \mathrm{mmol}$) and stirred for 5 min . Then sodium azide ($29 \mathrm{mg}, 0.44 \mathrm{mmol}$) was added. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 24-36 h . When the aromatic aldehyde substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was used for the next step without further purification. Following Mahajan's protocol ${ }^{1}$, an oven-dried pressure tube under nitrogen atmosphere was charged with the residue, benzoic acid ($27 \mathrm{mg}, 0.22 \mathrm{mmol}$), DBU (31 $\mathrm{mg}, 0.2 \mathrm{mmol})$ and dry toluene (1 mL). The reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 2 hours and then cooled to room temperature. The solvent (toluene) was removed under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=10 / 1$) to provide the desired amide 7 c ($34 \mathrm{mg}, 73 \%$ yield or $37.5 \mathrm{mg}, 81 \%$ yield) as a white solid.

134.7, 131.8, $128.6(2 \times \mathrm{C})$, $128.5(2 \times \mathrm{C})$, $127.7(2 \times \mathrm{C})$, 127.3, $121.8(2 \times \mathrm{C})$.

Curtius rearrangement with amines to generate (chiral) ureas: To a stirred solution of aromatic aldehyde substrate (0.2 mmol) in the PhCF_{3} (analytical grade, 2.0 mL) or CCl_{4} (analytical grade, 2.0 mL) at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KBr}(36 \mathrm{mg}, 0.3 \mathrm{mmol})$ and Oxone ($111 \mathrm{mg}, 0.36 \mathrm{mmol}$) and stirred for 5 min . Then sodium azide ($29 \mathrm{mg}, 0.44 \mathrm{mmol}$) was added. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 24-36 h . When the aromatic aldehyde substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was used for the next step without further purification. An oven-dried pressure tube under nitrogen atmosphere was charged with the residue and dry toluene (1 mL). The reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 2 hours and
then cooled to room temperature. The corresponding amine (0.22 mmol) was dissolved in dry toluene (1 mL) and added in one portion into the pressure tube under a positive pressure of nitrogen flow [in the case of 7a, ammonia solution ($25 \%, 0.1 \mathrm{~mL}$) was used instead]. The resulting mixture was stirred at it for 24 hours. The volatiles were removed under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=10 / 1$) to provide the desired urea 7.

7a. $26 \mathrm{mg}, 76 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 28 \mathrm{mg}, 83 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 8.67$ (br, 1H), 7.42 (d, J= 8.8 Hz , $2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 155.9,139.6,128.5(2 \times C), 124.5,119.2(2 \times C)$.

7b. $38.5 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 42 \mathrm{mg}, 85 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 8.81$ (s, 1 H), $8.70(\mathrm{~s}, 1 \mathrm{H})$, 7.48 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46-7.43$ (m, 2H), 7.32 (d, $J=8.8 \mathrm{~Hz}$, 2H), $7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO $\left.-d_{6}\right) \delta: 152.5,139.6,138.8,128.9(2 \times C), 128.7(2 \times C), 125.3,122.0,119.7$ $(2 \times C), 118.3(2 \times C)$.

7d. $46 \mathrm{mg}, 84 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 45 \mathrm{mg}, 82 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 9.47$ (s, 1H), 8.54 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.46$ (dd, $J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (dt, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (ddd, $J=7.6,4.8,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 154.6,148.8,148.2,147.1,140.5$, 135.5, 135.1, $125.2(2 \times C), 123.5,117.0(2 \times C), 40.6$. HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}_{4}+[\mathrm{M}+\mathrm{H}]^{+} 273.0982$, found 273.0976 .

7e. $78 \mathrm{mg}, 84 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 80 \mathrm{mg}, 86 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 9.22(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H})$, 8.79 (q, J = $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.49$ (d, J = 5.6 Hz , $1 \mathrm{H}), 8.12$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.59(\mathrm{~m}$, $2 \mathrm{H}), 7.60(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ (dd, $J=5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (d, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ : 166.0, 163.9, 125.5, 125.4, 150.4, 147.9, 139.4, 137.1, 132.0, 126.8 (q, $J=30 \mathrm{~Hz}$), 123.1, 122.9 ($\mathrm{q}, J=273 \mathrm{~Hz}$), 122.4, $121.5(2 \times \mathrm{C}), 120.6(2 \times \mathrm{C}), 116.8(\mathrm{q}, J=5.7 \mathrm{~Hz})$, 114.1, 108.7, 26.1. ${ }^{19}$ F NMR (376 MHz , DMSO- d_{6}) δ : -61.5 ($3 \times$ F). HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}_{4} \mathrm{~F}_{3} \mathrm{Cl}^{+}[\mathrm{M}+\mathrm{H}]^{+} 465.0936$, found 465.0929.

7f. $82 \mathrm{mg}, 85 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 85 \mathrm{mg}, 88 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 9.53(\mathrm{~s}, 1 \mathrm{H}), 8.81$ (q, J $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.52$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.16(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 8.12 (s, 1H), 7.62 (s, 2H), 7.41 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (dd, $J=11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (ddd, $J=9.2,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (d, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 165.5,163.8,152.8$ (d, $J=244 \mathrm{~Hz}$), 152.6, 152.2, $150.5,148.1$ ($\mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}$), 139.0, 132.2, 126.8 (q, $J=30 \mathrm{~Hz}$), $125.0(\mathrm{~d}, J=10.8$ $\mathrm{Hz}), 123.0,122.8(\mathrm{q}, ~ J=271 \mathrm{~Hz}), 122.6(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 122.5(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 117.2$ (d, $J=2.9 \mathrm{~Hz}$), 116.6 (q, $J=5.6 \mathrm{~Hz}), 114.2,109.2(\mathrm{~d}, J=22 \mathrm{~Hz}), 108.9,26.1 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO- d_{6}) $\delta:-61.6(3 \times F)$, -124.6. HRMS (ESI) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{4} \mathrm{~F}_{4} \mathrm{Cl}^{+}[\mathrm{M}+\mathrm{H}]^{+} 483.0842$, found 483.0843 .

$7 \mathrm{~g} .64 \mathrm{mg}, 80 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 62 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. $[\alpha]_{\mathrm{D}}^{25}=+33.5\left(c 0.93, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\mathbf{\delta}: 8.48$ (br, 1H), 7.84 (s, 2H), 7.37 (s, 1H), 5.95 (br, 1 H), 3.69-3.61 (m, 1H), 3.56-3.51 (m, 1H), 2.50 (td, $J=10.8$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.72 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.16(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta: 155.5,141.3,132.0(\mathrm{q}, J=33 \mathrm{~Hz}, 2 \times \mathrm{C}), 123.4(\mathrm{q}, ~ J=271 \mathrm{~Hz}, 2 \times \mathrm{C}), 118.2$ ($q, J=3.3 \mathrm{~Hz}, 2 \times \mathrm{C}$), 115.3 (quint, $J=3.8 \mathrm{~Hz}$), 67.4, 51.2, $40.0(2 \times \mathrm{C}), 33.9,24.9,24.8$, 21.9. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-63.1$ ($6 \times \mathrm{F}$). HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ON}_{3} \mathrm{~F}_{6}+[\mathrm{M}+\mathrm{H}]^{+} 398.1662$, found 398.1666.

7h. $48 \mathrm{mg}, 83 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 49 \mathrm{mg}, 85 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; yellowish oil. $[\alpha]_{\mathrm{D}}^{25}=+51.9\left(c 1.02, \mathrm{CHCl}_{3}\right)^{3} .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: $7.52(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.01$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.30$ (m, 2H), 2.27 (s, 6H), 2.24 ($\mathrm{s}, 6 \mathrm{H}$), 1.83-1.77 (m, 2H), 1.67-1.63 (m, 1H), 1.20-1.06 (m, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.6,139.3,138.7(2 \times \mathrm{C}), 124.7,118.0(2 \times \mathrm{C})$, $66.8,51.4,39.9(2 \times C), 34.0,25.1,24.8,21.6,21.5(2 \times \mathrm{C})$. HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{ON}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$290.2227, found 290.2232.

7i. $42 \mathrm{mg}, 81 \%$ yield $\left(\mathrm{PhCF}_{3}\right)$; $42 \mathrm{mg}, 81 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. $[\alpha]_{\mathrm{D}}^{25}=+58.3\left(c 0.65, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$:
7.54 (br, 1H), 7.35-7.32 (m, 2H), 7.29-7.24 (m, 2H), 7.04-6.99 (m, $1 \mathrm{H}), 5.79(\mathrm{br}, 1 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dd}$,
$J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.25(\mathrm{~m}$, $1 \mathrm{H}), 1.23-1.07(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.7,139.5,129.1(2 \times \mathrm{C}), 123.0$, $120.3(2 \times C), 66.9,51.8,40.1(2 \times \mathrm{C}), 34.0,25.3,24.8,21.6$. HRMS (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{ON}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$262.1914, found 262.1914.

7j. $59.5 \mathrm{mg}, 86 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 61 \mathrm{mg}, 88 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. m.p. $=90-92{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}=+29.8\left(c 0.65, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.68$ (br, 1H), 7.34 ($\mathrm{d}, \mathrm{J}=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{br}, 1 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.75(\mathrm{~m}, 1 \mathrm{H})$, 2.38-2.34 (m, 1H), 2.30 (dd, $J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (s, 6H), 1.88-1.79 (m, 2H), 1.70-1.66 (m, 1H), 1.32-1.07 (m, 3H). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.3,144.2(\mathrm{q}$, $J=2.0 \mathrm{~Hz}), 138.3,121.8(2 \times \mathrm{C}), 120.6(\mathrm{q}, J=255 \mathrm{~Hz}), 120.5(2 \times \mathrm{C}), 67.3,51.7,40.2$ $(2 \times \mathrm{C}), 34.0,25.2,24.8,21.6 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-58.2(3 \times \mathrm{F})$. HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{~F}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$346.1737, found 346.1731.

7k. $93 \mathrm{mg}, 80 \%$ yield (PhCF_{3}); $89 \mathrm{mg}, 77 \%$ yield (CCl_{4}); white solid. $[\alpha]_{D}^{25}=-21.6\left(c 0.36, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.43(\mathrm{br}, 1 \mathrm{H}), 8.79(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.01 (d, J=9.2 Hz, 1H), 7.84 (s, 2H), 7.72 (s, 1H), 7.49 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (dd, $J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (s, 1H), $5.91(\mathrm{br}, 1 \mathrm{H}), 4.18-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=13.2,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.18-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 2 \mathrm{H})$, 1.92-1.85 (m, 2H), 1.38-1.31 (m, 2H), 1.26 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.19-1.15(\mathrm{~m}, 1 \mathrm{H})$, 0.85 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.8,154.8,147.7,145.0$, 142.4, 141.1, 131.9, 131.7 (q, $J=33 \mathrm{~Hz}, 2 \times C)$, $128.2,123.3$ (q, $J=271 \mathrm{~Hz}, 2 \times \mathrm{C}$), 122.7, $117.7(2 \times C), 116.0,115.2,101.7,59.6,56.7,56.0,41.5,35.4,29.7,26.5,25.8$, 25.0, 24.7, 11.6. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-58.3$ ($6 \times \mathrm{F}$). HRMS (ESI) m/z calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{~F}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 581.2346$, found 581.2351.

71. $76 \mathrm{mg}, 80 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 74 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. $[\alpha]_{\mathrm{D}}^{25}=+8.4$ (c 0.5, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.76(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{br}, 1 \mathrm{H})$, $7.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (dd, $J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (s, 2H), $6.55(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{br}, 1 \mathrm{H}), 4.22-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, 3.59 (dd, $J=13.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=11.6,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.18 (s, 6H), 2.02-1.95 (m, 1H), 1.84 (s, 2H), 1.81-1.64 (m, 2H), 1.27-1.19 (m, 3H), 1.11-1.07 (m, 1H), $0.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.7,155.4$,
$147.8,144.8,142.2,139.4,138.4(2 \times C), 131.7,128.1,124.3,122.5,119.7,116.5$ $(2 \times C), 101.7,59.8,56.1,56.0,50.5,41.7,34.8,29.7,25.9,25.0,24.4,21.5(2 \times C), 11.5$. HRMS (ESI) m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 473.2911$, found 473.2911.

$7 \mathrm{~m} .73 \mathrm{mg}, 82 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 70 \mathrm{mg}, 79 \%$ yield $\left(\mathrm{CCl}_{4}\right)$;
white solid. $[\alpha]_{\mathrm{D}}^{25}=+12.4\left(c 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta: 8.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{br}, 1 \mathrm{H}), 7.98(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (dd, $J=9.2,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{br}, 1 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 1 \mathrm{H})$, 4.13-4.07 (m, 1H), 3.98 ($\mathrm{s}, 3 \mathrm{H}$), 3.57 (d, $J=12.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.11$ (m, 1H), 2.82 (dd, $J=11.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.03-1.96 (m, 1H), 1.86 (s, 2H), 1.81-1.70 (m, 2H), 1.24$1.18(\mathrm{~m}, 3 \mathrm{H}), 1.12-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.8,155.4,147.8,144.9,142.0,139.5,131.8,128.9(2 \times C), 128.2,122.6,122.5$, 119.7, $119.0(2 \times C), 101.7,59.7,56.1(2 \times C), 41.8,34.8,29.8,26.0,24.9,24.5,24.4$, 11.6. HRMS (ESI) m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~N}_{4}+[\mathrm{M}+\mathrm{H}]^{+} 445.2598$, found 445.2592 .

7n. $82.5 \mathrm{mg}, 78 \%$ yield $\left(\mathrm{PhCF}_{3}\right) ; 84.5 \mathrm{mg}, 80 \%$ yield $\left(\mathrm{CCl}_{4}\right)$; white solid. m.p. $=168-170{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}=$ +3.8 (c 0.5, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:$ 8.82 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.77$ (br, 1H), 7.89 (d, J= $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.70 (s, 1H), 7.69 (s, 1H), 7.35 (d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{br}, 1 \mathrm{H}), 4.54-$ 4.48 (m, 1H), 4.21-4.15 (m, 1H), 3.94 (s, 3H), 3.56 (dd, $J=12.8,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.17$3.09(\mathrm{~m}, 1 \mathrm{H}), 3.01$ (dd, $J=12.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.68(\mathrm{~m}, 4 \mathrm{H})$, 1.32-1.15 (m, 3H), 1.01-0.97 (m, 1H), $0.70(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 158.8,155.3,148.0,144.5,143.9,141.9,138.2,131.4,128.2,122.8,121.5$ $(2 \times \mathrm{C}), 120.5(\mathrm{q}, J=255 \mathrm{~Hz}), 119.8,119.7(2 \times \mathrm{C}), 101.6,59.5,56.1,56.0,49.6,41.8$, 35.0, 25.9, 25.0, 24.7, 24.6, 11.5. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-63.0(3 \times \mathrm{F})$. HRMS (ESI) m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~N}_{4} \mathrm{~F}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 529.2421$, found 529.2426 .

Gram Scale Synthesis of Chiral Ligands 7i and 7i

Gram-Scale

To a stirred solution of aromatic aldehyde substrate (6 mmol) in the PhCF_{3} (analytical grade, 60 mL) at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KBr}(1.06 \mathrm{~g}, 9 \mathrm{mmol})$ and Oxone ($3.32 \mathrm{~g}, 10.8 \mathrm{mmol}$) and stirred for 5 min . Then sodium azide ($975 \mathrm{mg}, 15 \mathrm{mmol}$) was added. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 36 h . When the aromatic aldehyde substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was used for the next step without further purification. An oven-dried pressure tube under nitrogen atmosphere was charged with the residue and dry toluene (25 mL). The reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 4 hours and then cooled to room temperature. The chiral amine ($852 \mathrm{mg}, 6 \mathrm{mmol}$) was dissolved in dry toluene (5 mL) and added dropwise into the pressure tube under a positive pressure of nitrogen flow. The resulting mixture was stirred at rt for 24 hours. The volatiles were removed under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=10 / 1$) to provide the desired chiral ligand $7 \mathbf{i}(1.17 \mathrm{~g}, 75 \%$ yield) and 7 j ($1.66 \mathrm{~g}, 80 \%$).

Control Experiments

In situ generation of BrN_{3} from oxone-KBr-NaN N_{3} : Following our previous procedure ${ }^{2}$, a round bottom flask equipped with a stir bar was immersed in ice-water bath and charged with Oxone ($666 \mathrm{mg}, 2.16 \mathrm{mmol}, 7.2$ equiv.) and $\mathrm{KBr}(213 \mathrm{mg}, 1.8 \mathrm{mmol}, 6$ equiv.). $\mathrm{PhCF}_{3}(10 \mathrm{~mL})$ or $\mathrm{CCl}_{4}(10 \mathrm{~mL})$ was added to the round bottom in one portion. The reaction mixture was stirred and kept at $0{ }^{\circ} \mathrm{C}$ and protected from light. After 5 minutes, sodium azide ($195 \mathrm{mg}, 3.0 \mathrm{mmol}, 10$ equiv. or $172 \mathrm{mg}, 2.64 \mathrm{mmol}, 8.8$ equiv.) was added in one portion. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 2 h . The mixture was filtered through a pad of celite and the filtrate was added to a round bottom flask. To the resulting solution p-chlorobenzaldehyde $\mathbf{4 f}(43 \mathrm{mg}, 0.3$ mmol, 1 equiv.) was added. The solution was allowed to stir at rt until the starting material had been totally consumed (as monitored by TLC). Saturated aqueous
$\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (10 mL) was added. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 10 \mathrm{~mL})$. Organic layer was collected, then washed with brine, dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=50 / 1$) to provide the desired compound $5 \mathbf{f}(32.5 \mathrm{mg}, 60 \%$ yield or $37 \mathrm{mg}, 68 \%$ yield) as a white solid.

Oxidation of aldehyde with Oxone-KBr: To a stirred solution of aromatic aldehyde $4 f(42 \mathrm{mg}, 0.3 \mathrm{mmol})$ in the PhCF_{3} (analytical grade, 3.0 mL) or CCl_{4} (analytical grade, 3.0 mL) at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KBr}(54 \mathrm{mg}, 0.45 \mathrm{mmol})$ and Oxone ($166 \mathrm{mg}, 0.54 \mathrm{mmol}$). After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 2 h . When the aromatic aldehyde $\mathbf{4 f}$ was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure to afford the benzoyl bromide $8(47 \mathrm{mg}, 72 \%$ yield or $58 \mathrm{mg}, 88 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.01$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 ($\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3) $\delta: 162.3,141.3,131.3(2 \times C), 129.5(2 \times C), 123.9$.

Preparation of acyl azide from benzoyl bromide: To a stirred solution of selfprepared benzoyl bromide $8(55 \mathrm{mg}, 0.25 \mathrm{mmol})$ in the PhCF_{3} (analytical grade, 3.0 mL) or CCl_{4} (analytical grade, 2.5 mL) at $0{ }^{\circ} \mathrm{C}$ were added sodium azide ($41 \mathrm{mg}, 0.625$ mmol or $36 \mathrm{mg}, 0.55 \mathrm{mmol}$). After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 24 h . The mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=50 / 1$) to provide the desired acyl azide 5 ($41 \mathrm{mg}, 90 \%$ yield or $42 \mathrm{mg}, 93 \%$ yield) as a white solid.

Radical cyclization reaction: To a stirred solution of aromatic aldehyde $9(44 \mathrm{mg}, 0.3$ mmol) in the PhCF_{3} (analytical grade, 3.0 mL) or CCl_{4} (analytical grade, 3.0 mL) at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{KBr}(54 \mathrm{mg}, 0.45 \mathrm{mmol}$) and Oxone ($166 \mathrm{mg}, 0.54 \mathrm{mmol}$) and stirred for 5 min . Then sodium azide ($49 \mathrm{mg}, 0.75 \mathrm{mmol}$ or $43 \mathrm{mg}, 0.66 \mathrm{mmol}$) was added. After the completion of the addition, the resulting mixture was stirred for 5 min before warmed to room temperature and stirred for an additional 24 h . When the substrate was fully consumed as determined by TLC analysis, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel using eluents (petroleum ether/ethyl acetate $=40 / 1$) to provide the desired compound $10(9 \mathrm{mg}, 20 \%$ yield or $10 \mathrm{mg}, 23 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.86$ (dd, $J=7.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.60 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (dt, $J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 6.36$ (td, $J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{td}, J=2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ס: 193.6, 150.0, 143.4, 138.3, 135.0, 127.7, 126.5, 124.7, 119.5, 31.9.

References

1. Kumar, A.; Kumar, N.; Sharma, R.; Bhargava, G.; Mahajan, D. J. Org. Chem. 2019, 84, 11323-11334.
2. Ren, J.; Tong, R. Org. Biomol. Chem. 2013, 11, 4312.
3. Berkessel, A.; Mukherjee, S.; Müller, T. N.; Cleemann, F.; Roland, K.; Brandenberg, M.; Neudörfl, J.-M.; Lex, J. Org. Biomol. Chem. 2006, 4, 4319-4330.

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Me
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\sim_{0}^{0 \mathrm{CF}_{3}} \mathrm{O}_{3 \mathrm{M}}^{\mathrm{N}}$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\underset{\mathrm{Me}}{\mathrm{Et}} \overbrace{\mathrm{Me}}^{\mathrm{Ne}} \mathrm{O}_{\mathrm{O}}^{\mathrm{N}} \mathrm{O}_{\mathrm{3ad}}^{\mathrm{OMe}}
$$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

MeO
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
*)
```


${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ax
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ax
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Curre
NAME
EXPNO
EAMENO
EROCNO

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Current Data Parameter NAME
EXPN EXPNO
PROCNO

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ata Parameter
djp-20210904ROCNO

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

F2 - ACquisition Parameter

Date-
Time

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& \begin{array}{c}
\text { Current Data Parameters } \\
\text { NAME } \\
\text { Ihz-20211115-4 }
\end{array} \\
& \begin{array}{l}
\text { EXPNO } \\
\text { PROCNO }
\end{array} \\
& \begin{array}{l}
\text { F2-Acquisition Parameters } \\
\text { Date_ } 20211115
\end{array} \\
& \text { Time } 11.22
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lr}
\text { PROBHD } & 2116098 _06533 \\
\text { PULPROG } & \text { z930 } \\
\text { TD } & 65536 \\
\text { SOLVENT } & \text { CDC13 } \\
\text { NS } & 8
\end{array} \\
& \begin{array}{l}
\text { DS } \\
\text { SWH } \\
\text { FIDRES } \\
\text { AQ } \\
\text { RG }
\end{array} \\
& \begin{array}{l}
8012.820^{2} \mathrm{~Hz} \\
0.244532 \mathrm{~Hz}
\end{array} \\
& \begin{array}{ll}
& 8012 . \\
\text { FIDRES } & 0.2445 \\
\text { AQ } & 4.08944 \\
\text { RG } &
\end{array} \\
& \begin{array}{lr}
\text { AQ } & 4.0894465 \mathrm{sec} \\
\text { RG } & 156.98 \mathrm{usec} \\
\text { DW } & 62.400 \mathrm{usec} \\
\text { DE } & 6.50 \mathrm{usec} \\
\text { TE } & 292.7 \mathrm{k} \\
\text { D1 } & 1.00000000 \mathrm{sec} \\
\text { TDO } & 400.1324708 \mathrm{MHz} \\
\text { SFO1 } &
\end{array} \\
& \begin{array}{lr}
\text { NUC1 } & 400.1324708 \mathrm{MHz} \\
\text { P1 } & 10.1 \mathrm{H} \\
\text { PIW1 } & 16.43099976 \mathrm{Wec}
\end{array} \\
& \begin{array}{lr}
\text { F2 - Processing parameters } \\
\text { SI } & 65536 \\
\text { SF } & 400.1300098 \mathrm{MH} \\
\text { WDW } & \mathrm{EM}
\end{array} \\
& \begin{array}{lr}
\text { SF } & 400.1300098 \\
\text { WDW } & \text { EM } \\
\text { SSB } \\
\text { IB } & 0.30 \mathrm{~Hz} \\
\text { GB } & 0 \\
\text { PC } &
\end{array} \\
& \text { PC } 1.00
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)


```
タ\circ㇒⿻二乚冂山⿱一𫝀口
```


${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5t
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5u
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{aligned}
& \text { Current Data Parameters } \\
& \text { NAME } \\
& \text { EXPNO } \\
& \text { Ihz-20211118-2 } \\
& \text { PROCNO }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Current Data Parameters
EXPNO
PROCNO
F2-Acquisition Parameters
Date_ 20220909
$\begin{array}{lr}\text { Time- } & 20.58\end{array}$
INSTRUM
PROBHD
PNOPR
2ll
spect
PROBHD
PULPROG
TD
SOLV
NS
DS

FIDRES $\quad \begin{array}{r}24038.461 \\ 0.733596 ~ H z\end{array}$
$\begin{array}{lr}\text { FIDRES } & 0.733596 \mathrm{~Hz} \\ \text { AQ } & 1.3631488 \mathrm{sec} \\ \text { RG } & 198.36\end{array}$
198.36
20.800 usec
20.800 usec
6.50 used
294.7 usec
2.00000000 sec
0.03000000 sec
$100.6228298^{1} \mathrm{MHz}$
228298 MHz
13 M
10.00 usec
15.8400177 usec
400.1316005 MHz
${ }_{1 \mathrm{H}}$
waltz16 used
90.00 used
6.43099976 W
0.20286000 W
0.20286000 W
0.10204000 W

F2 - Processing parameters
32768
SI
SF
SF

100.6127572 MHz
$\begin{array}{lr}\text { SF } & 100.6127572 \mathrm{MH} \\ \text { SD } & \text { EM } \\ \text { SSB } & 0 \\ \text { LB } & 1.00 \mathrm{~Hz} \\ \text { GB } & 0\end{array}$


```
N-
```


${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
\underbrace~
```


$5 a e$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underbrace{\text { (}}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$)

Current Data Parameter CurMent
EXPR
EXP

$\begin{aligned} & \text { F2 - Acqu } \\ & \text { Date_ } \end{aligned}$	isition Parameters 20221217
Time	17.50 h
INSTRUM	
PROBHD	2116098_0653 (
PULPROG	
TD	65536
SOLVENT	DMSO
NS	16
DS	
SWH	8012.820 Hz
FIDRES	0.244532 Hz
${ }_{\text {a }}$	4.0894465
RG	62.98
DW	62.400 usec
DE	6.50 used
TE	292.9 K
D1	1.00000000 sec
TDO	
SFO1	400.1324708 MHz
NUC1	
P1	10.00 us
PLW1	16.43099976 W
F2 - Proc	cessing parameter
$\mathrm{SI}_{\text {SF }}$	${ }_{400.135536}{ }^{65052}$
SEW	400.1300032 EM
SSB	
LB	0.30 Hz
GB	-
PC	1.00

$$
\begin{aligned}
& \mathrm{Ph}^{-\mathrm{H}} \stackrel{\mathrm{H}}{\mathrm{~N}} \mathrm{~T}_{\mathbf{6 a}}^{\mathrm{NH}_{2}} \\
& { }^{13} \mathrm{C} \text { NMR (} 100 \mathrm{MHz} \text {, DMSO- } \mathrm{d}_{6} \text {) }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6e
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Current Data Parameters
NAME
Iyr-20230303-1 NAME
EXPNO
PROCNO
F2 - Acquisition Parameter
Date_
$\begin{array}{cc} & \\ \text { Date- } & 20230303 \\ \text { Time } & 23.20 \\ \text { INSTRUM } & 50.0 \text { Paramet }\end{array}$
$\begin{array}{ll}\substack{\text { INSTRUM } \\ \text { PROBHD } \\ \text { PUIPROG }} & \text { 2116098_065ec } \\ \text { sper }\end{array}$
 SOL
NS
DS
SWH
$\begin{array}{lr}\text { SWH } & 24038.461^{4} \mathrm{~Hz} \\ \text { FIDRES } & 2.733148^{2}\end{array}$
0.733596 Hz
1.3631488 sec
198.36
198.36
20.800 usec
20.800 used
6.50 usec
2.00000000 K
kec
2.00000000 sec
0.0300000 sec
$100.6228298^{1} \mathrm{MHz}$ 5.8440 .00 used 400.1316005 MHz
waltz16 90.00 us 16.43099976 W
0.20286000 W 0.20286000 W
0.10204000 W

F2 - Processing parameters
$\begin{array}{ll}\text { S2 } & \text { Processing } \\ \text { SF } & 32768 \\ \text { SDW } & 100.6127594 \mathrm{MHz} \\ \mathrm{SD} & \mathrm{EM}\end{array}$
1.00 Hz
1.0°

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6})

Current Data Parameter NAME
EXPNO
PROCNO
F2 - Acquisition Parameter
$\begin{array}{lr}\text { Date- } & 20221202 \\ \text { Time } & 3.03\end{array}$

$\begin{array}{lr}\text { PULPROG } & \text { zgpg } \\ \text { TD } & 6553 \\ \text { SOLVENT } & \text { DMS0 } \\ \text { NS } & 1333 \\ \text { DS } & 4\end{array}$
$\begin{array}{lr}\text { SWH } & 24038.461^{4} \mathrm{~Hz} \\ \text { FIDRES } & 0.733596 \mathrm{~Hz} \\ \text { AQ } & 1.3631488 \mathrm{sec} \\ \text { RG } & \end{array}$
1.733596 Hz
191488 sec
198.36
198.36
20.800
usec
6.50 used
293.6 ued
2.00000000 K kec
2.00000000 sec
0.03000000 sec $100.6228298^{1} \mathrm{MHz}$
5.10 .00 used 5.84400177 W
400.1316005 MHz
\qquad
waltz16
90.00 usec 6.43099976 W 0.20286000 W
0.10204000 W
$\begin{array}{lr}\text { F2 } & \text { Processing parameters } \\ \text { SI } & 32768 \\ \text { SF } & 100.612816 \mathrm{MHz} \\ \text { WDW } & \end{array}$
$\begin{array}{lr}\text { WDW } & 100.6128110 \\ \text { SSB } & \text { EM } \\ \text { IB } & 0 \\ \text { GB } & 1.00\end{array}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\begin{array}{ll}\text { Current } & \text { Data Parameters } \\ \text { NAME } \\ \text { EXPNO } & \text { myf-20230526 } \\ \text { PROCNO } & 2\end{array}$
F2-Acquisition Parameter

PULPROG	rgpg
TD	
SOLVENT	65536
NS	CDC13
DS	3333
SWH	44038.461

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

C
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

NAME
EXPNO

EXPNO
PROCNO

4. F2-Acquisition Parameters
 PULPROG
TD
SOLVENT
NS
DS
SWH
FIDRES
AQ
RG
DW
DE
TE
D1
D11
TD0
SFO1
NUC1
P1
PLW1
SFO2
NUC2
CPDPRG[2
PCPD2
PLW2
PLW12
PLW13 $2 g p g 30$
65536
$C D C 13$
3333
4 24038.461 Hz
0.733596 Hz
1.3631488 sec
198.36
20.800 198.36 usec
20.800 usec
6.50 usec 2.0000000 .6 K 2.00000000 sec
0.03000000 sec $100.6228298^{1} \mathrm{MHz}$ 75.844001177 W usec 400.1316005 MHz waltz1 ${ }^{1 H}$ 90.00 usec 6.43099976 W
0.20286000 W 0.20286000 W
0.10204000 W
$\begin{array}{lr}\text { F2 - Processing parameters } \\ \text { SI } \\ \text { SE } & 32768 \\ \text { SF } & 100.6127571 \\ \text { WDW } & \text { EM }\end{array}$ 1.00
0
1.40

为

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

AME Data Parameters C3b NAME
EXPNO
PROCN
$\mathrm{F}_{2}^{\text {- Acquisition Parameters }}$
RROBHD 2116098 _0653 $\begin{gathered}\text { spect }\end{gathered}$

PROBHD	2116098_0653
pulprog	2930 65536
solvent	CDC13

DS	16
2	

$\begin{array}{rr}8012.820 \mathrm{~Hz} \\ & 0.244532 \mathrm{~Hz}\end{array}$
0.244532 Hz
4.0894465 sec
62.400^{5} usec
62.400 usec
6.50 usec
1.000004 .5 K
$400.1324708^{1} \mathrm{MHz}$
16.430999976 W

Processing 099976 W

0.30 Hz
1.00°
\qquad n Ω \rightarrow

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

