Supporting Information

Iridium-catalyzed Asymmetric, Complete Hydrogenation of Pyrimidinium Salts under Batch and Flow

Zhi Yang,‡^a Yu Chen,‡^a Linxi Wan,^a Yuxiao Li,^a Dan Chen,^a Jianlin Tao,^d Pei Tang*^a and Fen-Er Chen*^{abc}

 ^aSichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
^bEngineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
^cShanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
^dCentral Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
^{*}Corresponding Author: Pei Tang, E-mail: peitang@scu.edu.cn; Fener Chen, E-mail:

Table of Contents

rfchen@fudan.edu.cn

1.	General Information	2
2.	Experimental Procedures	2
3.	References	47
4.	NMR Spectrum	48
5.	Crystallographic Data	132

1. General Information

All commercially available reagents were used without further purification. Chromatography was conducted by using 300–400 mesh silica gel. Oil bath served as the heat source. All new compounds gave satisfactory spectroscopic analyses (¹H NMR, ¹³C NMR, HRMS, melting point (mp, for solid)). NMR spectra were recorded on a 400 MHz NMR spectrometer. Reference values for residual solvents were taken as $\delta = 7.26$ (Chloroform-*d*) ppm, $\delta = 2.50$ (DMSO-*d*₆) ppm for ¹H NMR and $\delta = 77.0$ (Chloroform-*d*) ppm, $\delta = 39.5$ (DMSO-*d*₆) ppm for ¹³C NMR. Abbreviations for signal coupling are as follows: s = singlet, d = doublet, t =triplet, q = quartet, m = multiplet, dd = double doublet, and td = double triplet. Coupling constants were taken from the spectra directly and are uncorrected. Optical rotations were determined using a Rudolph Research Analytical Autopol VI automatic polarimeter. High-resolution mass spectra (HRMS) were recorded on Bruker microTOF Q III by the ESI method. Melting point (mp) was recorded on an SRS-optic melting point apparatus. HPLC analyses were performed using Agilent Technologies 1260 Infinity II with Daicel Chiralpak AD-H column, Chiralpak IC column and Chiralcel OD-H column. Single-Crystal X-Ray diffraction was recorded at Bruker APEX-II CCD diffractometer.

2. Experimental Procedures

2.1 General procedure for the synthesis of 4-substituted pyrimidines

2.1.1 General procedure A: preparation of 4-substituted pyrimidines¹

To a solution of pyrimidine (5.0 mmol, 1.0 equiv.) in solvent (50 mL, DCM/H₂O = 1/1) were added TFA (5.0 mmol, 1.0 equiv.), FeS (5.0 mmol, 1.0 equiv.), arylboronic acids (7.5 mmol, 1.5 equiv.) and K₂S₂O₈ (15.0 mmol, 3.0 equiv.). The mixture was stirred for 48 h at room temperature. After completion of reaction (confirmed by TLC), the resulting solution was directly filtered through a pad of celite and washed with DCM. The filtrate was added with saturated aqueous NaHCO₃ solution, and the combined aqueous layers were extracted with DCM. Then the combined organic layers were washed with brine, over Na₂SO₄, filtered, and evaporated in vacuo. The residue was purified by silica gel flash column chromatography to give 4-substituted pyrimidines.

2.1.2 General procedure B: preparation of 4-substituted pyrimidines²

To a solution of substituted acetophenone (5.0 mmol, 1.0 equiv.) in formamide (16.0 mL) was added $K_2S_2O_8$ (15.0 mmol, 3.0 equiv.). The mixture was sparged with argon for 10 min and the reaction mixture was stirred at 120 °C for 36 h. After completion of reaction (confirmed by TLC), reaction mixture was cooled to room temperature. The resulting solution was directly filtered through a pad of celite and washed with DCM. The

filtrate was added with water and extracted with DCM. The combined organic layers were washed with brine, over Na₂SO₄, filtered, and evaporated in vacuo. The residue was purified by silica gel flash column chromatography to give 4-substituted pyrimidines.

2.1.3 General procedure C: preparation of 4-substituted pyrimidines

A mixture of substituted acetophenone (10.0 mmol, 1.0 equiv.), formamidine acetate (50.0 mmol, 5.0 equiv.) and *n*-butanol (8.3 mL) was heated at 130 °C and stirred for 24 hours. After completion of reaction (confirmed by TLC), reaction mixture was cooled to room temperature and concentrated in vacuo. The crude reaction mixture was purified by silica gel flash column chromatography to give 4-substituted pyrimidines.

4-phenylpyrimidine (S1a): 336 mg, 43% yield, white solid, mp = $68.5 - 70.9 \,^{\circ}\text{C}$. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.27 (s, 1H), 8.75 (d, *J* = 5.2 Hz, 1H), 8.13 - 8.04 (m, 2H), 7.74 - 7.68 (m, 1H), 7.58 - 7.44 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.1, 159.3, 157.6, 136.7, 131.2, 129.2, 127.3, 117.1. HRMS (ESI) m/z: calcd for C₁₀H₉N₂ [M + H]⁺, 157.0760; found, 157.0763.

4-(p-tolyl)pyrimidine (S1b): 417 mg, 49% yield, white solid, mp = 69.5 - 73.3 °C. ¹H NMR (400 MHz,

Chloroform-*d*) δ 9.23 (s, 1H), 8.71 (d, *J* = 5.2 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.70 – 7.64 (m, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.0, 159.2, 157.4, 141.7, 133.8, 129.9, 127.2, 116.8, 21.5. HRMS (ESI) m/z: calcd for C₁₁H₁₁N₂ [M + H]⁺, 171.0917; found, 171.0919.

4-(m-tolyl)pyrimidine (S1c): 366 mg, 43% yield, colorless oil. ¹H NMR (400 MHz, Chloroform-d) δ 9.24 (s,

1H), 8.72 (d, J = 7.2 Hz, 1H), 7.90 (s, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.42 – 7.27 (m, 1H), 7.30 (d, J = 7.6 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.1, 159.1, 157.4, 138.9, 136.5, 131.9, 129.0, 127.8, 124.3, 117.1, 21.5. HRMS (ESI) m/z: calcd for C₁₁H₁₁N₂ [M + H]⁺, 171.0917; found,

171.0912.

4-(4-isopropylphenyl)pyrimidine (S1e): 446 mg, 45% yield, yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.24 (s, 1H), 8.72 (d, *J* = 5.6 Hz, 1H), 8.05 – 7.99 (m, 2H), 7.68 (d, *J* = 5.6 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 3.05 – 2.91 (m, 1H), 1.29 (d, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.1, 159.2, 157.4, 152.6, 134.2, 127.3, 127.3, 116.9, 34.2, 23.9. HRMS (ESI) m/z: calcd for C₁₃H₁₅N₂O [M + H]⁺, 199.1230; found, 199.1227.

4-(4-nitrophenyl)pyrimidine (S1g): 362 mg, 36% yield, white solid, mp = 92.5 - 97.3 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.34 (s, 1H), 8.88 (d, *J* = 5.6 Hz, 1H), 8.39 – 8.24 (m, 4H), 7.80 (dd, J = 5.2, 1.2 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 161.6, 159.5, 158.3, 149.56, 142.4, 128.3, 124.3, 117.7. HRMS (ESI) m/z: calcd for C10H8N3O2 [M O₂N + H]⁺, 202.0611; found, 202.0610.

4-(4-(trifluoromethoxy)phenyl)pyrimidine (S1h): 672 mg, 56% yield, colorless oil. ¹H NMR (400 MHz, Chloroform-d) δ 9.32 (d, J = 1.2 Hz, 1H), 8.84 (d, J = 5.2 Hz, 1H), 8.21 (d, J = 8.0 Hz, 2H), 7.80 – 7.74 (m, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 162.6, 159.4, 58.1, 140.0, 132.9 (q, J = 32.5 Hz), 127.7, 126.1 (q, J = 3.8 Hz), 124.0 (q, J = 270.8 Hz), 117.5. HRMS (ESI) m/z: calcd for $C_{11}H_8F_3N_2O [M + H]^+$, 241.0583; found,

241.0580.

F₃CC

NC

4-(4-(trifluoromethyl)phenyl)pyrimidine (S1i): 358 mg, 32% yield, colorless oil. ¹H NMR (400 MHz,

Chloroform-d) δ 9.27 (d, J = 1.2 Hz, 1H), 8.79 (d, J = 5.2 Hz, 1H), 8.16 – 8.10 (m, 2H), 7.70 (dd, J = 5.2, 1.2 Hz, 1H), 7.39 – 7.33 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 162.6, 159.3, 157.8, 151.5 (q, J = 1.8 Hz), 135.1, 129.0, 121.3, 151.5 (q, J = 256.7 Hz), 117.0. HRMS (ESI) m/z: calcd for $C_{11}H_8F_3N_2$ [M + H]⁺,

225.0634; found, 225.0633.

4-(pyrimidin-4-yl)benzonitrile (S1j): 280 mg, 31% yield, yellow solid, mp = 91.5 - 95.7 °C. ¹H NMR (400 MHz, Chloroform-d) δ 9.31 (d, J = 1.6 Hz, 1H), 8.85 (d, J = 5.6 Hz, 1H), 8.24 - 8.16 (m, 2H), 7.84 - 7.78 (m, 2H), 7.75 (dd, J = 5.2, 1.2 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-d) & 161.9, 159.4, 158.2, 140.7, 132.9, 127.8, 118.4, 117.5, 114.7. HRMS (ESI) m/z: calcd for $C_{11}H_8N_3$ [M + H]⁺, 182.0713; found, 182.0714.

4-(4-fluorophenyl)pyrimidine (S1k): 331 mg, 38% yield, white solid, mp = 65.4 - 69.3 °C. ¹H NMR (400 MHz, Chloroform-d) δ 9.24 (d, J = 1.6 Hz, 1H), 8.74 (d, J = 5.2 Hz, 1H), 8.12 - 8.05 (m, 2H), 7.66 (dd, J = 5.6, 1.6 Hz, 1H), 7.22 - 7.14 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) & 164.9 (d, J = 250.5 Hz), 162.9, 159.2, 157.6, 132.8 (d, J = 3.1 Hz), 129.4 (d, J=8.7 Hz), 116.7, 116.2 (d, J=21.7 Hz). HRMS (ESI) m/z: calcd for C₁₀H₈FN₂

[M + H]⁺, 175.0666; found, 175.0669.

4-(4-chlorophenyl)pyrimidine (S11): 390 mg, 41% yield, white solid, mp = 69.4 - 73.4 °C. ¹H NMR (400 MHz, Chloroform-d) δ 9.24 (s, 1H), 8.75 (d, J = 5.2 Hz, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 5.2 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 162.8, 159.2, 157.7, 137.6, 135.0, 129.4, 128.5, 116.9. HRMS (ESI) m/z: calcd for $C_{10}H_8CIN_2 [M + H]^+$, 191.0371; found, 191.0376.

4-(4-bromophenyl)pyrimidine (S1m): 433 mg, 37% yield, white solid, mp = 69.9 - 72.2 °C. ¹H NMR (400 MHz, Chloroform-d) δ 9.24 (d, J = 1.2 Hz, 1H), 8.75 (d, J = 5.2 Hz, 1H), 7.98 – 7.91 (m, 2H), 7.67 – 7.59 (m, 3H). ¹³C NMR (100 MHz, Chloroform-d) & 162.8, 159.3, 157.8, 135.5, 132.4, 128.7, 126.0, 116.8. HRMS (ESI) m/z: calcd for $C_{10}H_8BrN_2$ [M + H]⁺, 234.9865; found, 234.9863.

4-(naphthalen-2-vl)pyrimidine (S1n): 484 mg, 47% yield, yellow solid, mp = 122.5 - 126.1 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.30 (s, 1H), 8.72 (d, *J* = 5.2 Hz, 1H), 8.56 (s, 1H), 8.11 (dd, J = 8.8, 2.0 Hz, 1H), 7.95 - 7.81 (m, 3H), 7.73 (dd, J = 5.2, 1.2 Hz, 1H), 7.55 -7.46 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.7, 159.1, 157.5, 134.7, 133.7, 133.2, 129.0, 128.8, 127.8, 127.6, 127.5, 126.7, 123.7, 117.1. HRMS (ESI) m/z: calcd

for $C_{14}H_{11}N_2[M + H]^+$, 207.0917; found, 207.0916.

4-([1,1'-biphenyl]-4-yl)pyrimidine (S10): 534 mg, 46% yield, yellow solid, mp = 184.5 – 188.7 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.29 (d, *J* = 1.2 Hz, 1H), 8.76 (d, *J* = 5.2 Hz, 1H), 8.20 – 8.14 (m, 2H), 7.78 – 7.71 (m, 3H), 7.69 – 7.61 (m, 2H), 7.52 – 7.37 (m, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 163.6, 159.5, 157.6, 144.0, 140.2, 135.4, 129.0, 128.1, 127.8, 127.7, 127.5, 116.9. HRMS (ESI) m/z: calcd for C₁₆H₁₂N₂ [M + H]⁺, 233.1073; found, 233.1072.

H₂C ĊНа

4-(3,5-dimethylphenyl)pyrimidine (S1p): 221 mg, 24% yield, pale yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.24 (s, 1H), 8.72 (d, *J* = 5.2 Hz, 1H), 7.62 – 7.74 (m, 3H), 7.14 (s, 1H), 2.40 (s, 6H). ¹³C NMR (100 MHz, Chloroform-d) δ 164.4, 159.1, 157.4, 138.8, 136.6, 132.9, 125.1, 117.5, 21.4. HRMS (ESI) m/z: calcd for $C_{12}H_{13}N_2$ [M + H]⁺, 185.1073; found, 185.1075.

4-(tert-butyl)pyrimidine (S1q): 218 mg, 16% yield, colorless oil. ¹H NMR (400 MHz, Chloroform-d) & 9.14 (d, J = 1.2 Hz, 1H), 8.62 (d, J = 5.2 Hz, 1H), 7.33 (dd, J = 5.2, 1.2 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (100 MHz, Chloroform-d) δ 177.9, 158.4, 157.0, 117.0, 37.6, 29.5. HRMS (ESI) m/z: calcd for $C_8H_{13}N_2[M + H]^+$, 137.1073; found, 137.1074.

4-cyclohexylpyrimidine (S1r): 454 mg, 28% yield, colorless oil. ¹H NMR (400 MHz, Chloroform-d) δ 9.10 (d, J = 1.6 Hz, 1H), 8.59 (d, J = 5.6 Hz, 1H), 7.16 (dd, J = 5.2, 1.2 Hz, 1H), 2.70 - 2.56 (m, 1H), 1.97 - 1.90 (m, 2H), 1.90 - 1.87 (m, 2H), 1.79 - 1.71 (m, 1H), 1.55 - 1.45 (m, 2H), 1.44 - 1.33 (m, 2H), 1.32 - 1.25 (m, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 174.7, 158.7, 156.9, 118.9, 46.1, 32.1, 26.3, 26.0. HRMS (ESI) m/z: calcd for C₁₀H₁₅N₂ [M + H]⁺,

163.1230; found, 163.1234.

2.2 General procedure for the synthesis of 4-subsituted pyrimidinium salts

To a solution of 4-substituted pyrimidines (0.5 mmol, 1.0 equiv.) in acetone (1.0 mL) was added different substituted benzyl bromide (0.75 mmol, 1.5 equiv.). The resulted mixture was heated at reflux for 48 h. After completion of reaction (confirmed by TLC), the resulting precipitate was collected and rinsed with acetone and diethyl ether to give the solid product which was directly used for the hydrogenation.

1-benzyl-4-phenylpyrimidin-1-ium bromide (1a): 152 mg, 93% yield, white solid, mp = $175.1 - 177.9 \,^{\circ}C.$ Br ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.05 (s, 1H), 9.50 (d, *J* = 6.8 Hz, 1H), 8.85 (d, *J* = 6.8 Hz, 1H), 8.43 (d, *J* = 7.6 Hz, 2H), 7.81 - 7.59 (m, 5H), 7.51 - 7.42 (m, 3H), 5.84 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.2, 154.0, 152.0, 135.1, 134.1, 133.5, 130.2, 129.9, 129.7, 129.6, 129.5, 119.4, 60.2. HRMS (ESI) m/z: calcd for $C_{17}H_{15}N_2 [M - Br]^+$, 247.1230; found, 247.1233.

1-benzyl-4-(*p***-tolyl)pyrimidin-1-ium bromide (1b):** 155 mg, 91% yield, white solid, mp = 171.4.1 – 173.5 °C. Br⁻ $^+$ CH₂Ph $^+$ (400 MHz, DMSO-*d*₆) δ 9.98 (s, 1H), 9.43 (d, *J* = 6.8 Hz, 1H), 8.79 (d, *J* = 6.8 Hz, 1H), 8.34 (d, *J* = 8.0 Hz, 2H), 7.65 – 7.58 (m, 2H), 7.53 – 7.42 (m, 5H), 5.81 (s, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.5, 153.5, 151.1, 145.8, 133.7, 130.4, 130.3, 129.3, 129.2, 129.2, 129.0, 118.3, 59.5,

21.3. HRMS (ESI) m/z: calcd for $C_{18}H_{17}N_2\,[M-Br]^+,\,261.1386;$ found, 261.1385.

1-benzyl-4-(*m***-tolyl)pyrimidin-1-ium bromide (1c):** 153 mg, 90% yield, white solid, mp = 170.6 – 172.3 °C. Br^{-} ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.04 (s, 1H), 9.49 (d, *J* = 5.6 Hz, 1H), 8.83 (d, *J* = 6.8 Hz, 1H), 8.29 – 8.19 (m, 2H), 7.66 – 7.53 (m, 4H), 7.50 – 7.41 (m, 3H), 5.83 (s, 2H), 2.44 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.8, 153.5, 151.4, 139.2, 135.3, 133.6, 133.0, 129.6, 129.4, 129.3, 129.2, 129.0, 126.4, 118.8, 59.6, 20.9. HRMS (ESI) m/z: calcd for C₁₈H₁₇N₂ [M – Br]⁺, 261.1386;

found, 261.1387.

1-benzyl-4-(*o***-tolyl)pyrimidin-1-ium bromide (1d):** 157 mg, 92% yield, white solid, mp = 171.6 – 174.4 °C. ^{Br} CH₂Ph (dd, J = 6.8, 1.2 Hz, 1H), 7.80 - 7.65 (m, 3H), 7.60 - 7.53 (m, 1H), 7.52 - 7.42 (m, 5H), 5.91 (s, 2H), 2.53 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.3, 152.9, 151.0, 137.9, 134.3, 133.5, 132.3, 131.9, 131.1, 129.4, 129.3, 129.2, 126.7, 123.0, 59.7, 20.4. HRMS (ESI) m/z: calcd for C₁₈H₁₇N₂ [M - Br]⁺, 261.1386; found,

261.1384.

1-benzyl-4-(4-isopropylphenyl)pyrimidin-1-ium bromide (1e): 166 mg, 90% yield, white solid, mp = 191.3 $-195.4 \text{ °C}. \text{ }^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{DMSO-}d_6) \delta 10.01 (s, 1\text{H}), 9.45 (s, 1\text{H}), 8.80$ $(s, 1\text{H}), 8.36 (d, J = 7.0 \text{ Hz}, 2\text{H}), 7.63 (s, 2\text{H}), 7.56 (d, J = 7.2 \text{ Hz}, 2\text{H}), 7.50 - 7.42 (m, 3\text{H}), 5.82 (s, 2\text{H}), 3.10 - 2.95 (m, 1\text{H}), 1.25 (d, J = 5.6 \text{ Hz}, 6\text{H}). ^{13}\text{C}$ $NMR (100 \text{ MHz}, \text{DMSO-}d_6) \delta 168.5, 156.1, 153.5, 151.1, 133.7, 130.7, 129.4, 129.4, 129.2, 129.1, 127.8, 118.4, 59.5, 33.6, 23.3. HRMS (ESI) m/z: calcd for$

 $C_{20}H_{21}N_2 \; [M-Br]^+, 289.1699; \, found, 289.1701.$

found, 277.1335.

178.6 – 180.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.91 (s, 1H), 9.34 (s, 1H), 8.72 (s, 1H), 8.43 (d, J = 8.0 Hz, 2H), 7.67 – 7.40 (m, 5H), 7.22 (d, J = 7.6 Hz, 2H), 5.77 (s, 2H), 3.92 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.8, 164.9, 153.3, 150.4, 133.8, 131.6, 129.3, 129.1, 128.9, 125.2, 117.4, 115.3, 59.2, 55.9. HRMS (ESI) m/z: calcd for C₁₈H₁₇N₂O [M – Br]⁺, 277.1335;

1-benzyl-4-(4-nitrophenyl)pyrimidin-1-ium bromide (1g): 127 mg, 68% yield, white solid, mp = 165.3 -

found, 292.1085.

168.4 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.22 (s, 1H), 9.71 (d, *J* = 6.8 Hz, 1H), 9.02 (d, *J* = 6.8 Hz, 1H), 8.65 (d, *J* = 8.8 Hz, 2H), 8.47 (d, *J* = 8.4 Hz, 2H), 7.73 – 7.39 (m, 5H), 5.92 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.8, 153.7, 152.5, 150.5, 138.5, 133.5, 130.5, 129.4, 129.16, 129.2, 124.4, 120.5, 60.0. HRMS (ESI) m/z: calcd for C₁₇H₁₄N₃O₂ [M – Br]⁺, 292.1081;

1-benzyl-4-(4-(trifluoromethoxy)phenyl)pyrimidin-1-ium bromide (1h): 169 mg, 82% yield, white solid,

mp = 181.3 – 184.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.09 (s, 1H), 9.56 (d, J = 6.4 Hz, 1H), 8.88 (d, J = 6.8 Hz, 1H), 8.56 (d, J = 8.0 Hz, 2H), 7.72 – 7.59 (m, 4H), 7.51 – 7.40 (m, 3H), 5.85 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.4, 153.6, 152.5 (q, J = 1.6 Hz), 151.8, 133.6, 132.0, 131.7, 129.4, 129.2, 129.1, 121.6, 119.9 (q, J = 256.6 Hz), 119.3, 59.8. HRMS (ESI) m/z: calcd for C₁₈H₁₄F₃N₂O [M – Br]⁺, 331.1053; found, 331.1056.

1-benzyl-4-(4-(trifluoromethyl)phenyl)pyrimidin-1-ium bromide (1i): 172 mg, 87% yield, white solid, mp = 189.3 - 192.6 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.16 (s, 1H), 9.64 (dd, *J* = 6.8, 1.6 Hz, 1H), 8.98 (d, *J*

400 MHZ, DMSO-*a*₆) 8 10.16 (s, 1H), 9.04 (dd, *J* = 6.8, 1.6 HZ, 1H), 8.98 (d, *J* = 6.8 Hz, 1H), 8.61 (d, *J* = 8.4 Hz, 2H), 8.06 (d, *J* = 8.4 Hz, 2H), 7.69 – 7.63 (m, 2H), 7.52 – 7.43 (m, 3H), 5.90 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.4, 153.7, 152.3, 136.8, 133.5, 133.2, 129.9, 129.4, 129.2, 129.1, 126.4 (q, *J* = 4.0 Hz), 123.6 (q, *J* = 271.2 Hz), 120.0, 59.9. HRMS (ESI) m/z: calcd for C₁₈H₁₄F₃N₂ [M – Br]⁺, 315.1104; found, 315.1106.

1-benzyl-4-(4-cyanophenyl)pyrimidin-1-ium bromide (1j): 111 mg, 63% yield, white solid, mp = 183.2 – B_{r}^{-} 185.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.13 (s, 1H), 9.62 (dd, *J* = 6.8, 1.6 Hz, 1H), 8.95 (d, *J* = 6.8 Hz, 1H), 8.56 (d, *J* = 8.8 Hz, 2H), 8.17 (d, *J* = 8.4 Hz, 2H), 7.68 – 7.58 (m, 2H), 7.51 – 7.41 (m, 3H), 5.87 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.1, 153.7, 152.3, 137.0, 133.4, 133.4, 129.6, 129.4, 129.2, 129.1, 120.1, 117.9, 116.0, 60.0. HRMS (ESI) m/z: calcd for C₁₈H₁₄N₃

[M – Br]⁺, 272.1182; found, 272.1184.

188.7 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.06 (s, 1H), 9.52 (d, J = 6.8 Hz, 1H), 8.85 (d, J = 6.8 Hz, 1H), 8.57 - 8.47 (m, 2H), 7.67 - 7.50 (m, 4H), 7.49 -7.39 (m, 3H), 5.85 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 167.6, 166.0 (d, J = 253.2 Hz), 153.5, 151.5, 133.6, 132.2 (d, J = 9.9 Hz), 129.7 (d, J = 2.8 Hz), 129.3, 129.1, 129.0, 118.7, 116.9 (d, J = 22.0 Hz), 59.6. HRMS (ESI) m/z: calcd

for C₁₇H₁₄FN₂ [M – Br]⁺, 265.1163; found, 265.1163.

1-benzyl-4-(4-chlorophenyl)pyrimidin-1-ium bromide (11): 166 mg, 92% yield, white solid, mp = 176.3 - 100179.1 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.06 (s, 1H), 9.53 (dd, J = 6.8, Br .CH₂Ph 2.0 Hz, 1H), 8.86 (dd, J = 6.8, 1.2 Hz, 1H), 8.48 - 8.42 (m, 2H), 7.80 - 7.74 (m, 2H), 7.66 – 7.60 (m, 2H), 7.50 – 7.42 (m, 3H), 5.84 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 167.6, 153.5, 151.7, 139.7, 133.6, 131.9, 130.9, 129.8,

129.3, 129.1, 129.0, 119.0, 59.7. HRMS (ESI) m/z: calcd for C₁₇H₁₄ClN₂ [M -

Br]⁺, 281.0840; found, 281.0842.

1-benzyl-4-(4-bromophenyl)pyrimidin-1-ium bromide (1m): 191 mg, 94% yield, white solid, mp = 173.4 -175.6 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.09 (s, 1H), 9.56 (dd, *J* = 6.8, 2.0 Hz, 1H), 8.88 (dd, J = 6.8, 1.2 Hz, 1H), 8.39 - 8.31 (m, 2H), 7.94 - 7.85 (m, 2H), 7.69 – 7.60 (m, 2H), 7.51 – 7.39 (m, 3H), 5.87 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 167.7, 153.5, 151.7, 133.6, 132.8, 132.2, 130.9, 129.3,

129.1, 129.1, 129.0, 119.0, 59.7. HRMS (ESI) m/z: calcd for C₁₇H₁₄BrN₂ [M -

Br]⁺, 325.0335; found, 325.0338.

1-benzyl-4-(naphthalen-2-yl)pyrimidin-1-ium bromide (1n): 181 mg, 96% yield, yellow solid, mp = 203.4

-205.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.12 (s, 1H), 9.57 (dd, J = 6.8, 1.6 Hz, 1H), 9.17 (d, J = 1.6 Hz, 1H), 8.99 (dd, J = 6.8, 1.2 Hz, 1H), 8.42 (dd, J = 8.8, 1.6 Hz, 1H), 8.22 - 8.14 (m, 2H), 8.05 (d, J = 8.0 Hz, 1H), 7.76 - 7.63(m, 4H), 7.52 – 7.42 (m, 3H), 5.89 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.6, 153.5, 151.3, 135.6, 133.7, 132.5, 131.4, 130.3, 129.8, 129.6, 129.4,

129.3, 129.2, 129.0, 127.8, 127.5, 124.0, 119.0, 59.5. HRMS (ESI) m/z: calcd for $C_{21}H_{17}N_2$ [M - Br]⁺, 297.1386; found, 297.1387.

4-([1,1'-biphenyl]-4-yl)-1-benzylpyrimidin-1-ium bromide (10): 190 mg, 94% yield, yellow solid, mp = 190.8 - 193.2 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 10.08 (s, 1H), 9.53 (dd, J Br CH₂Ph = 6.8, 2.0 Hz, 1H), 8.90 (dd, J = 6.8, 1.2 Hz, 1H), 8.54 - 8.49 (m, 2H), 8.02 -7.97 (m, 2H), 7.85 - 7.81 (m, 2H), 7.69 - 7.64 (m, 2H), 7.56 - 7.43 (m, 6H), 5.87 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) & 168.1, 153.5, 151.3, 145.8, 138.3, 133.7, 131.8, 129.8, 129.3, 129.2, 129.1, 128.9, 127.7, 127.0, 118.6, 59.5.

HRMS (ESI) m/z: calcd for $C_{23}H_{19}N_2$ [M – Br]⁺, 323.1543; found, 323.1542.

225.2 – 227.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.01 (s, 1H), 9.46 (d, *J* = 6.8 Hz, 1H), 8.79 (d, *J* = 6.8 Hz, 1H), 8.06 (s, 2H), 7.67 – 7.36 (m, 6H), 5.82 (s, 2H), 2.40 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.9, 153.4, 151.3, 139.1, 136.2, 133.7, 133.0, 129.3, 129.2, 129.0, 126.8, 118.7, 59.6, 20.8. HRMS (ESI) m/z: calcd for C₁₉H₁₉N₂ [M – Br]⁺, 275.1543; found, 275.1544.

1-benzyl-4-(*tert***-butyl)pyrimidin-1-ium bromide (1q):** 100 mg, 65% yield, white solid, mp = 173.1 – Br^{-} 176.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.01 (s, 1H), 9.42 (d, *J* = 5.6 Hz, 1H), 8.33 (d, *J* = 6.8 Hz, 1H), 7.67 – 7.37 (m, 5H), 5.82 (s, 2H), 1.38 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 186.5, 153.5, 151.5, 134.0, 129.9, 129.7, 120.6, 60.2, 39.7, 29.0. HRMS (ESI) m/z: calcd for C₁₅H₁₉N₂ [M – Br]⁺, 227.1543; found, 227.1540.

1-benzyl-4-cyclohexylpyrimidin-1-ium bromide (1r): 108 mg, 65% yield, white solid, mp = $168.2 - Br^{-}$ Br^{+} CH₂Ph N + CH₂Ph N +

59.8, 45.5, 30.7, 25.2, 25.1. HRMS (ESI) m/z: calcd for $C_{17}H_{21}N_2$ [M – Br]⁺, 253.1699; found, 253.1703.

1-(4-methylbenzyl)-4-phenylpyrimidin-1-ium bromide (3a): 160 mg, 94% yield, white solid, mp = 172.6 -

173.4 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.04 (s, 1H), 9.48 (dd, *J* = 7.2, 2.0 Hz, 1H), 8.84 (dd, *J* = 7.2, 1.2 Hz, 1H), 8.44 – 8.40 (m, 2H), 7.80 – 7.74 (m, 1H), 7.71 – 7.65 (m, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 5.80 (s, 2H), 2.31 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ

 $\begin{array}{l} 168.6,\ 153.4,\ 151.4,\ 139.0,\ 134.6,\ 133.0,\ 130.6,\ 129.7,\ 129.7,\ 129.1,\ 129.1,\ 118.8,\ 59.5,\ 20.7.\ HRMS\ (ESI) \\ m/z:\ calcd\ for\ C_{18}H_{17}N_2\ [M-Br]^+,\ 261.1386;\ found,\ 261.1389. \end{array}$

1-(4-methoxybenzyl)-4-phenylpyrimidin-1-ium bromide (3b): 166 mg, 93% yield, white solid, mp = 189.4

- 191.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.06 (s, 1H), 9.50 (dd, *J* = 6.8, 1.6 Hz, 1H), 8.84 (dd, *J* = 6.8, 1.2 Hz, 1H), 8.44 - 8.38 (m, 2H), 7.80 - 7.73 (m, 1H), 7.70 - 7.61 (m, 4H), 7.05 - 6.98 (m, 2H), 5.79 (s, 2H), 3.76 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.6, 160.1, 153.3, 151.2, 134.5, 133.0, 131.0, 129.7, 129.1, 125.4, 118.8, 114.5, 59.2, 55.3.

HRMS (ESI) m/z: calcd for C₁₈H₁₇N₂O [M – Br]⁺, 277.1335; found, 277.1334.

1-(4-cyanobenzyl)-4-phenylpyrimidin-1-ium bromide (3c): 162 mg, 92% yield, white solid, mp = 185.4 - 1000 mg

187.6 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.06 (s, 1H), 9.54 (dd, *J* = 6.8, 2.0 Hz, 1H), 8.89 (d, *J* = 6.8 Hz, 1H), 8.44 (d, *J* = 7.2 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.88 – 7.76 (m, 3H), 7.69 (t, *J* = 7.6 Hz, 2H), 5.97 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.8, 153.8, 151.8, 138.8, 134.7,

133.0, 132.9, 129.9, 129.7, 129.2, 118.9, 118.4, 111.9, 58.8. HRMS (ESI) m/z: calcd for $C_{18}H_{14}N_3$ [M – Br]⁺, 272.1182; found, 272.1184.

= 183.5 – 186.7 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.06 (s, 1H), 9.53 (d, J = 6.8 Hz, 1H), 8.88 (d, J = 6.8 Hz, 1H), 8.47 – 8.38 (m, 2H), 7.90 – 7.76 (m, 5H), 7.73 – 7.66 (m, 2H), 5.96 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.8, 153.7, 151.7, 138.1, 134.7, 133.0, 129.9, 129.7, 129.5, 129.1, 126.7 (g, J = 270.6 Hz), 125.9 (g, J = 3.8 Hz), 118.9, 58.8.

HRMS (ESI) m/z: calcd for $C_{18}H_{14}F_3N_2$ [M – Br]⁺, 315.1104; found, 315.1105.

1-(4-(methoxycarbonyl)benzyl)-4-phenylpyrimidin-1-ium bromide (3e): 183 mg, 95% yield, white solid, mp = 193.2 - 195.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.07 (s, 1H), 9.54 (dd, *J* = 6.8, 1.6 Hz, 1H), 8.89 (dd, *J* = 7.2, 1.2 Hz, 1H), 8.47 - 8.41 (m, 2H), 8.04 - 7.99 (m, 2H), 7.81 - 7.64 (m, 5H), 5.96 (s, 2H), 3.86 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.8, 165.7, 153.8,

151.8, 138.7, 134.7, 133.0, 130.2, 129.7, 129.3, 129.2, 118.9, 59.0, 52.4. HRMS (ESI) m/z: calcd for $C_{19}H_{17}N_2O_2$ [M – Br]⁺, 305.1285; found, 305.1290.

1-(4-fluorobenzyl)-4-phenylpyrimidin-1-ium bromide (3f): 162 mg, 94% yield, white solid, mp = 183.4 -

186.9 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.07 (s, 1H), 9.53 (dd, J = 6.8, 2.0 Hz, 1H), 8.86 (dd, J = 6.8, 1.2 Hz, 1H), 8.45 – 8.40 (m, 2H), 7.80 – 7.73 (m, 3H), 7.71 – 7.65 (m, 2H), 7.35 – 7.28 (m, 2H), 5.86 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.65, 162.60 (d, J = 244.8 Hz), 153.5, 151.4, 134.6, 133.0, 131.8 (d, J = 8.6 Hz), 129.8 (d, J = 3.0 Hz), 129.7,

129.1, 118.8, 116.0 (d, J = 21.6 Hz), 58.7. HRMS (ESI) m/z: calcd for $C_{17}H_{14}BrFN_2$ [M – Br]⁺, 265.1136; found, 265.1141.

1-(4-chlorobenzyl)-4-phenylpyrimidin-1-ium bromide (3g): 168 mg, 93% yield, white solid, mp = 178.4 -

181.3 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.01 (s, 1H), 9.47 (dd, J = 7.2, 2.0 Hz, 1H), 8.84 (d, J = 6.8 Hz, 1H), 8.46 – 8.40 (m, 2H), 7.82 – 7.75 (m, 1H), 7.72 – 7.64 (m, 4H), 7.58 – 7.52 (m, 2H), 5.82 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.7, 153.6, 151.5, 134.6, 134.2, 133.0, 132.5, 131.1,

 $129.7, 129.1, 129.1, 118.8, 58.8. \ HRMS \ (ESI) \ m/z: calcd \ for \ C_{17}H_{14}ClN_2 \ [M-Br]^+, 281.0840; \ found, 281.0844.$

1-(4-bromobenzyl)-4-phenylpyrimidin-1-ium bromide (3h): 190 mg, 94% yield, white solid, mp = 175.4 – Br 178.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.09 (s, 1H), 9.55 (dd, *J* = 6.8, 1.6 Hz, 1H), 8.87 (d, *J* = 6.8 Hz, 1H), 8.42 (d, *J* = 7.6 Hz, 2H), 7.81

153.5, 151.5, 134.6, 132.9, 132.9, 132.0, 131.4, 129.7, 129.1, 122.9, 118.8,

58.7. HRMS (ESI) m/z: calcd for $C_{17}H_{14}BrN_2$ [M – Br]⁺, 325.0335; found, 325.0335.

1-(3-bromobenzyl)-4-phenylpyrimidin-1-ium bromide (3i):194 mg, 95% yield, white solid, mp = 174.3 - 176.125

176.1 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.05 (s, 1H), 9.52 (dd, J = 7.2, 2.0 Hz, 1H), 8.86 (dd, J = 6.8, 0.8 Hz, 1H), 8.47 – 8.40 (m, 2H), 7.94 (t, J = 2.0 Hz, 1H), 7.82 – 7.74 (m, 1H), 7.72 – 7.62 (m, 4H), 7.43 (t, J = 8.0 Hz, 1H), 5.84 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.7, 153.6, 151.5, 136.0, 134.7, 133.0,

132.2, 131.9, 131.2, 129.7, 129.1, 128.3, 122.2, 118.9, 58.7. HRMS (ESI) m/z: calcd for $C_{17}H_{14}BrN_2$ [M – Br]⁺, 325.0335; found, 325.0335.

1-(2-bromobenzyl)-4-phenylpyrimidin-1-ium bromide (3j): 194 mg, 95% yield, white solid, mp = 173.4 -

176.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.98 (s, 1H), 9.40 (dd, *J* = 6.8, 1.6 Hz, 1H), 8.90 (dd, *J* = 6.8, 0.8 Hz, 1H), 8.50 – 8.42 (m, 2H), 7.83 – 7.75 (m, 2H), 7.75 – 7.66 (m, 2H), 7.51 – 7.39 (m, 3H), 5.95 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.0, 154.0, 151.9, 134.8, 133.2, 132.9, 132.8, 131.3, 131.0, 129.7,

129.2, 128.5, 123.1, 118.8, 59.7. HRMS (ESI) m/z: calcd for $C_{17}H_{14}BrN_2\ [M-Br]^+,\ 325.0335;$ found, 325.0336.

1-(3,5-dimethylbenzyl)-4-phenylpyrimidin-1-ium bromide (3k): 167 mg, 94% yield, white solid, mp =

170.3 – 173.4 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.03 (s, 1H), 9.48 (dd, J = 6.8, 1.6 Hz, 1H), 8.84 (d, J = 6.8 Hz, 1H), 8.50 – 8.39 (m, 2H), 7.82 – 7.74 (m, 1H), 7.72 – 7.63 (m, 2H), 7.24 (s, 2H), 7.07 (s, 1H), 5.75 (s, 2H), 2.28 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.6, 153.5,

151.5, 138.4, 134.6, 133.4, 133.0, 130.6, 129.7, 129.1, 126.6, 118.8, 59.6, 20.8. HRMS (ESI) m/z: calcd for $C_{19}H_{19}N_2$ [M – Br]⁺, 275.1543; found, 275.1546.

1-(3,5-dimethoxybenzyl)-4-phenylpyrimidin-1-ium bromide (31): 182 mg, 94% yield, white solid, mp =

187.2 – 189.2 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.10 (s, 1H), 9.56 (dd, J = 6.8, 1.6 Hz, 1H), 8.85 (d, J = 6.8 Hz, 1H), 8.43 (d, J = 7.6 Hz, 2H), 7.81 – 7.63 (m, 3H), 6.90 (d, J = 2.4 Hz, 2H), 6.55 (t, J = 2.4 Hz, 1H), 5.75 (s, 2H), 3.76 (s, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.6, 161.0, 153.5, 151.4, 135.5, 134.6, 133.0, 129.7, 129.1, 118.8, 107.3,

100.9, 59.6, 55.5. HRMS (ESI) m/z: calcd for $C_{19}H_{19}N_2O_2$ [M – Br]⁺, 307.1441; found, 307.1445.

2.3 Asymmetric hydrogenation of 4-subsituted pyrimidinium salts

A mixture of $[Ir(COD)CI]_2$ (0.13 mg, 0.002 mmol, 1.0 mol%) and (*S*,*S*)-f-Binaphane (3.5 mg, 0.0044 mmol, 2.2 mol%) was dissolved in a degassed solvent DCM (3.0 mL) at argon atmosphere, and the resulting solution was allowed to be stirred at room temperature for 30 min. Then, 4-subsituted pyrimidinium salts (0.2 mmol, 1.0 equiv.) was added. The mixture was transferred to an autoclave, which was purged (3 × 10 atm) and charged with H₂ (60 atm); then the reaction mixture was stirred at -20 °C for 72 h. The hydrogen gas was released slowly, and the solution was concentrated and purified by silica gel flash column chromatography to afford the desired chiral product.

(*R*)-1-benzyl-4-phenylhexahydropyrimidine (2a): 46 mg, 91% yield, colorless oil, 96% ee, $[\alpha]_D^{20} = -8.3$ (c

= 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 9.7 min (minor), t_{R2} = 11.3 min (major). ¹H NMR (400 MHz, Chloroformd) δ 7.42 - 7.08 (m, 10H), 3.99 (dd, *J* = 10.8, 2.0 Hz, 1H), 3.72 - 3.65 (m, 1H), 3.64

-3.41 (m, 2H), 3.29 (d, J = 10.8 Hz, 1H), 3.64 -3.41 (m, 1H), 2.37 -2.27 (m, 1H), 1.87 -1.81 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.8, 138.1, 129.3, 128.6, 128.4, 127.2, 127.2, 126.5, 70.0, 59.8, 59.7, 52.9, 33.5. HRMS (ESI) m/z: calcd for C₁₇H₂₁N₂ [M + H]⁺, 253.1699; found, 253.1700.

 RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
 9.723	BM m	0.21	1948.82	144.38	50.06
11 405	DM	0.22	1044.10	121.22	10.04

(*R*)-1-benzyl-4-(*p*-tolyl)hexahydropyrimidine (2b): 49 mg, 92% yield, colorless oil, 96% *ee*, $[\alpha]_D^{20} = -12.8$ (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 10.5 min (minor), t_{R2} = 15.3 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.11 (m, 9H), 3.98 (dd, *J* = 10.8, 2.0

Hz, 1H), 3.68 - 3.38 (m, 3H), 3.28 (d, J = 10.8 Hz, 1H), 3.13 - 3.03 (m, 1H), 2.36 - 2.26 (m, 4H), 1.86 - 1.81 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 140.8, 138.2, 136.8, 129.3, 129.2, 128.4, 127.2, 126.4, 70.0, 59.9, 59.4, 53.0, 33.5, 21.2. HRMS (ESI) m/z: calcd for C₁₈H₂₃N₂ [M + H]⁺, 267.1856; found, 267.1854.

Re	tTime [[min]		Тур	be		Wie	de [n	nin]		А	rea [mA	.u * :	s]		Hei	ght [mΑι	u]		Aı	ea%	
	10.52	1		BM	m			0.23				18	08.4	41				121.0)8			50	0.13	
	15.32	5		BM	m			0.29				17	98.′	70				94.5	8			49	9.87	
I	DAD1A, Si	g=220,	4 Re	f=off																				
1800 1600 1400 1200 200 800 600 400 200				+10.513										↓ 15.310			₃ C⁄			2Ь		_CH	₂ Ph	
8	8.5	9 9.	5 10) 10.5	11	11.5	12	12.5	13	13.5 卧	14 打问 [i	14.5 min]	15	15.	5 16	16.5	17	17.5	18	18.	5 19	9 19.	5 20])
Re	tTime [[min]		Тур	pe		Wie	de [n	nin]		А	rea [mА	.u * :	s]		Hei	ght [mΑι	u]		Aı	rea%	
	10.51	3		VM	m			0.22				44	1.1	9				31.0	2			1	.91	
	15.31	0		MM	m			0.29				226	511.	44				1206.	10			98	8.09	

(*R*)-1-benzyl-4-(*m*-tolyl)hexahydropyrimidine (2c): 48 mg, 90% yield, colorless oil, 95% ee, $[\alpha]_D^{20} = -10.8$

(c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 9.3 min (minor), t_{R2} = 11.8 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.04 (m, 9H), 3.99 (dd, J = 10.8, 2.0

Hz, 1H), 3.68 - 3.41 (m, 3H), 3.28 (d, J = 10.8 Hz, 1H), 3.13 - 3.05 (m, 1H), 2.39 - 2.25 (m, 4H), 1.91 - 1.79 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.7, 138.2, 138.2, 129.3, 128.5, 128.4, 128.0, 127.3, 127.2, 123.5, 70.1, 59.8, 59.7, 53.0, 33.5, 21.6. HRMS (ESI) m/z: calcd for C₁₈H₂₃N₂ [M + H]⁺, 267.1856; found, 267.1858.

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
9.299	BV	0.84	556.86	38.51	2.51
11.828	BM m	0.23	21657.62	1433.45	97.49

(*R*)-1-benzyl-4-(*o*-tolyl)hexahydropyrimidine (2d): 47 mg, 88% yield, colorless oil, 63% *ee*, $[\alpha]_D^{20} = -4.6$ CH₃, CH₂Ph (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 17.9 min (minor), t_{R2} = 21.4 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.12 (m, 9H), 4.00 (dd, *J* = 10.8, 2.0 Hz, 1H), 3.83 (dd, *J* =

11.6, 3.2 Hz, 1H), 3.66 – 3.41 (m, 2H), 3.30 (d, J = 10.8 Hz, 1H), 3.17 – 3.07 (m, 1H), 2.43 – 2.28 (m, 4H), 1.93 – 1.80 (m, 1H), 1.76 – 1.71 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 141.7, 138.2, 135.7, 130.6, 129.3, 128.4, 127.2, 127.0, 126.3, 125.0, 70.3, 59.9, 56.5, 53.2, 32.5, 19.28. HRMS (ESI) m/z: calcd for C₁₈H₂₃N₂ [M + H]⁺, 267.1856; found, 267.1852.

(*R*)-1-benzyl-4-(4-isopropylphenyl)hexahydropyrimidine (2e): 54 mg, 92% yield, colorless oil, 97% *ee*, $[\alpha]_D^{20} = -8.7$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 9.6 min (minor), t_{R2} = 12.8 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.26 (m, 7H), 7.20 – 7.16 (m, 2H),

3.99 (dd, J = 10.8, 2.0 Hz, 1H), 3.67 – 3.41 (m, 3H), 3.28 (d, J = 10.8 Hz, 1H), 3.13 – 3.04 (m, 1H), 2.93 – 2.84 (m, 1H), 2.35 – 2.25 (m, 1H), 1.88 – 1.82 (m, 2H), 1.23 (d, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.8, 141.2, 138.2, 129.3, 128.4, 127.2, 126.6, 126.5, 70.1, 59.8, 59.5, 53.0, 33.9, 33.4, 24.1. HRMS (ESI) m/z: calcd for C₂₀H₂₆N₂ [M + H]⁺, 295.2169; found, 295.2168.

(*R*)-1-benzyl-4-(4-methoxyphenyl)hexahydropyrimidine (2f): 52 mg, 92% yield, colorless oil, 97% *ee*, $(R)^{-1}$ -CH₂Ph $[\alpha]_D^{20} = -11.5$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by

	ĺ	< `Ņ^`'
	\sim	
ĺ	Í	N H
H₃CO		

 $[\alpha]_D^{20} = -11.5$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; $t_{R1} = 15.6$ min (minor), $t_{R2} = 20.0$ min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.22 (m, 7H), 6.90 –

6.81 (m, 2H), 3.97 (dd, J = 10.8, 2.0 Hz, 1H), 3.78 (s, 3H), 3.66 – 3.41 (m, 3H), 3.28 (d, J = 10.8 Hz, 1H), 3.13 – 3.04 (m, 1H), 2.34 – 2.25 (m, 1H), 1.90 – 1.78 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 158.8, 138.2, 136.1, 129.3, 128.4, 127.6, 127.2, 113.9, 70.1, 59.8, 59.1, 55.4, 53.0, 33.4. HRMS (ESI) m/z: calcd for C₁₈H₂₃N₂O [M + H]⁺, 283.1805; found, 283.1804.

(*R*)-1-benzyl-4-(4-nitrophenyl)hexahydropyrimidine (2g): 53 mg, 89% yield, colorless oil, 91% *ee*, $[\alpha]_D^{20}$ = -5.8 (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 34.4 min (major), t_{R2} = 36.7 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 8.8 Hz,

2H), 7.39 – 7.27 (m, 5H), 4.07 – 3.98 (m, 1H), 3.80 (dd, J = 10.8, 3.6 Hz, 1H), 3.67 – 3.44 (m, 2H), 3.32 (d, J = 10.8 Hz, 1H), 3.12 (d, J = 11.6 Hz, 1H), 2.44 – 2.32 (m, J = 11.6, 3.2 Hz, 1H), 1.95 – 1.81 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 150.8, 147.1, 129.2, 128.4, 127.3, 127.2, 123.7, 69.6, 59.5, 59.0, 52.4, 33.1. HRMS (ESI) m/z: calcd for C₁₇H₂₁N₃O₂ [M + H]⁺, 298.1550; found, 298.1549.

(*R*)-1-benzyl-4-(4-(trifluoromethoxy)phenyl)hexahydropyrimidine (2h): 60 mg, 90% yield, colorless oil, $\[Mathbb{N}^{-}CH_2Ph\] 93\% ee, \[\alpha]_D^{20} = -6.3 (c = 0.5, CHCl_3).$ The enantiomeric excess was

F₃CO

determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; $t_{R1} = 10.4$ min (minor), $t_{R2} = 12.4$ min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.26 (m, 7H),

7.17 (d, J = 8.4 Hz, 2H), 3.99 (dd, J = 10.8, 2.0 Hz, 1H), 3.73 – 3.66 (m, 1H), 3.65 – 3.41 (m, 2H), 3.29 (d, J = 10.8 Hz, 1H), 3.15 – 3.05 (m, 1H), 2.38 – 2.26 (m, 1H), 1.88 – 1.79 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.4 (d, J = 1.9 Hz), 142.5, 138.0, 129.3, 128.5, 127.9, 127.3, 121.1, 120.6 (q, J = 255.3 Hz), 69.9, 59.8, 59.0, 52.8, 33.4. HRMS (ESI) m/z: calcd for C₁₈H₂₀F₃N₂O [M + H]⁺, 337.1522; found, 337.1523.

(R)-1-benzyl-4-(4-(trifluoromethyl)phenyl)hexahydropyrimidine (2i): 59 mg, 92% yield, colorless oil, 92%

	CH ₂ Ph
F ₃ C	

ee, $[\alpha]_D^{20} = -6.3$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 25.3 min (minor), t_{R2} = 27.1 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.4

Hz, 2H), 7.39 – 7.25 (m, 5H), 4.01 (dd, J = 10.8, 2.0 Hz, 1H), 3.78 – 3.71 (m, 1H), 3.66 – 3.43 (m, 2H), 3.30 (d, J = 10.8 Hz, 1H), 3.16 – 3.06 (m, 1H), 2.39 –2.28 (m, 1H), 1.90 – 1.81 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 147.7, 138.0, 129.7, 129.3, 128.5, 127.3, 126.8, 125.5 (q, J = 3.8 Hz), 124.3 (q, J = 270.4 Hz), 69.9, 59.8, 59.3, 52.8, 33.4. HRMS (ESI) m/z: calcd for C₁₈H₂₀F₃N₂ [M + H]⁺, 321.1573; found, 321.1575.

(*R*)-1-benzyl-4-(4-nitrophenyl)hexahydropyrimidine (2j): 49 mg, 88% yield, colorless oil, 90% *ee*, $[\alpha]_D^{20}$ = -6.5 (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.4 mL/min; UV detection at 220 nm; t_{R1} = 56.5 min (major), t_{R2} = 59.9 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.59 (m, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.37

-7.25 (m, 5H), 4.00 (d, J = 10.8 Hz, 1H), 3.79 -3.70 (m, 1H), 3.66 -3.43 (m, 2H), 3.30 (d, J = 10.8 Hz, 1H), 3.16 -3.05 (m, 1H), 2.41 -2.30 (m, 1H), 1.92 -1.75 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 144.3, 143.5, 132.3, 129.6, 128.6, 127.4, 126.4, 119.1, 111.1, 69.9, 59.6, 59.1, 53.0, 33.3. HRMS (ESI) m/z: calcd for C₁₉H₂₀N₃ [M + H]⁺, 278.1652; found, 278.1647.

RetTime [min]	Type	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
56.179	VV	3.22	7345.69	98.12	49.54
59.362	VV	4.11	7481.92	91.44	50.46

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
56.456	MM m	0.91	1947.54	25.29	95.13
59.856	MM m	0.94	99.62	1.25	4.87

(*R*)-1-benzyl-4-(4-fluorophenyl)hexahydropyrimidine (2k): 50 mg, 92% yield, colorless oil, 95% *ee*, $[\alpha]_D^{20}$

F H

= -8.2 (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 11.2 min (minor), t_{R2} = 12.0 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.23 (m, 7H), 7.06 – 6.93 (m, 2H), 3.98 (dd,

 $J = 10.8, 2.0 \text{ Hz}, 1\text{H}, 3.70 - 3.42 \text{ (m, 3H)}, 3.28 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H}), 3.13 - 3.05 \text{ (m, 1H)}, 2.37 - 2.25 \text{ (m, 1H)}, 1.87 - 1.78 \text{ (m, 2H)}. {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{Chloroform-}d) \delta 162.0 \text{ (d, } J = 243.4 \text{ Hz}), 139.6 \text{ (d, } J = 3.1 \text{ Hz}), 138.1, 129.3, 128.4, 128.1 \text{ (d, } J = 7.9 \text{ Hz}), 127.3, 115.3 \text{ (d, } J = 21.0 \text{ Hz}), 70.0, 59.8, 59.0, 52.9, 33.5. \text{ HRMS} (\text{ESI}) \text{ m/z: calcd for } C_{17}\text{H}_{20}\text{FN}_2 \text{ [M + H]}^+, 271.1605; found, 271.1608.}$

(*R*)-1-benzyl-4-(4-chlorophenyl)hexahydropyrimidine (2l): 52 mg, 91% yield, colorless oil, 94% *ee*, $[\alpha]_D^{20}$ = -6.2 (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 12.8 min (minor), t_{R2} = 15.0 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.23 (m, 9H), 3.98 (dd, *J* = 10.8, 2.0

Hz, 1H), 3.69 - 3.42 (m, 3H), 3.27 (d, J = 10.8 Hz, 1H), 3.13 - 3.03 (m, 1H), 2.35 - 2.24 (m, 1H), 1.86 - 1.77 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.3, 138.1, 132.9, 129.3, 128.7, 128.4, 127.9, 127.3, 69.9, 59.8, 59.0, 52.8, 33.4. HRMS (ESI) m/z: calcd for C₁₇H₂₀ClN₂ [M + H]⁺, 287.1301; found, 287.1296.

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
12.834	VM m	0.22	7665.05	530.49	50.03
15.062	BM m	0.28	7657.18	424.56	49.97

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
12.832	MM m	0.23	378.80	25.42	2.88
15.067	BM m	0.28	12772.64	708.34	97.12

(*R*)-1-benzyl-4-(4-bromophenyl)hexahydropyrimidine (2m): 61 mg, 93% yield, colorless oil, 95% *ee*, $[\alpha]_D^{20} = -5.9$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 14.4 min (minor), t_{R2} = 17.5 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.20 (m, 9H), 3.97 (dd, J = 10.8,

2.0 Hz, 1H), 3.67 - 3.41 (m, 3H), 3.27 (d, J = 10.8 Hz, 1H), 3.14 - 3.02 (m, 1H), 3.37 - 3.24 (m, 1H), 1.84 - 1.78 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.8, 138.1, 131.6, 129.2, 128.4, 128.3, 127.3, 121.0, 69.9, 59.8, 59.0, 52.8, 33.3. HRMS (ESI) m/z: calcd for C₁₇H₂₀BrN₂ [M + H]⁺, 331.0804; found, 331.0807.

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
14.389	MM m	0.30	19471.62	983.96	49.97
17.425	BM m	0.42	19495.39	732.56	50.03

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
14.425	MM m	0.30	736.93	38.27	2.47
17.472	MM m	0.42	29151.46	1088.87	97.53

(R)-1-benzyl-4-(naphthalen-2-yl)hexahydropyrimidine (2n): 57 mg, 94% yield, white solid, 95% ee, mp =

83.3 – 87.5 °C. $[\alpha]_D^{20} = -7.2$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 18.9 min (minor), t_{R2} = 30.5 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.8 Hz,

4H), 7.51 - 7.24 (m, 8H), 4.03 (dd, J = 10.8, 2.0 Hz, 1H), 3.89 - 3.79 (m, 1H), 3.68 - 3.44 (m, 2H), 3.34 (d, J

= 10.8 Hz, 1H), 3.18 – 3.07 (m, 1H), 2.43 –2.29 (m, 1H), 1.97 – 1.91 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 141.2, 138.2, 133.6, 132.8, 129.3, 128.4, 128.2, 128.0, 127.7, 127.2, 126.1, 125.8, 125.3, 124.6, 70.1, 59.8, 59.7, 53.0, 33.5. HRMS (ESI) m/z: calcd for C₂₁H₂₃N₂ [M + H]⁺, 303.1856; found, 303.1857.

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
18.927	VM m	0.38	1423.48	57.53	2.29
30.451	BM m	0.82	60666.04	1182.14	97.71

(R)-4-([1,1'-biphenyl]-4-yl)-1-benzylhexahydropyrimidine (20): 62 mg, 95% yield, white solid, 97% ee,

mp = 78.2 – 81.0 °C. $[\alpha]_D^{20}$ = -8.9 (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 254 nm; t_{R1} = 18.7 min (minor), t_{R2} = 24.1 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.52 (m, 4H),

7.47 – 7.25 (m, 10H), 4.02 (dd, J = 10.8, 2.0 Hz, 1H), 3.77 – 3.69 (m, 1H), 3.66 – 3.42 (m, 2H), 3.32 (d, J = 10.8 Hz, 1H), 3.16 – 3.06 (m, 1H), 2.40 – 2.27 (m, 1H), 1.95 – 1.86 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.8, 141.0, 140.2, 138.1, 129.3, 128.9, 128.5, 127.3, 127.3, 127.2, 126.9, 70.0, 59.9, 59.4, 52.9, 33.4. HRMS (ESI) m/z: calcd for C₂₃H₂₅N₂ [M + H]⁺, 329.2012; found, 329.2015.

(R)-1-benzyl-4-(3,5-dimethylphenyl)hexahydropyrimidine (2p): 53 mg, 94% yield, colorless oil, 93% ee.

 $[\alpha]_D^{20} = -8.4 \ (c = 0.5, \text{CHCl}_3)$. The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; $t_{R1} = 8.7 \text{ min (minor)}$, $t_{R2} = 13.5 \text{ min (major)}$. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.22 (m, 5H), 6.97 (s, 2H), 6.88 (s, 1H), 3.98 (dd, J = 10.8, 2.0 Hz, 1H), 3.65 – 3.40 (m, 3H), 3.27

(d, J = 10.4 Hz, 1H), 3.13 - 3.04 (m, 1H), 3.35 - 3.25 (m, 7H), 1.91 - 1.78 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.8, 138.3, 138.1, 129.3, 128.8, 128.4, 127.2, 124.3, 70.1, 59.8, 59.7, 53.0, 33.5, 21.5. HRMS (ESI) m/z: calcd for C₁₉H₂₅N₂ [M + H]⁺, 281.2012; found, 281.2014.

Ket I line [linili]	туре	wide [mm]	Alea [IIIAu S]	fieigin [iiiAu]	Alca/0
8.680	BM m	0.21	17393.18	1260.95	50.02
13.550	MM m	0.35	17377.81	778.49	49.98

(*R*)-1-benzyl-4-(*tert*-butyl)hexahydropyrimidine (2q): 42 mg, 91% yield, colorless oil, 58% *ee*, $[\alpha]_D^{20} = -5.4$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 95/5; flow rate = 0.4 mL/min; UV detection at 210 nm; t_{R1} = 10.2 min (minor), t_{R2} = 10.9 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 - 7.21 (m, 5H), 3.93 (dd, J = 10.8, 2.4 Hz, 1H), 3.60 - 3.26 (m, 2H), 3.09 - 3.00 (m, 2H), 2.21 - 2.15 (m, 1H), 2.14 - 2.02 (m, 1H), 1.62 - 1.53 (m, 2H), 1.50 - 1.38 (m, 1H), 0.90 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.1, 129.3, 128.4, 127.2, 70.4, 64.9, 59.9, 53.2, 33.3, 27.0, 26.8. HRMS (ESI) m/z: calcd for C₁₅H₂₅N₂ [M + H]⁺, 233.2012; found, 233.2014.

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
10.173	MM m	0.29	21003.41	1134.46	49.86
10.907	MM m	0.30	21123.16	1095.50	50.14
DAD1C, Sig=210, 4 Re 1000	offeoff				2q CH ₂ Ph
0 5 5.5 6 6.5 7	7.5 8 8.5	9 9.5 10 10.5	11 11.5 12 12.5 13 13.5 14 时间 [min]	14.5 15 15.5 16 16	0.5 17 17.5 18
	Type MM m	wide [min]	Area [mAu * s]	Height [mAu]	Area%
10.194	MM m	0.27	3097.14 11817 71	632 32	20.77

(*R*)-1-benzyl-4-cyclohexylhexahydropyrimidine (2r): 46 mg, 90% yield, colorless oil, 49% *ee*, $[\alpha]_D^{20} = -7.6$ N CH₂Ph (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak IC column, *n*-hexane/*i*-PrOH = 95/5; flow rate = 0.4 mL/min; UV detection at 210 nm; t_{R1} = 17.2 min (minor), t_{R2} = 20.4 min (major). ¹H NMR (400 MHz, Chloroform*d*) δ 7.31 (d, *J* = 4.4 Hz, 4H), 7.26 - 7.21 (m, 1H), 3.89 (dd, *J* = 10.8, 2.0 Hz, 1H),

3.56 - 3.31 (m, 2H), 3.06 (d, J = 10.8 Hz, 1H), 3.03 - 2.95 (m, 1H), 2.32 - 2.23 (m, 1H), 2.15 - 2.06 (m, 1H), 1.85 (d, J = 12.8 Hz, 1H), 1.73 - 1.56 (m, 6H), 1.46 - 1.35 (m, 1H), 1.23 - 1.14 (m, 3H), 1.05 - 0.90 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.2, 129.3, 128.4, 127.2, 70.1, 60.4, 59.9, 53.0, 43.1, 29.7, 29.3, 26.8, 26.5. HRMS (ESI) m/z: calcd for C₁₇H₂₇N₂ [M + H]⁺, 259.2169; found, 259.2171.

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
17.327	BM m	0.86	2534.22	35.94	49.93
21.127	BM m	1.22	2541.07	24.60	50.07

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
17.226	BM m	0.65	1703.56	31.73	25.51
20.420	BM m	1.18	4973.31	51.93	74.49

(R)-1-(4-methylbenzyl)-4-phenylhexahydropyrimidine (4a): 50 mg, 94% yield, white solid, 96% ee, mp =

81.5 – 84.3 °C. $[\alpha]_D^{20} = -9.3$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; $t_{R1} = 9.0$ min (minor), $t_{R2} = 10.2$ min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35

-7.11 (m, 9H), 3.99 (dd, J = 10.8, 2.0 Hz, 1H), 3.71 -3.63 (m,1H), 3.61 -3.38 (m, 2H), 3.27 (d, J = 10.8 Hz, 1H), 3.13 -3.05 (m, 1H), 2.37 -2.26 (m, 4H), 1.87 -1.81 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.8, 136.8, 135.0, 129.3, 129.1, 128.6, 127.2, 126.5, 70.0, 59.8, 59.6, 52.9, 33.5, 21.2. HRMS (ESI) m/z: calcd for C₁₈H₂₃N₂ [M + H]⁺, 267.1856; found, 267.1857.

(R)-1-(4-methoxybenzyl)-4-phenylhexahydropyrimidine (4b): 52 mg, 93% yield, white solid, 96% ee, mp

= 70.3 – 73.5 °C. $[\alpha]_D^{20} = -11.3$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; $t_{R1} = 12.7$ min (minor), $t_{R2} = 14.2$ min (major). ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.36 – 7.22 (m, 7H), 6.91 – 6.82 (m, 2H), 3.99 (dd, J = 10.8, 2.0 Hz, 1H), 3.78 (s, 3H), 3.66 – 3.41 (m, 3H), 3.26 (d, J = 10.8 Hz, 1H), 3.13 – 3.04 (m, 1H), 2.34 – 2.21 (m, 1H), 1.89 – 1.80 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 158.8, 143.6, 130.4, 129.9, 128.5, 127.1, 126.4, 113.7, 69.8, 59.6, 59.0, 55.3, 52.7, 33.4. HRMS (ESI) m/z: calcd for C₁₈H₂₃N₂O [M + H]⁺, 283.1805; found, 283.1807.

(*R*)-4-((4-phenyltetrahydropyrimidin-1(2*H*)-yl)methyl)benzonitrile (4c): 50 mg, 90% yield, pale yellow oil, 96% *ee*, $[\alpha]_D^{20} = -8.0$ (*c* = 0.5, CHCl₃). The enantiomeric excess was

oil, 96% *ee*, $[\alpha]_D^{20} = -8.0$ (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.4 mL/min; UV detection at 220 nm; t_{R1} = 20.5 min (major), t_{R2} = 26.8 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 8.0

Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.38 – 7.30 (m, 4H), 7.29 – 7.23 (m, 1H), 3.94 (dd, J = 10.8, 2.0 Hz, 1H), 3.74 – 3.47 (m, 3H), 3.30 (d, J = 10.4 Hz, 1H), 3.07 – 2.98 (m, 1H), 2.42 –2.31 (m, 1H), 1.90 – 1.82 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 144.3, 143.5, 132.3, 129.6, 128.6, 127.4, 126.5, 119.1, 111.1, 69.9, 59.6, 59.1, 53.1, 33.3. HRMS (ESI) m/z: calcd for C₁₉H₂₀N₃ [M + H]⁺, 278.1652; found, 278.1655.

(R)-4-phenyl-1-(4-(trifluoromethyl)benzyl)hexahydropyrimidine (4d): 58 mg, 90% yield, white solid, 95%

ee, mp = 83.2 – 84.7 °C. $[\alpha]_D^{20} = -7.6$ (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 9.3 min (minor), t_{R2} = 11.5 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ

7.59 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.39 – 7.31 (m, 4H), 7.27 – 7.23 (m, 1H), 3.97 (dd, J = 10.8, 2.0 Hz, 1H), 3.73 – 3.45 (m, 3H), 3.34 (d, J = 10.8 Hz, 1H), 3.11 – 3.00 (m, 1H), 2.42 –2.30 (m, 1H), 1.89 – 1.8 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.6, 142.6, 129.7, 129.3, 128.6, 127.3, 126.5, 125.4 (q, J = 270.2 Hz), 125.4 (q, J = 3.8 Hz), 70.0, 59.7, 59.2, 53.0, 33.4. HRMS (ESI) m/z: calcd for C₁₈H₂₀F₃N₂ [M + H]⁺, 321.1573; found, 321.1570.

methyl (*R*)-4-((4-phenyltetrahydropyrimidin-1(2*H*)-yl)methyl)benzoate (4e): 58 mg, 93% yield, white solid, 96% *ee*, mp = 95.8 – 98.9 °C $[\alpha]_D^{20} = -9.5$ (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm;

 $t_{R1} = 20.4 \text{ min (minor)}, t_{R2} = 25.0 \text{ min (major)}. {}^{1}\text{H NMR (400 MHz, Chloroform-$ *d* $) } \\ \delta 8.00 (d, J = 8.4 \text{ Hz}, 2\text{H}), \\ 7.44 (d, J = 8.0 \text{ Hz}, 2\text{H}), 7.38 - 7.22 (m, 5\text{H}), 3.97 (dd, J = 10.4, 1.6 \text{ Hz}, 1\text{H}), 3.91 (s, 3\text{H}), 3.73 - 3.47 (m, 3\text{H}), 3.32 (d, J = 10.8 \text{ Hz}, 1\text{H}), 3.11 - 3.01 (m, 1\text{H}), 2.40 - 2.30 (m, 1\text{H}), 1.89 - 1.82 (m, 2\text{H}). {}^{13}\text{C NMR (100 MHz, Chloroform-$ *d* $) } \\ \delta 167.2, 143.8, 143.6, 129.8, 129.2, 129.0, 128.6, 127.3, 126.5, 70.0, 59.6, 59.4, 53.0, \\ 52.2, 33.4. \text{ HRMS (ESI) m/z: calcd for } C_{19}\text{H}_{23}\text{N}_2\text{O}_2 \text{ [M + H]}^+, 311.1754; found, 311.1754. \\ \end{cases}$

(*R*)-1-(4-fluorobenzyl)-4-phenylhexahydropyrimidine (4f): 50 mg, 92% yield, white solid, 95% *ee*, mp = 83.5 - 88.1 °C. $[\alpha]_D^{20} = -7.5$ (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 10.1 min (minor), t_{R2} = 12.5 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.21 (m, 7H),

7.01 (t, J = 8.8 Hz, 2H), 3.98 (dd, J = 10.8, 2.0 Hz, 1H), 3.72 – 3.62 (m, 1H), 3.60 – 3.38 (m, 2H), 3.28 (d, J = 10.8 Hz, 1H), 3.12 – 3.00 (m, 1H), 2.38 – 2.25 (m, 1H), 1.87 – 1.81 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 162.2 (d, J = 243.4 Hz), 143.7, 133.9 (d, J = 3.5 Hz), 130.7 (d, J = 7.9 Hz), 128.6, 127.3, 126.5, 115.2 (d, J = 21.1 Hz), 69.9, 59.7, 59.0, 52.9, 33.4. HRMS (ESI) m/z: calcd for C₁₇H₂₀FN₂ [M + H]⁺, 271.1605; found, 271.1603.

(*R*)-1-(4-chlorobenzyl)-4-phenylhexahydropyrimidine (4g): 53 mg, 92% yield, white solid, 96% ee, mp =

95.7 – 99.8 °C. $[\alpha]_D^{20} = -7.5$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; $t_{R1} = 10.6$ min (minor), $t_{R2} = 13.4$ min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.24 (m, 9H),

3.96 (dd, J = 10.8, 2.0 Hz, 1H), 3.74 – 3.64 (m, 1H), 3.62 – 3.38 (m, 2H), 3.29 (d, J = 10.8 Hz, 1H), 3.11 – 2.98 (m, 1H), 2.38 – 2.25 (m, 1H), 1.88 – 1.80 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.7, 153.6, 151.5, 134.6, 134.2, 133.0, 132.5, 131.1, 129.7, 129.1, 129.1, 118.8, 58.8. HRMS (ESI) m/z: calcd for C₁₇H₂₀ClN₂ [M + H]⁺, 287.1310; found, 287.1309.

(R)-1-(4-bromobenzyl)-4-phenylhexahydropyrimidine (4h): 60 mg, 91% yield, white solid, 96% ee, mp =

14.134

BV

1.63

97.5 – 100.3 °C. $[\alpha]_D^{20} = -10.1$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 11.3 min (minor), t_{R2} = 14.1 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 –

7.22 (m, 9H), 3.95 (dd, J = 10.8, 2.0 Hz, 1H), 3.60 – 3.36 (m, 3H), 3.29 (d, J = 10.4 Hz, 1H), 3.10 – 3.00 (m, 1H), 2.27 – 2.26 (m, 1H), 1.87 – 1.82 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.7, 137.4, 131.5, 130.9, 128.6, 127.3, 126.5, 121.0, 69.9, 59.7, 59.0, 52.9, 33.4. HRMS (ESI) m/z: calcd for C₁₇H₂₀BrN₂ [M + H]⁺, 331.0804; found, 331.0803.

12663.52

653.71

50.00

RetTime [min]	Type	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
11.261	BM m	0.26	294.89	17.49	2.16
14.142	BM m	0.30	13328.12	687.99	97.84

(*R*)-1-(3-bromobenzyl)-4-phenylhexahydropyrimidine (4i): 61 mg, 92% yield, colorless oil, 93% *ee.* $[\alpha]_D^{20}$

= -9.31 (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 0.6 mL/min; UV detection at 220 nm; $t_{R1} = 9.3$ min (minor), $t_{R2} = 11.7$ min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (t, J = 2.0 Hz, 1H), 7.41 – 7.15 (m, 8H), 3.96

(dd, J = 10.4, 2.0 Hz, 1H), 3.71 - 3.64 (m, 1H), 3.59 - 3.37 (m, 2H), 3.30 (d, J = 10.4 Hz, 1H), 3.12 - 3.02 (m, 1H), 2.39 - 2.25 (m, 1H), 1.91 - 1.82 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.6, 140.8, 132.0, 130.3, 123.0, 128.6, 127.7, 127.3, 126.5, 122.6, 69.9, 59.7, 59.1, 53.0, 33.4. HRMS (ESI) m/z: calcd for $C_{17}H_{20}BrN_2$ [M + H]⁺, 331.0804; found, 331.0802.

(*R*)-1-(2-bromobenzyl)-4-phenylhexahydropyrimidine (4j): 60 mg, 91% yield, colorless oil, 95% *ee*, $[\alpha]_D^{20}$

0.22

14.134

BV

1.63

11.750

MM m

= -9.7 (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 11.3 min (minor), t_{R2} = 14.1 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.48 (m, 2H), 7.39 – 7.22 (m, 6H), 7.15 – 7.07 (m,

554.36

653.71

50.00

96.35

8018.52

1H), 4.00 (dd, J = 10.8, 2.0 Hz, 1H), 3.75 – 3.40 (m, 4H), 3.18 – 3.09 (m, 1H), 2.54 – 2.44 (m, 1H), 1.95 – 1.83 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.8, 137.8, 132.9, 130.9, 128.7, 128.6, 127.4, 127.2, 126.5, 124.8, 69.8, 59.6, 58.5, 53.1, 33.4. HRMS (ESI) m/z: calcd for C₁₇H₂₀BrN₂ [M + H]⁺, 331.0804; found, 331.0803.

12663.52

Ref l'ime [min]	Type	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
11.261	BM m	0.26	294.89	17.49	2.16
14.142	BM m	0.30	13328.12	687.99	97.84

(R)-1-(3,5-dimethylbenzyl)-4-phenylhexahydropyrimidine (4k): 53 mg, 94% yield, colorless oil, 95% ee,

 $[\alpha]_D^{20} = -7.9$ (c = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 14.9 min (minor), t_{R2} = 16.6 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.22 (m, 5H), 6.96 (s,

2H), 6.90 (s, 1H), 4.00 (dd, J = 10.8, 2.0 Hz, 1H), 3.72 – 3.63 (m, 1H), 3.57 – 3.34 (m, 2H), 3.27 (d, J = 10.8 Hz, 1H), 3.16 – 3.06 (m, 1H), 3.38 – 3.25 (m, 7H), 1.92 – 1.80 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 143.8, 137.9, 137.9, 128.9, 128.6, 127.2, 127.2, 126.5, 70.1, 59.8, 59.7, 53.0, 33.4, 21.4. HRMS (ESI) m/z: calcd for C₁₉H₂₅N₂ [M + H]⁺, 281.2012; found, 281.2011.

(R)-1-(3,5-dimethoxybenzyl)-4-phenylhexahydropyrimidine (4l): 57 mg, 92% yield, colorless oil, 97% ee,

16.036

BM m

0.30

 $[\alpha]_D^{20} = -11.3$ (*c* = 0.5, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 13.2 min (minor), t_{R2} = 16.0 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.21 (m,

5H), 6.96 (s, 2H), 6.90 (s, 1H), 4.00 (dd, J = 10.8, 2.0 Hz, 1H), 3.72 - 3.64 (m, 1H), 3.57 - 3.34 (m, 2H), 3.27 (d, J = 10.8 Hz, 1H), 3.15 - 3.06 (m, 1H), 3.36 - 3.25 (m, 7H), 1.92 - 1.82 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.8, 137.9, 137.9, 128.9, 128.6, 127.2, 127.2, 126.5, 70.1, 59.8, 59.7, 53.0, 33.4, 21.4. HRMS (ESI) m/z: calcd for C₁₉H₂₅N₂O₂ [M + H]⁺, 313.1911; found, 313.1910.

15311.18

782.33

50.02

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
13.162	BM m	0.24	149.89	9.64	1.49
16.003	BM m	0.30	9914.59	504.82	98.51

2.4 General procedure for asymmetric hydrogenation under continuous flow

All process parts, including fittings, tubes, valves and junctions that hold pressure were purchased from SHENZHEN INSFTECH CO,. Ltd. The specification of the reaction coil is 0.5 ml/m. The information of other main components is summarized in Table S1.

Name	Information		
Pump	Sanotac high pressure HPLC pump AP0030 (0-10 mL/min; 20 MPa)		
MFC	SHENZHEN INSFTECH CO,. Ltd. FCM-1050 (0-500sccm,10MPa)		
BPR	SHENZHEN INSFTECH CO,. Ltd. FAV-1500B (0-500mL/min, 10MPa)		
Mixer	SHENZHEN INSFTECH CO,. Ltd. MGL-2000 (200*250µm, 2000Psi)		

Table S1 Components details of reactor system

A mixture of $[Ir(COD)Cl]_2$ (1.0 mol%) and (*S*,*S*)-f-Binaphane (2.2 mol%) was dissolved in a degassed solvent DCM/CHCl₃ at argon atmosphere, and the resulting solution was allowed to be stirred at room temperature for 30 min. Then, N-benzyl-4-phenylpyrimidinium bromide **1a** (1.0 equiv.) was added. The process was washed by DCM/CHCl₃ at a liquid flow rate of 5 mL/min and gas flow rate of 10 sccm (avoid back flow of liquid to gas flow meter) for 10 minutes and then pressurized the BPR. After the reactor was pressurized to 8 MPa, the aforehand reaction medium was pumped instead of solvent. Liquid flow rate was set at 0.5 mL/min and gas flow rate was keeping 120 sccm. The liquid holding capacity of the reaction coil can be adjusted according to the needs. The conversion and *ee* value were analyzed by NMR and HPLC. When reaction finished, system was depressurized by releasing the gas of Equilibar BPR slowly, and washed the whole system by pumping ethanol for 10 minutes.

Figure S1 AH of 1a under continuous flow.

RetTime [min]	Туре	Wide [min]	Area [mAu * s]	Height [mAu]	Area%
 9.449	MM m	0.18	716.46	60.33	49.57
11.207	MM m	0.20	728.86	54.18	50.43

Figure S2 Set-up for asymmetric hydrogenation under continuous flow.

1-benzyl-4-phenyl-1,6-dihydropyrimidine (9): ¹Η NMR (400 MHz, Chloroform-d) δ 7.67 – 7.64 (m, 2H), 7.40 - 7.23 (m, 9H), 5.35 - 5.34 (m, 1H), 4.20 (s, 2H), 4.05 (d, J = 3.6 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 151.4, 142.3, 138.4, 134.8, 129.0, 128.3, 128.3, 128.0, 127.8, 125.2, 99.8, 56.9, 45.4. HRMS (ESI) m/z: calcd for C₁₇H₁₇N₂ [M + H]⁺,

249.3365.; found, 249.3364.

39.285

2.5 Product thansformations

To a solution of 2a (0.2 mmol, 1.0 equiv.) in DCM (1.0 mL) was added triphosgene (0.12 mmol, 0.6 equiv.). After stirring 15 min at room temperature, the reaction was quenched with saturated aqueous Na₂CO₃ solution, and the combined aqueous layers were extracted with DCM. The combined organic portions were washed with brine, dried over Na₂SO₄, filtered, and evaporated in vacuo. The residue was purified by silica gel flash chromatography using dichloromethane/methanol as eluent to give 5.

(R)-1-benzyl-4-phenyltetrahydropyrimidin-2(1H)-one (5): 49 mg, 85% yield, white solid, 97% ee, mp = $155.2 - 157.3 \ ^{\circ}C \ [\alpha]_{D}^{20} = -3.3 \ (c = 0.17, CHCl_{3})$. The enantiomeric excess was ∠CH₂Ph determined by HPLC on Chiralpak AD-H column, n-hexane/i-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 34.6 min (minor), t_{R2} = 39.1 min (major). ¹H NMR (400 MHz, Chloroform-d) & 7.45 - 7.26 (m, 10H), 4.90 (s, 1H),

4.67 - 4.49 (m, 3H), 3.27 - 3.18 (m, 1H), 3.16 - 3.05 (m, 1H), 2.19 - 2.06 (m, 1H), 2.00 - 1.86 (m, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 156.4, 142.4, 138.1, 128.9, 128.7, 128.08, 128.06, 127.4, 126.2, 55.5, 50.8, 43.2, 31.2. HRMS (ESI) m/z: calcd for $C_{17}H_{19}N_2O [M + Na]^+$, 289.1311; found, 289.1307.

34.04

50.04

0.68

To a solution of **2a** (0.2 mmol, 1.0 equiv.) in dryDCM (1.0 mL) was added a solution of **10** (0.24 mmol, 1.2 equiv.)³ in dryDCM (1.0 mL) via syringe. After stirring 12 h at room temperature, the resulting mixture was quenched by water and then extracted with DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and evaporated in vacuo. The residue was purified by silica gel flash chromatography using petroleum ether as eluent to give **6**.

(S)-1-((R)-3-benzyl-6-phenyltetrahydropyrimidin-1(2H)-yl)-2-(6-methoxynaphthalen-2-yl)propan-1-

one (6): 75 mg, 81% yield, white solid, HPLC analysis of the crude mixture revealed that the *dr* value was >20:1, mp = 115.8 – 118.5 °C. $[\alpha]_D^{20} = 19.30$ (c = 0.43, CHCl₃). The diastereomeric excess was determined by HPLC on Chiralpak IC column, hexane: isopropanol = 80:20; flow rate = 0.8 mL/min; UV detection at 230 nm; t_{R1} = 11.6 min

(minor), $t_{R2} = 29.9 \text{ min (major)}$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 6.57 (m, 16H), 6.27 – 5.56 (m, 1H), 4.85–4.30 (m, 1H), 4.20 – 4.02 (m, 1H), 3.92 (s, 3H), 3.70 – 2.80 (s, 3H), 2.75 – 2.50 (m, 1H), 2.49 – 2.04 (m, 3H), 1.59 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.7, 157.6, 139.1, 137.7, 137.0, 133.7, 129.4, 129.6, 128.9, 128.7, 128.3, 127.4, 127.1, 127.0, 126.8, 126.6, 126.0, 118.9, 105.7, 63.6, 58.4, 55.5, 50.0, 47.3, 43.2, 25.4, 20.8. HRMS (ESI) m/z: calcd for C₃₁H₃₃N₂O₂ [M + H]⁺, 464.2464; found, 464.2463.

To a solution of 2a (0.2 mmol, 1.0 equiv.) in DCM (1.0 mL) was added 3-chloroperoxybenzoic acid (0.22 mmol, 1.1 equiv.). After stirring 10 min at room temperature, the reaction was quenched with 1.0 M NaOH solution. The resulting mixture was extracted with DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and evaporated in vacuo. The residue was purified by silica gel flash chromatography using dichloromethane/methanol as eluent to give 7.

(*R*)-3-benzyl-6-phenyltetrahydropyrimidin-1(2*H*)-ol (7): 49 mg, 91% yield, colorless oil, 96% ee. $[\alpha]_D^{20} =$

25.9 (c = 0.24, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; $t_{R1} = 8.3$ min (minor), $t_{R2} = 8.9$ min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.29 (m, 10H), 4.33 (s, 2H), 4.20 – 4.12 (m, 1H), 4.03

- 3.84 (m, 2H), 3.14 - 3.06 (m, 1H), 2.97 - 2.85 (m, 1H), 2.13 - 2.04 (m, 1H), 1.88 - 1.74 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 145.9, 137.9, 129.3, 128.6, 128.4, 127.4, 126.7, 126.1, 82.3, 64.2, 57.8, 57.7, 40.2.

HRMS (ESI) m/z: calcd for C₁₇H₂₁N₂O [M + H]⁺, 269.1648; found, 269.1644.

To a solution of **2a** (0.2 mmol, 1.0 equiv.) in MeCN (2.0 mL) was added potassium carbonate (0.4 mmol, 2 equiv.) and 4-methoxybenzylchloride (0.3 mmol, 1.5 equiv.). After stirring 2 h at 60 °C, the mixture was cooled and filtered. The solvent was evaporated from the filtrate. The residue was dissolved in EtOH (1.0 mL) and added 2.0 M HCl ethanol solution (1.0 mL, 5.0 equiv.). The mixture was stirring 12 h at 75 °C and then the mixture was cooled. The volatiles was removed under reduced pressure. The residue was slurried with Et₂O at room temperature for 12 h and then filtered. The residue was added DCM and saturated aqueous NaHCO₃ solution and then extracted with DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and evaporated in vacuo. The residue was purified by silica gel flash chromatography using dichloromethane/methanol as eluent to give **8**.

8

2a

(*R*)-*N*³-benzyl-*N*¹-(4-methoxybenzyl)-1-phenylpropane-1,3-diamine (8): 29 mg, 65% yield, colorless oil, NHPMB 99% *ee*, $[\alpha]_D^{20} = 16.5$ (*c* = 0.20, CHCl₃). The enantiomeric excess was determined by HPLC on Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90/10; flow rate = 0.6 mL/min; UV detection at 220 nm; t_{R1} = 19.3 min (major), t_{R2} = 26.9 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.23 (m, 10H), 7.15 (d, *J* = 8.4 Hz,

2H), 6.82 (d, J = 8.4 Hz, 2H), 3.79 (s, 3H), 3.76 – 3.66 (m, 3H), 3.61 – 3.40 (m, 2H), 2.68 – 2.67 (m, 2H), 1.88 – 1.81 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 158.7, 144.2, 140.4, 132.9, 129.4, 128.6, 128.5, 128.3, 127.3, 127.2, 127.0, 113.9, 61.6, 55.4, 54.2, 50.9, 47.3, 38.2. HRMS (ESI) m/z: calcd for C₂₄H₂₉N₂O [M + H]⁺, 361.2274; found, 361.2269.

2.6 Result of deuterium labeling experiments

Following standard hydrogenation procedure, deuterium labeling experiments were conducted with specific modification.

3. References

- (1) J. Wang, S. Wang, G. Wang, J. Zhang and X.-Q. Yu, Chem. Commun., 2012, 48, 11769–11771.
- (2) S. D. Jadhav and A. Singh, Org. Lett., 2017, 19, 5673–5676.
- (3) M. J. Stefanko, Y. K. Gun'ko, D. K. Rai and P. Evans, *Tetrahedron*, 2008, 64, 10132–10139.

4. NMR Spectrum

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound S1a

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1a

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1b

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1c

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound S1d

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1d

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1e

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound S1f

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1f

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound S1h

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1h

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1i

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1j

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound S1k

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1k

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound S11

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S11

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound S1m

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1m

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound S1n

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1n

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound S10

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S10

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound S1p

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1p

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1q

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound S1r

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1a

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1b

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1c

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1d

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1e

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1f

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1g

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1h

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1i

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1j

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 1k

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1k

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 11

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1m

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 1n

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1n

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 10

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1p

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1q

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1r

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 3a

100 90 f1 (ppm)

80 70 60 50

40 30 20

10 0 -1

)0

190 180

170

160

150 140 130

120 110

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 3b

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 3b

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 3c

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 3d

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 3d

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 3e

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 3e

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 3f

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 3f

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 3g

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 3h

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 3i

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 3i

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 3j

¹³C-NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound 3j

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 3k

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 3k

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 31

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 31

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2a

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2a

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2b

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2c

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2c

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2d

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2e

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2e

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2f

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2g

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2g

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2h

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2i

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2i

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2j

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2k

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 21

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 21

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2m

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2n

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 20

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 20

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2p

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2p

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2q

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2q

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2r

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2r

CH₂Ph

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 4a

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4a

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 4b

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4b

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4c

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 4d

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4d

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4e

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 4f

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4f

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 4g

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4g

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 4h

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4h

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4i

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4j

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 4k

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4k

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 41

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 5

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 5

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 6

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 6

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 7

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 7

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 8

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 9

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 9

5. Crystallographic Data

Figure S3. ORTEP of the molecular structure of 20

CCDC 2239321 contains the supplementary crystallographic data for compound $\mathbf{2o}$.

Empirical formula	C ₂₃ H ₂₄ N ₂
Formula weight	328.44
Temperature/K	297.0
Crystal system	monoclinic
Space group	P21
a/Å	15.1560(3)
b/Å	6.05280(10)
c/Å	20.8658(4)
α/°	90
β/°	104.9340(10)
γ/°	90
Volume/Å ³	1849.50(6)
Z	4
$\rho_{calc}g/cm^3$	1.180
µ/mm ⁻¹	0.525
F(000)	704.0
Crystal size/mm ³	0.45 imes 0.35 imes 0.19
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	4.382 to 134.14
Index ranges	$-17 \le h \le 18, -7 \le k \le 7, -24 \le l \le 24$
Reflections collected	33674
Independent reflections	$6569 [R_{int} = 0.0513, R_{sigma} = 0.0342]$
Data/restraints/parameters	6569/1/454
Goodness-of-fit on F ²	1.065
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0457, wR_2 = 0.1214$
Final R indexes [all data]	$R_1 = 0.0513, wR_2 = 0.1257$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.24

Flack parameter	0.08(18)

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.