[Electronic Supplementary Information]

Hydrodeoxygenation of guaiacol over physically mixed Co/TiO_2 and WO_3/TiO_2

catalysts

Hyungjoo Kim^a, Yong Hyun Lim^a, Jae Hyun Park^a, Jeong-Myeong Ha^b, and Do Heui

Kim^{a*}

^aSchool of Chemical and Biological Engineering, and Institute of Chemical Process

Seoul National University

1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea

*E-mail: dohkim@snu.ac.kr

^bClean Energy Research Center

Korea Institute of Science and Technology (KIST)

Seoul 02792, Republic of Korea

Table S1. Price per gram of noble and non-noble metals commonly used in HDO catalysts. The price was obtained from https://dailymetalprice.com at 2023.09.05 and 2023.09.06.

Metal		Price (\$/g)		
	Pd	38.956		
Noble	Pt	29.276		
	Ru	14.950		
	Со	0.03342		
Non noble	Ni	0.02084		
INON-NODIE	Cu	0.008254		
	Fe	0.0001190		

Table S2. S	Summary	of the literatu	ires on gua	aiacol and a	alkyl substitut	ed guaiacol HI	00
conducted	by hetero	jeneous cata	alysts in ba	itch reactior	n system.		

				Reaction conditions			Carrie	O-free HC	
Reactant	Catalyst	Composition	Solvent	T /°C	T P(H ₂) t /°C /bar /h		/ %	Yield / %	Ref.
Guaiacol	Co/TiO ₂ + WO ₃ /TiO ₂	Co 10 wt.%, WO ₃ 10 wt.%	n-Octane	250	10	1	100	87	This work
Guaiacol	Co/TiO ₂	Co 10 wt.%	n-Octane	250	10	1	100	6.4 (Cyclohexa nol 83)*	This work
Guaiacol	CoWO _x / TiO ₂	Co 10 wt.%, WO ₃ 10 wt.%	n-Octane	250	10	1	0.5	0	This work
Guaiacol	Ru/ HZSM-5	Ru 5 wt.%	Water	240	2	1	100	96	[1]
Guaiacol	Ru/ SBA-15	Ru 5 wt.%	[Bmim]PF ₆	150	20	6	>99.0	95	[2]
Guaiacol	Ru/CNT	Ru 5 wt.%	Water/ n-Dodecane	220	50	3	100	92	[3]
4-Propyl -guaiacol	Ru/C + Nb ₂ O ₅	Ru 5 wt.%	Water (methanol additive)	250	6	2	36	10	[4]
4-Propyl -guaiacol	Ru/C + Nb ₂ O ₅	Ru 5 wt.%	Water (methanol additive)	250	6	12	100	100	[4]
Guaiacol	Ru-WO _x / SiAl	Ru 5 wt.%, WO _x 30 wt.%	Water	250	16	1.5	100	88	[5]
Guaiacol	Ru/WZr	Ru 5 wt.% W 10 wt.%	Water	270	40	1	96.8	55	[6]
4-Propyl -guaiacol	RuCoW _x / NC	0.188 mmol Co and Ru	n-Dodecane	240	10	4	100	95.2	[7]
Guaiacol	Ru/TiO ₂	Ru 2 wt.%	Octane	260	10	4	99.9	91	[8]
Guaiacol	Pt-WO _{3-x}	-	n-hexane	220	30	1	63.7	47	[9]
Guaiacol	Pt/HY	Pt 0.5 wt.% Si/Al = 2.6	Decane	250	40	2	82.9	56	[10]
Guaiacol	Pd/WO _x / Al ₂ O ₃	Pd 2 wt.%, W 32 wt.%	n-Decane	300	70	2.5	100	88	[11]
Guaiacol	Rh/ZrO ₂	Rh 0.5 wt.%	n-Dodecane	300	70	3	100	88	[12]

Guaiacol	Re/SiO ₂	Re 7 wt.%	n-Heptane	280	20	1	98	57	[13]
Guaiacol	Co/SiO ₂	Co 20 wt.%	n-Tetradecane	300	10	1	100	93	[14]
Guaiacol	Co/SiO ₂	Co 20 wt.%	n-Tetradecane	300	50	1	100	98	[14]
Guaiacol	Sulfided CoMo/ Al ₂ O ₃	-	n-Tetradecane	300	50	1	100	31 (Phenol 61)*	[14]
Eugenol	Co/TiO ₂	Co 10 wt.%	n-Dodecane	200	10	2	100	0 (Alcohol 99.9)*	[15]
Guaiacol	Co-MoO ₂ @C	Co 4.71 wt.% Mo 16.10 wt.%	n-Hexane	340	8	4	97	61	[16]
Guaiacol	RANEY® Ni + Nafion/ SiO ₂	13 wt.% Nafion/SiO ₂	Water	300	40	2	100	84	[17]
Guaiacol	Ni-WO _x / NiAl ₂ O ₄	Ni 10 wt.%, W 15 wt.%	Dodecane	250	50	4	97.8	82	[18]
Guaiacol	Ni/ Beta-12.5	Ni 15.7 wt.%	No solvent	250	40	3.3	99.5	70	[19]
Guaiacol	Ni/Nb ₂ O ₅	Ni 20 wt.%	Water	200	25	5	93.6	0.3 (Alcohols 92)*	[20]
Guaiacol	Ni/Nb ₂ O ₅	Ni 20 wt.%	Water	300	25	5	100	98	[20]
Guaiacol	Ni5Cu/ SZ-3	Ni 10 wt.%, Cu 5 wt.%	Dodecane	300	50	8	100	93	[21]

* Yield of main products where oxygen is not fully removed.

Table S3. Comparison of the conversion and product yields for guaiacol HDO catalyzed by $Co(10)/TiO_2(R)$ physically mixed with $WO_3(10)/TiO_2(R)$ and pristine $TiO_2(R)$. Reaction conditions: Catalyst 1 0.1 g, Catalyst 2 0.1 g, Guaiacol 2 mmol, *n*-octane 20 mL, 250 °C, H₂ 10 bar, 1 h.

Entry	Catalyst 1	Catalyst 2	Conversion (%)	Product Yield (%)				
,		0010.901		1	2	3	4	5
8	Co(10)/TiO ₂ (R)	WO ₃ (10)/TiO ₂ (R)	100	25.4	59.1	1.3	0	0
11	Co(10)/TiO ₂ (R)	TiO ₂ (R)	100	0.9	3.3	0.2	87.8	7.0

Table S4. Atomic content of the Co(10)/TiO₂(R) and WO₃(10)/TiO₂(R) fresh and AR catalysts obtained from ICP-AES. The number in parentheses represent the wt.% content of WO₃.

		Content (wt.%)			
Catalyst		Со	W (WO ₃)		
Co(10)/TiO ₂ (R)	Fresh	10.6	0		
	AR	9.5	0.7 (0.8)		
	Fresh	0	8.1 (10.2)		
νο ₃ (10)/110 ₂ (Κ)	AR	0.2	7.9 (9.9)		

Table S5. Carbon content of fresh, AR, and AR_400C of $WO_3(10)/TiO_2(R)_400C$ catalysts obtained elemental analysis.

WO ₃ (10)/TiO ₂ (R)	C content (wt.%)
Fresh	0.113 ± 0.033
AR	0.399 ± 0.002
AR_400C	0.076 ± 0.023

Figure S1. H₂-TPR profiles of metal loaded rutile TiO_2 catalysts after calcination at 400 °C (M = Ru, Cu, Ni, Co, and Fe, x = wt.% loading of metal).

Figure S2. Simplified reaction pathway of guaiacol HDO.

Figure S3. XRD patterns of the Co and W loaded catalysts.

Figure S4. NH_3 -TPD profiles of the WO_3 loaded rutile and anatase TiO_2 catalysts with various WO_3 loadings.

Figure S5. FTIR spectra of adsorbed pyridine over pristine $TiO_2(R)$ and WO_3 loaded $TiO_2(R)$ catalysts and corresponding B/L ratios. The deconvoluted peak areas of Lewis acid sites (1445 cm⁻¹) and Brønsted acid sites (1540 cm⁻¹) were used to quantify the B/L ratio, and molar extinction coefficients of 1.67 and 2.22 µmol⁻¹ were used for Brønsted and Lewis acid sites (J. Catal., 141 (1993) 347), respectively.

Figure S6. Turnover frequencies (TOFs) of (a) rutile TiO₂ catalysts with different WO₃ loadings and (b) Co loaded rutile TiO₂ and PM catalyst in cyclohexanol dehydration reaction (The TOF_{OH} of Co(10)/TiO₂(R) catalyst was calculated based on the amount of Co instead of W). Reaction condition: Cyclohexanol 2 mL, Catalyst 0.005 g each, *n*-octane 18 mL, 250 °C, H₂ 10 bar, 1 h.

Figure S7. XRD pattern and crystallite size of metallic Co calculated from Scherrer equation of the Co_AR catalyst.

Figure S8. Photographs of fresh, AR, and AR_400C of $WO_3(10)/TiO_2(R)$ catalyst.

Figure S9. XRD patterns of fresh, AR, and AR_400C of $WO_3(10)/TiO_2(R)$ catalyst.

Figure S10. XPS W 4f spectra of fresh, AR, and AR_400C of WO₃(10)/TiO₂(R)_400C catalyst.

Figure S11. (a) TGA profiles and (b) DTG curves obtained from fresh, AR, and AR_400C of $WO_3(10)/TiO_2(R)$ catalyst.

References

- 1. Z. Luo, Z. Zheng, Y. Wang, G. Sun, H. Jiang and C. Zhao, *Green Chemistry*, 2016, **18**, 5845-5858.
- 2. S. Yang, X. Lu, H. Yao, J. Xin, J. Xu, Y. Kang, Y. Yang, G. Cai and S. Zhang, *Green Chemistry*, 2019, **21**, 597-605.
- 3. M.-Y. Chen, Y.-B. Huang, H. Pang, X.-X. Liu and Y. Fu, *Green Chemistry*, 2015, **17**, 1710-1717.
- 4. S. Li, B. Liu, J. Truong, Z. Luo, P. C. Ford and M. M. Abu-Omar, *Green Chemistry*, 2020, **22**, 7406-7416.
- 5. Y.-B. Huang, L. Yan, M.-Y. Chen, Q.-X. Guo and Y. Fu, *Green Chemistry*, 2015, **17**, 3010-3017.
- 6. A. A. Dwiatmoko, I. Kim, L. Zhou, J.-W. Choi, D. J. Suh, J. Jae and J.-M. Ha, *Applied Catalysis A: General*, 2017, **543**, 10-16.
- 7. M. Zhao, J. Hu, P. Lu, S. Wu, C. Liu and Y. Sun, *Fuel*, 2022, **326**, 125020.
- 8. R. Shu, B. Lin, J. Zhang, C. Wang, Z. Yang and Y. Chen, *Fuel Processing Technology*, 2019, **184**, 12-18.
- M. Sun, Y. Zhang, W. Liu, X. Zhao, H. Luo, G. Miao, Z. Wang, S. Li and L. Kong, *Green Chemistry*, 2022, 24, 9489-9495.
- 10. H. Lee, H. Kim, M. J. Yu, C. H. Ko, J.-K. Jeon, J. Jae, S. H. Park, S.-C. Jung and Y.-K. Park, *Scientific Reports*, 2016, **6**, 28765.
- 11. Y.-K. Hong, D.-W. Lee, H.-J. Eom and K.-Y. Lee, *Applied Catalysis B: Environmental*, 2014, **150-151**, 438-445.
- 12. Y. He, Y. Bie, J. Lehtonen, R. Liu and J. Cai, *Fuel*, 2019, **239**, 1015-1027.
- 13. Y. Jeong, C. W. Park, Y.-K. Park, J.-M. Ha, Y. Jeong, K.-Y. Lee and J. Jae, *Catalysis Today*, 2021, **375**, 164-173.
- 14. T. Mochizuki, S.-Y. Chen, M. Toba and Y. Yoshimura, *Applied Catalysis B: Environmental*, 2014, **146**, 237-243.
- 15. X. Liu, W. Jia, G. Xu, Y. Zhang and Y. Fu, *ACS Sustainable Chemistry & Engineering*, 2017, **5**, 8594-8601.
- 16. G.-H. Liu, Z.-M. Zong, Z.-Q. Liu, F.-J. Liu, Y.-Y. Zhang and X.-Y. Wei, *Fuel Processing Technology*, 2018, **179**, 114-123.
- 17. C. Zhao, Y. Kou, A. A. Lemonidou, X. Li and J. A. Lercher, *Chem Commun (Camb)*, 2010, **46**, 412-414.
- 18. X. Zhang, J. Wu, T. Li, C. Zhang, L. Zhu and S. Wang, *Chemical Engineering Journal*, 2022, **429**, 132181.
- 19. P. Yan, M. M.-J. Li, E. Kennedy, A. Adesina, G. Zhao, A. Setiawan and M. Stockenhuber, *Catalysis Science* & *Technology*, 2020, **10**, 810-825.
- 20. W. Song, Y. He, S. Lai, W. Lai, X. Yi, W. Yang and X. Jiang, *Green Chemistry*, 2020, **22**, 1662-1670.
- 21. X. Zhang, T. Wang, L. Ma, Q. Zhang, Y. Yu and Q. Liu, *Catalysis Communications*, 2013, **33**, 15-19.