Supporting Information

High performance lignin flow fuel cell based on self-generating electricity of lignin at low temperature via privileged structure and redox chemistry

Zixin Xie,^a Xihong Zu,^{*a,b} Jinxin Lin,^a Xueqing Qiu,^{*a,b} Tengda Liang^a and Liheng Chen^{a,b}

^{*a*} Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China ^{*b*} Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.

*Corresponding Authors: Prof. Xihong Zu, Prof. Xueqing Qiu

E-mail address: <u>xhzu@gdut.edu.cn</u> (X. Zu), <u>cexqqiu@scut.edu.cn</u> (X. Qiu).

Supplementary Figures

Fig. S1. (a) CV curves of sodium lignosulfonate (SL), enzymatic hydrolysis lignin (EHL) and alkali lignin (AL) in 1 M NaOH solution with 5 g L⁻¹ lignin. (b) CV curves of 4-hydroxybenzyl alcohol, 4-hydroxy-3-methoxybenzyl alcohol and 4-hydroxy-3,5-dimethoxybenzyl alcohol in 1 M NaOH solution with 10 mM lignin model compounds.

Fig. S2. FTIR spectra of alkali lignin before and after discharging for 4h.

Fig. S3. Molecular weight distribution curves of raw alkali lignin, alkali lignin after discharging for 4h, and alkali lignin after reacting with NaOH solution before discharging.

Fig. S4. UV-vis absorbance spectra of alkali lignin before and after discharging for 4h.

Fig. S5. Selected non-phenolic and phenolic lignin model compounds.

Fig. S6. Quantitative analysis of electricity generation from 4-hydroxy-3,5-dimethoxybenzyl alcohol (S-OH). Output energy of the LFFC tested by the constant-voltage (0.3V) discharging method (50 mL solution containing 0.5 g S-OH and 2 mol L^{-1} NaOH).

Fig. S7. HPLC-MS analysis of the liquid products when S-OH was discharged for 3.5 h at 90°C (50 mL solution containing 0.5 g S-OH and 2 mol L^{-1} NaOH).

Fig. S8. HS-GC-MS analysis of the liquid products when S-OH was discharged for 3.5 h at 90°C (50 mL solution containing 0.5 g S-OH and 2 mol L⁻¹ NaOH).

Fig. S9. Continuous discharge performance of the LFFC fueled by alkali lignin at different constant voltages.

Supplementary Tables

Label	δ _C /δ _H (ppm)	Assignments
-OCH ₃	56.4/3.70	C-H in methoxyls
A_{α}	71.6/4.86	C_{α} -H _{α} in β -O-4 substructures (A)
A_{β}	86.9/4.11	C_{β} -H _{β} in β -O-4 substructures (A)
A_{γ}	59.9/3.60	C_{γ} -H _{γ} in β -O-4 substructures (A)
B_{α}	87.5/5.56	C_{α} -H _{α} in phenylcoumaran substructures (B)
\mathbf{B}_{γ}	62.3/3.76	C_{γ} -H _{γ} in phenylcoumaran substructures (B)
C_{α}	85.1/4.45	C_{α} -H _{α} in β - β resinol substructures (C)
C_{γ}	70.7/3.45	C_{γ} -H _{γ} in β - β resinol substructures (C)
SD	82.1/4.92	C-H in β -1 spirodienone substructures (SD)
Gly_{β}	75.5/3.48	C_{β} -H _{β} in arylglycerol substructures (Gly)
Gly_{γ}	62.7/3.16-3.46	C_{γ} -H _{γ} in arylglycerol substructures (Gly)
S _{2,6}	104.5/6.72	$C_{2,6}$ -H _{2,6} in syringyl units (S)
S' _{2,6}	106.3/7.28	C _{2,6} -H _{2,6} in oxidized syringyl units (S')
G_2	111.0/6.99	C ₂ -H ₂ in guaiacyl units (G)
G'2	112.1/7.38	C ₂ -H ₂ in guaiacyl units (G')
G_5	115.3/6.68	C ₅ -H ₅ in guaiacyl units (G)
G_6	119.1/6.75	C ₆ -H ₆ in guaiacyl units (G)
H _{2,6}	128.7/7.23	C _{2,6} -H _{2,6} in <i>p</i> -hydroxyphenyl units (H)
FA ₂	111.3/7.25	C ₂ -H ₂ in ferulate (FA)
FA_6	122.3/7.12	C_6 -H ₆ in ferulate (FA)
FA_{α}	144.6/7.45	C_{α} -H _{α} in ferulate (FA)
FA_{β}	116.9/6.39	C_{β} -H _{β} in ferulate (FA)
<i>p</i> CA _{2,6}	130.3/7.49	$C_{2,6}$ - $H_{2,6}$ in p-coumaroylated substructures (pCA)
pCA_{α}	144.6/7.45	C_{α} -H _{α} in p-coumaroylated substructures (<i>p</i> CA)
<i>p</i> CA _{3,5}	116.9/6.39	$C_{3,5}$ - $H_{3,5}$ in p-coumaroylated substructures (pCA)
pCA_{β}	116.9/6.39	C_{β} -H _{β} in p-coumaroylated substructures (<i>p</i> CA)

Table S1. The NMR assignments of major signals in 2D-HSQC NMR spectra of alkali lignin samples.

 Table S2. Molecular weight of lignin.

Samples	Mw (g/mol)	Mn (g/mol)	PDI
Raw alkali lignin	2257	777	2.9048
After reacting with NaOH solution before discharging	2018	733	2.7531
After discharging	1143	632	1.8085

	Alinhatia	C ₅ -substituted OH		-Cuoioaul	n Uudnovunhonul	I Total phonolia	Carboralia
Samples	OH	Condensed OH	Syringyl OH	OH	OH	OH	acid OH
Raw alkali lignin	1.33	0.14	0.21	0.44	0.34	1.13	0.08
After discharging (4h)	0.53	0.18	0.12	0.33	0.16	0.79	0.54

Table S3. Hydroxyl group content of alkali lignin before and after discharging.

Note: The hydroxyl group content was determined by ³¹P NMR.

	Aliphatic	C ₅ -substituted OH		Guaiacyl	p-Hydroxyphenyl	Total phenolic	Carboxylic	
Samples	ОН	Condensed OH	Syringyl OH	ОН	ОН	ОН	acid OH	
AL	1.33	0.14	0.21	0.44	0.34	1.13	0.08	
EHL	1.52	0.48	0.35	0.39	0.43	1.65	0.37	
SL	1.45	0.32	0.01	0.44	0.15	0.92	3.26	

Table 4. Hydroxyl group content of different types of lignin.

Note: The hydroxyl group content was determined by ³¹P NMR.

Table S5. Comparison of the generated electric energy (based on 1.0g biomass) of different biomass flow fuel cells.

Fuel cell types	Fuels in anode half- cell	Electron mediators in anolyte	Electron mediators in catholyte	External processing or pretreatment	Electric energy (mWh)	Ref.
BFFC	Wheat straw	PMo ₉ V ₃	FeCl ₃	The suspension was heated in an autoclave at 120 °C for 1 h.	24.6	1
BFFC	Sugarcane bagasse	FeCl ₃	FeCl ₃	The suspension was heated in an autoclave at 120 °C for 30 min.	101.4	2
BFFC	Sugarcane bagasse	K ₃ [Fe(CN) ₆]	FeCl ₃	The suspension was heated in an autoclave at 120 °C for 30 min.	28.9	2
BFFC	Sodium lignosulfonate	CuCl ₂ /TiOSO ₄	(VO ₂) ₂ SO ₄	The solution was heated to 90°C under stirring to react 1 h.	116.24	3
LFFC	Alkali lignin	None	(VO ₂) ₂ SO ₄	None	219.9	This work

	Fuels in anode	Electron mediators in anolyte				Peak	
Fuel cell types			Electron	External processing or	Open-circuit	power	
	half-cell		mediators in	nretreatment	voltage	Density	Ref.
	nan-een		catholyte	pronoutinent	(V)	(P _{max} ,	
						mW/cm ²)	
BFFC	Wheat straw	PMo ₉ V ₃	FeCl ₃	The suspension was heated in an autoclave at 120 °C for 1 h.	0.44	44.7	1
BFFC	Sugarcane	K ₃ [Fe(CN) ₆]	FeCl ₃	The suspension was heated in an	0.78	75.4	2
bire	bagasse			autoclave at 120 °C for 30 min.	0.70		
BFFC	Sodium	CuCl ₂ /TiOSO ₄	(VO ₂) ₂ SO ₄	The solution was heated to 90°C	0.58	55.1	3
	lignosulfonate			under stirring to react 1 h.			
	Cellulose	$H_3PMo_{12}O_{40}$	$r_{0_{12}O_{40}}$ Pt (60%)/C r_{12} catalyst	The solution was irradiated by		0.72	4
BFFC		(PMo ₁₂)		simulated sunlight and heated on a	0.38		
				hotplate up to 95 °C and kept for 6 h.			
BFFC	Raffinose	$H_3PMo_{12}O_{40}$	$H_{12}P_3Mo_{18}V_7$	The solution was irradiated with	0.51	45	5
		(POM-I)	O_{85} (POM-II)	simulated sunlight for 8 h.			
BFFC	Wheat straw	FeCl ₃	$(VO_2)_2SO_4$	The suspension was heated to reflux a	t 0.61	100	6
				100 °C under stirring for 20 h.			
BFFC	Wheat straw	Methylene blue (MB)	FeCl ₃	The suspension was heated in an oil	1.56	41.8	7
2110				bath at 90-105 °C.	1100		
BFFC	Sodium	K ₃ [Fe(CN) ₆]	$(VO_2)_2SO_4$	The solution was heated at 105°C for	1.00	23.0	8
	lignosulfonate			5 h.	1.00		Ū
BFFC	Corn stover	K [Fa(CN)]	(VO ₂) ₂ SO ₄	The solution was heated at 120°C for	1 15	139.9	9
	alkaline lignin			30 min.	1.15)
	Enzymatic						This
LFFC	hydrolysis	None	(VO ₂) ₂ SO ₄	None	1.67	159.9	work
	lignin						11 UI K

Table S6. Comparison of the discharge performance of different biomass flow fuel cells.

Supplementary References

- 1. H. Yang, Y. Bai, D. Ouyang, F. Wang, D. Liu and X. Zhao, *J. Energy Chem.*, 2021, **58**, 133-146.
- 2. D. Ouyang, Y. Han, F. Wang and X. Zhao, *Bioresour. Technol.*, 2022, **344**, 126189.
- C. She, X. Zu, Z. Yang, L. Chen, Z. Xie, H. Yang, D. Yang, G. Yi, Y. Qin and X. Lin, *Chem. Eng. J.*, 2023, 452, 139266.
- 4. W. Liu, W. Mu, M. Liu, X. Zhang, H. Cai and Y. Deng, *Nat. Commun.*, 2014, 5, 3208.
- W. Liu, Y. Gong, W. Wu, W. Yang, C. Liu, Y. Deng and Z. s. Chao, *ChemSusChem*, 2018, 11, 2229-2238.
- J. Gong, W. Liu, X. Du, C. Liu, Z. Zhang, F. Sun, L. Yang, D. Xu, H. Guo and Y. Deng, *ChemSusChem*, 2017, 10, 506-513.
- 7. Y.-A. Chen, H. Yang, D. Ouyang, T. Liu, D. Liu and X. Zhao, *Appl. Catal., B*, 2020, **265**, 118578.
- 8. D. Ouyang, F. Wang, H. Yang and X. Zhao, *Chem. Eng. J.*, 2021, **420**, 129716.
- 9. F. Wang, D. Ouyang, B. Li, T. Liu and X. Zhao, *Energy Convers. Manage.*, 2022, **258**, 115552.