Supporting Information

Visible-Light-Promoted Metal-Free Approach for the N-HInsertions by Using Donor/Donor Diazo Precursors
Yu Zhang, ${ }^{* a, \$}$ Qiannan Li, ${ }^{\text {a, }}{ }^{\ddagger}$ Ping Wang, ${ }^{\text {a }}{ }^{\ddagger}$ Jinxin Wang, ${ }^{\text {b }}$ Jingchuan Lin, ${ }^{\text {a }}$ Dingding Xia, ${ }^{\text {a }}$ Er-Jun Hao, ${ }^{\text {c }}$
Xin Luan, ${ }^{\text {a }}$ Shoubhik Das,*d and Wei-Dong Zhang*a,b,e
${ }^{\text {a }}$ Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
${ }^{\mathrm{b}}$ School of Pharmacy, Second Military Medical University, Shanghai 200433, China
${ }^{\text {c }}$ Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
${ }^{\text {c }}$ Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
${ }^{\mathrm{d}}$ Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences \& Peking Union Medical College, Beijing 100193, China.

* These authors contributed equally to this work
Table of Content

1. Materials and methods 2
2. Setup for photocatalytic reactions 3
3. Optimization of reaction conditions. 4
4. General procedures for synthesizing products and starting material 6
5. Mechanistic investigations 8
6. The Application of the C-N bond formation 14
7. Characterization data for products and synthesized substrates 15
8. References 56
9. NMR spectra of products and synthesized substrates 58

1. Materials and methods

Commercial reagents were used without purification and reactions were run under Ar atmosphere with exclusion of moisture from reagents using standard techniques for manipulating air-sensitive compounds. All reactions, unless noted, were performed in oven-dried glassware with magnetic stirring under an inert atmosphere of dry argon.
${ }^{1} \mathrm{H}$ NMR spectra $(500 \mathrm{MHz} / 300 \mathrm{MHz}),{ }^{13} \mathrm{C}$ NMR spectra $(126 \mathrm{MHz} / 75 \mathrm{MHz})$ and ${ }^{19} \mathrm{~F}$ NMR spectra (282 MHz) were recorded using Bruker Avance 500 spectrometer with $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ or DMSO- d_{6} as solvent. NMR spectra were calibrated using the solvent residual signals $\left(\mathrm{CDCl}_{3}: \delta{ }^{1} \mathrm{H}=7.26, \delta{ }^{13} \mathrm{C}=\right.$ 77.16; $\mathrm{CD}_{3} \mathrm{OD}: \delta{ }^{1} \mathrm{H}=3.34, \delta{ }^{13} \mathrm{C}=49.86$; DMSO- $d_{6}: \delta{ }^{1} \mathrm{H}=2.50, \delta{ }^{13} \mathrm{C}=39.52$). The following abbreviations were used to describe peak splitting patterns when appropriate: $\mathrm{s}=\operatorname{singlet,} \mathrm{d}=\operatorname{doublet}, \mathrm{t}$ $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{m}=$ multiplet.

Thin layer chromatography (TLC) was performed using MilliporeSigma glass TLC plates (silica gel 60 coated with $\mathrm{F}_{254}, 250 \mu \mathrm{~m}$) and spots were visualized using UV light (254 nm). SiliaFlash® P60 silica gel (particle size: $40-63 \mu \mathrm{~m}$, pore size: $60 \AA$) was used for flash column chromatography. A hexane /EtOAc solvent system was used as mobile phase and commercial silica cartridges (12-80 g, Grace ${ }^{\circledR}$) as stationary phase.

High-resolution mass spectra (HRMS) were recorded on an Agilent MSD-Trap-XCT or Q-Tof micro mass spectrometer. High resolution mass spectra (ESI) were recorded on a Thermo Fisher Scientific Q-Exactive-GC.

Ultraviolet-visible absorption experiments were performed using an Agilent Cray 100 spectrophotometer. FT-IR spectra were recorded on NEXUS FT-IR Spectrometer (Nicolet, America) at room temperature. All samples were measured between 4000 and $500 \mathrm{~cm}^{-1}$ with a resolution of $4 \mathrm{~cm}^{-1}$ and accumulated 32 scans.

Kessil lamps were purchased from Tansoole, with precise wavelengths (427 nm).
Amines, 1,5-Diazabicyclo[4.3.0]-5-nonene (DBN) were purchased from Bide Pharm, Tansoole, Fisher, TCI or Energy Chemical and used without further purification. Anhydrous DCM (Water ≤ 50 ppm(by K.F.), 99.9%, SafeDry, with molecular sieves, Safeseal) were purchased from Tansoole. PhF (Purity: 99\%) were purchased from Tansoole.

2. Setup for photochemical reactions

The reaction setup is depicted in Fig. S1. The reaction setup consists of commercially available Kessil lamp which was purchased from Tansoole, with precise wavelengths (427 nm), cooling of the setup was performed by two commercially available fans to keep the temperature around $30^{\circ} \mathrm{C}$. Magnetic stirring was performed at 500 rpm .

Fig. S1 Kessil reaction setup. reaction was performed under room temperature controlled by fans.

3. Optimization of reaction conditions

Screening of reaction conditions

Control experiments

a. Reaction conditions: 1a ($0.2 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{1 b}(1.0 \mathrm{mmol}, 5$ equiv.), DBN ($0.3 \mathrm{mmol}, 1.5$ equiv.), DCM (2.0 mL), room temperature (r.t.), 6 h . b. Yields were determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as the internal standard. $\mathrm{n} . \mathrm{d} .=$ not detected.

Screening of bases

		 1c
Entry	Base	Yield [\%] ${ }^{\text {a }}$
1	TBD	60
2	DBN	77
3	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	20
4	DBU	67
5	$\mathrm{K}_{2} \mathrm{CO}_{3}$	29
6	$\mathrm{K}_{2} \mathrm{PO}_{4}$	29

a. Reaction conditions: $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0$ equiv. $)$, $\mathbf{1 b}$ ($1.0 \mathrm{mmol}, 5.0$ equiv.), $\mathrm{DBN}(0.3 \mathrm{mmol}, 1.5$ equiv.), DCM (2.0 mL), room temperature (r.t.), 6 h . b. Yields were determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as the internal standard.

Screening of solvents

a. Reaction conditions: $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0$ equiv. $)$, $\mathbf{1 b}(1.0 \mathrm{mmol}, 5.0$ equiv.), DBN ($0.3 \mathrm{mmol}, 1.5$ equiv.), DCM (2.0 mL), room temperature (r.t.), 6 h . b. Yields were determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as the internal standard.

Screening the ratio between the reagents

Entry	1a (equiv.)	1b (equiv.)	Base (equiv.)	Yield [\%] $^{\text {a }}$
1	1.0	5.0	1.5	70
2	1.0	5.0	3.0	58
3	1.0	3.0	1.5	60
4	1.0	1.0	3.0	45

a. The yield was determined by ${ }^{1} \mathrm{H}$ NMR using the 1,3,5-trimethoxybenzene as the internal standard.

Condition optimization of 2-Me-THF as solvent

Entry	Base	1b (eq.)	Time(h)	Yield (\%)
1	DBN 1.5 eq.	5	16	44
2	DBN 1.5 eq.	3	16	26
3	DBU 1.5 eq.	5	16	41
4	DBN 1.5 eq.	10	16	63
5	DBN 1.5 eq.	10	10	60
6	DBN 1.5 eq.	10	4	61
7	DBN 3.0 eq.	10	16	34

a. The yield was determined by ${ }^{1} \mathrm{H}$ NMR using the 1,3,5-trimethoxybenzene as the internal standard.

4. General procedures for synthesizing products and starting material

General procedure \mathbf{A} for the synthesis of amines

A dry 5 mL Schlenk tube containing a stirring bar was charged with 0.2 mmol of N -tosylhydrazone (1.0 equiv.), 1.0 mmol of arylamine (5.0 equiv.). After purging the flask for three times under vacuum and three times under argon, it was charged with 0.3 mmol of DBN (1.5 equiv.), $\mathrm{DCM}(2.0 \mathrm{~mL})$, successively. The reaction was kept for 6 h under 40 W Kessil lamp reaction setup (the progress can be monitored via TLC). Then, the resulting mixture underwent an aqueous workup (using distilled water; or brine in case of slurry phase separation) and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Products were purified via Flash chromatography chromatography with ethyl acetate and hexane as solvents.

General procedure B for the synthesis of \boldsymbol{N}-tosylhydrazones

N-tosylhydrazones were prepared according a reported procedure. ${ }^{1}$ To a stirred solution of tosylhydrazide (10 mmol) in $\mathrm{MeOH}(10 \mathrm{~mL})$ at room temperature, ketone (1.0 equiv.) was added dropwise (or portionwise if solid). The reaction was completed within 0.1-3 h. After that, the solvent was removed directly under reduced pressure, and further purified by recrystallization or via silica gel chromatography (hexane:EtOAc, 2:1).

Synthesis method of the \boldsymbol{N}-tosylhydrazone anion 10a'

Sodium ethanol ($75 \mathrm{mg}, 1.1 \mathrm{~mol}$) was added to ethanol (2.0 mL), N-tosylhydrazone ($288 \mathrm{mg}, 1.0 \mathrm{~mol}$) was added, and the mixture was stirred for $2 \mathrm{~h} .{ }^{2}$ The ethanol was removed under reduced pressure at room temperature to obtain a free-flowing white powder, yield: 98%.

Synthesis method of DBN• HCOOH

1 m

Formic acid ($38 \mu \mathrm{l}, 1.0 \mathrm{mmol}$) was added to dichloromethane (2.0 mL) and cooled externally. DBN (121 $\mu l, 1.0 \mathrm{mmol}$) was added. After stirring the mixture for 1 h , the dichloromethane was removed under reduced pressure at room temperature to obtain DBN formate in clear solid form, yield: 99\%.

5. Mechanistic investigations

Ultraviolet-Visible Absorption Experiments

Ultraviolet-visible absorption experiments were performed using an Agilent Cary 100 spectrophotometer In each experiment, different samples were dissolved in DCM and placed in 1.0 cm quartz cuvettes. The concentration of each component was $2 \times 10^{-4} \mathrm{M}$.

Fig. S2 UV-Vis absorption spectra.

Job's Plot Experiments

Keeping the total concentration of N-tosylhydrazone 10a anion and DBN constant, 10a':DBN solutions of $10: 0,9: 1,8: 2,7: 3,6: 4,5: 5,4: 6,3: 7,2: 8,1: 9$ and $0: 10$ were prepared and analysed by UV absorption spectroscopy in turn to obtain Job's plot, the intersection of the two curves being the complex rate of $\mathbf{1 0} \mathbf{a}^{\prime}$ and DBN.

Fig. S3 Job's plots for the binding of 10a' with DBN.

${ }^{1}$ H NMR Titration Experiments

N-tosylhydrazone (1.0 equiv., 2.0 mmol) and sodium ethoxide (1.5 equiv., 3.0 mmol) were added to the round bottom flask, 4 ml water was added, stirred overnight, and the corresponding N-tosylhydrazone

10a anions were obtained by filtration. And then, solutions containing equal molar concentrations of 10a' (0.50 M in DMSO- d_{6}) and DBU (0.50 M in DMSO- d_{6}) were prepared and then mixed to cover acceptor/donor ratio from $0 \%, 10 \%, 20 \%$ to 100% donor. ${ }^{3}$

Fig. S4 Titration of DBN into $\mathbf{1 0 a}^{\prime}$.

Synthesis method of the Aniline- d_{2}

Aniline- d_{2} were prepared according a reported procedure. ${ }^{4}$ Nitrobenzene (2.0 mmol), $\mathrm{B}_{2}(\mathrm{OH})_{4}(0.5$ equiv.), $\mathrm{D}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was taken and stirred at $80^{\circ} \mathrm{C}$ for 8 h . After that, the product was extracted with DCM and spin-dried to a yellow oil, yield: 99%. After ${ }^{1} \mathrm{H}$ NMR analysis we observed the proton to deuterium ratio is (H:D) - 1:5.

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}

labelling experiments

\boldsymbol{N}-(1-(benzofuran-2-yl)ethyl-1- \boldsymbol{d}) aniline- $\left.\boldsymbol{d} \mathbf{(2 5 c} \mathbf{c}^{\prime}\right)$: Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a white solid (yield: 64\%). After ${ }^{1} \mathrm{H}$ NMR analysis we observed the proton to deuterium ratio is (H:D) - 29:71/50:50.
$H: D=29: 71$

$H: D=50: 50$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}

Carbene trapping experiments

A dry 5 mL Schlenk tube containing a stirring bar was charged with 0.2 mmol of N -tosylhydrazone 20a (1.0 equiv.). After purging the flask for three times under vacuum and three times under argon, it was charged with 0.3 mmol of DBN (1.5 equiv.), $\mathrm{DCM}(2.0 \mathrm{~mL})$, successively. The reaction was kept for 6 h under 40 W Kessil lamp reaction setup (the progress can be monitored via TLC). Then, the resulting mixture underwent an aqueous workup (using distilled water; or brine in case of slurry phase separation) and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. product was purified by column chromatography (hexane:EtOAc, 45:1) to give the title compound as a black red oily liquid (yield: 73\%).

From the crude ${ }^{1} \mathrm{H}$ NMR only the diazo compound (20ab) was observed.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H})$.
$\stackrel{\infty}{\stackrel{\infty}{1}}$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

A dry 5 mL Schlenk tube containing a stirring bar was charged with 0.2 mmol of N －tosylhydrazone 10a （1．0 equiv．）， 1.0 mmol of arylamine $\mathbf{1 b}$（ 5.0 equiv．）， 2.0 mmol styrene（ 10 equiv．）．After purging the flask for three times under vacuum and three times under argon，it was charged with 0.3 mmol of $\mathrm{DBN}(1.5$ equiv．），DCM（ 2.0 mL ），successively．The reaction was kept for 6 h under 40 W Kessil lamp reaction setup（the progress can be monitored via TLC）．Then，the resulting mixture underwent an aqueous workup（using distilled water；or brine in case of slurry phase separation）and was extracted three times with ethyl acetate．The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ，filtered and concentrated in vacuo．Product was purified by column chromatography（hexane：EtOAc，3：1）to give the title compound as a pale yellow oily liquid（yield：66\％）．

From the crude ${ }^{1} \mathrm{H}$ NMR only the formation of the $\mathrm{N}-\mathrm{H}$ insertion product（10c）was observed．

> 莫
> 「ご

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

6. The Application of the C-N bond formation

Fig. S5 Photochemical reaction setup using 427 nm Kessil Lamps.

Synthesis of 12c in gram scale:

Following the general procedure A, the reaction with 12a ($3.0 \mathrm{~g}, 8.0 \mathrm{mmol}$), 1b ($5.1 \mathrm{~g}, 40 \mathrm{mmol}$), DBN ($2.2 \mathrm{~mL}, 1.5$ equiv.), DCM (60 mL) under Ar for 32 h at r.t. afforded $\mathbf{1 2 c}$ as yellow oil ($2.1 \mathrm{~g}, 81 \%$ yield).

7. Characterization data for products and synthesized substrates

Characterization data for synthesized aminate

N-(1-(benzofuran-2-yl)ethyl)-2-chloropyridin-4-amine (1c): Prepared according to the general procedure A. Following the workup, the product was purified by column chromatography (hexane:EtOAc, 3:1) to give the title compound as a white solid (yield: 77\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3430,3243,2980,1593,1508,1474,1453,1346,1265,1253,1164,983,809,734,702$, 614.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=$ $5.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-4.23(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,157.0,155.6,153.6,151.6,129.5,125.7,124.8,122.5,112.6$, 109.6, 108.3, 104.1, 48.3, 22.3.

ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 273.0789$, found: 273.0793.

2-chloro- N-(1-(7-methoxybenzofuran-2-yl)ethyl)pyridin-4-amine (2c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 3:1) to give the title compound as a white solid (yield: 70\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3433,3130,2984,1590,1515,1471,1450,1439,1363,1264,1249,1159,1072,981$, 819, 747, 702, 614.
${ }^{1} H$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57-6.47(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{p}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,155.6,153.6,150.8,146.6,145.5,131.1,125.1,114.8,109.1$, 108.3, 107.88, 104.5, 57.4, 48.3, 22.1.

ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 303.0895$, found: 303.0878.

N-(1-(benzo[b]thiophen-2-yl)ethyl)-2-chloropyridin-4-amine (3c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 1:1) to give the title compound as a yellow oily liquid (yield: 61%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3411,3227,3030,2987,2943,1688,1599,1514,1434,1342,1285,1199,1118,1012$, 973, 751, 699.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=5.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.83(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.7,153.5,150.7$, 149.6, 141.0, 140.5, 125.9, 125.8, 124.9, 123.9, 121.7, 109.1, 108.5, 50.7, 25.4.

ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 289.0561$, found: 289.0574 .

tert-butyl-3-(1-((2-chloropyridin-4-yl)amino)ethyl)-1H-indole-1-carboxylate (4c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, $4: 3$) to give the title compound as a white solid (yield: 56%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3377,3054,3021,2975,2931,1705,1598,1560,1503,1457,1388,1317,1284,1223$, 1157, 1080, 1054, 979, 882, 746, 721, 655, 608.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=5.8$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dt}, J=15.3,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,153.6,150.8,137.3,129.9,126.3,124.3,124.2,123.9,123.6$, 120.5, 117.0, 109.0, 108.0, 85.6, 46.8, 29.6, 22.7.

ESI HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 372.1473$, found: 372.1468.

2-chloro- N-(1-(thiophen-2-yl)ethyl)pyridin-4-amine (5c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 2:1) to give the title compound as a brown solid (yield: 39\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3392,3112,3095,3067,1683,1601,1529,1418,1359,1247,1203,1107,1079,1046$, 1007, 983, 824, 791, 652.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.91(\mathrm{~m}$, $2 \mathrm{H}), 6.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dt}, J=12.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,153.6,150.8,148.8,128.4,125.8,125.2,109.1,108.3,50.0,25.5$. ESI HRMS: calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 239.0404, found: 239.0395 .

2-chloro- N-(2-(4-chlorophenyl)-1-(thiophen-2-yl)ethyl)pyridin-4-amine (6c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 2:1) to give the title compound as a yellow oily liquid (yield: 50%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3543,3025,2988,1689,1657,1591,1489,1452,1418,1342,1286,1249,1091,1056$, 824, 753, 694, 513.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{dd}$, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.18 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.6,153.4,150.6,146.4,136.1,134.6,132.0,130.3,128.5,126.2$, 126.2, 109.2, 108.6, 55.7, 45.1.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 349.0328$, found: 349.0333.

2-chloro- N-(4,5,6,7-tetrahydrobenzo[b]thiophen-4-yl)pyridin-4-amine (7c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 2:1) to give the title compound as a white solid (yield: 63\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3248,3116,3065,2988,2935,1592,1449,1409,1353,1240,1185,1161,1099,1012$, 978, 946, 753, 690.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.58(\mathrm{~m}$, $1 \mathrm{H}), 2.90-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dt}, J=16.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{td}, J=10.6,10.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-$ 1.84 (m, 3H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.7,153.8,150.8,140.7,136.3,128.0,124.5,108.8,107.6,49.3,30.0$, 26.2, 21.8.

ESI HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 265.0561$, found: 265.0562 .

2-chloro- N-(1-(2-methylimidazo[1,2-a]pyridin-3-yl)ethyl)pyridin-4-amine (8c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 3:1) to give the title compound as a white solid (yield: 55\%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.39(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 156.7$, 152.4, 149.6, 145.6, 140.3, 126.0, 125.4, 120.9, 117.1, 113.8, 108.3, 107.2, 45.2, 19.3, 13.7.

ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]^{+}:$287.1058, found: 287.1063.

tert-butyl-4-((2-chloropyridin-4-yl)amino)-4,5,6,7-tetrahydro-1H-indole-1-carboxylate
Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, $3: 1$) to give the title compound as a white solid (yield: 56%).

FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3246,3004,2939,2916,1733,1591,1498,1455,1429,1369,1334,1242,1142,1128$, 1071, 1015, 850, 823, 730, 616.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.39(\mathrm{dd}, J=5.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (d, $J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,153.8,150.8,150.7,133.1,123.4,121.8,110.9,108.8,107.6,85.2$, 48.1, 29.8, 29.5, 25.8, 21.1.

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 348.1473$, found: 348.1582.

2-chloro- N-(1-(p-tolyl)ethyl)pyridin-4-amine (10c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 3:1) to give the title compound as a pale yellow oily liquid (yield: 66\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3405,3117,3068,2984,2887,1599,1567,1429,1334,1308,1281,1243,1109,1001$, 982, 827, 754, 693.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=15.8,14.9,6.6 \mathrm{~Hz}, 5 \mathrm{H}), 6.40(\mathrm{~d}, J$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{p}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{dd}$, $J=7.0,1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,151.9,149.1,143.1,129.0,127.5,125.7,107.8,106.9,52.8,24.3$.
ESI HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 233.0840$, found: 233.0839.

N-(1-(3-(1H-pyrrol-1-yl)phenyl)ethyl)-2-chloropyridin-4-amine (11c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, $3: 1$) to give the title compound as pale yellow oily liquid (yield: 61%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3242,3124,2975,1595,1508,1456,1405,1376,1343,1209,1057,981,817,730,657$. ${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{p}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.7,153.5,150.7,144.1,138.0,131.9,130.0,128.6,128.4,123.5$, 122.9, 119.7, 109.2, 108.4, 53.7, 25.9.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 298.1106$, found:298.1009.

2-chloro- N-(1-(4-phenoxyphenyl)ethyl)pyridin-4-amine (12c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 2:1) to give the title compound as a white solid (yield: 90%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3416,3114,3045,2967,1591,1504,1487,1454,1406,1375,1267,1233,1125,1074$, 823, 735, 691.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=20.3,8.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.37(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=5.8,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.42(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4,158.1,156.0,153.4,150.6,139.2,131.3,128.5,124.9,120.7$, 120.5, 120.3, 109.2, 108.4, 53.7, 25.8.

ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 325.1102$, found: 325.1113.

2-chloro- N-(1-(4-cyclohexylphenyl)ethyl)pyridin-4-amine (13c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, $2: 1$) to give the title compound as a white solid (yield: 80%).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right) \delta 7.75(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $5 \mathrm{H}), 1.45-1.17$ (m, 8H).
${ }^{13}$ C NMR (75 MHz, DMSO- d_{6}) $\delta 155.6,151.3,149.3,146.6,142.1,127.3,126.2,51.4,43.9,34.4,34.4$, 26.8, 26.1, 24.3.

ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 315.1623$, found: 315.1648.

2-chloro- N-(1-(3,4-dichlorophenyl)ethyl)pyridin-4-amine (14c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 3:1) to give the title compound as a white solid (yield: 39%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3128,3074,2972,2893,2778,1593,1500,1485,1439,1404,1319,1128,1105,1074$, 908, 810, 729, 642.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.36(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{p}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,153.4,150.7,144.9,134.6,133.0,132.5,129.0,126.5,109.2$, 108.5, 53.5, 25.8.

ESI HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 301.0061$, found: 301.0046.

N-(1-(benzo[d][1,3]dioxol-5-yl)ethyl)-2-chloropyridin-4-amine (15c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 2:1) to give the title compound as a pale yellow oily liquid (yield: 75\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3128,3074,2972,2833,1593,1500,1485,1438,1401,1375,1346,1319,1265,1192$, 1155, 810, 729, 702.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 3 \mathrm{H}), 6.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}$, $J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.9,153.3,151.3,149.6,148.5,138.6,120.3,110.0,109.0,108.4$, 107.3, 102.6, 53.2, 26.0.

ESI HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 277.0738$, found: 277.0741.

2-chloro- N-(1-(naphthalen-2-yl)ethyl)pyridin-4-amine (16c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 2:1) to give the title compound as a white solid (yield: 87%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3402,3026,2951,2874,1605,1540,1454,1328,1253,1215,1177,1075,1027,910$, 872, 745, 696.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=8.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{p}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0,153.4,150.7,141.9,134.9,134.3,130.4,129.3,129.2,127.9$, 127.4, 125.6, 125.33, 109.2, 108.5, 54.4, 25.8.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$283.0997, found: 283.1001.

2-chloro- N-(cyclopentyl(4-fluorophenyl)methyl)pyridin-4-amine (17c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 3:1) to give the title compound as a yellow solid (yield: 36%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3352,3117,3052,2999,2934,2865,1603,1520,1462,1411,1370,1178,1122,1091$, 1014, 992, 838, 751, 697.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=8.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~h}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5,156.5,149.6,143.0,130.1,129.0,128.2,109.1,108.5,64.0,48.6$, 31.5, 26.6

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 287.1310$, found: 287.1310 .

2-chloro- N -(2,3-dihydro-1H-inden-1-yl)pyridin-4-amine (18c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 3:1) to give the title compound as a pale yellow solid (yield: 50\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3246,3118,3020,2924,1593,1513,1475,1454,1411,1349,1327,1274,1238,1154$, 1130, 1073, 976, 826, 747.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.57$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=5.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.05 (ddd, $J=16.1,8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=15.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.85$ ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4,153.5,150.5,145.0,144.0,130.0,128.4,126.6,125.5,108.9$, 107.9, 59.2, 34.8, 31.7.

ESI HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 245.0840$, found: 245.0833.

2-chloro- N-(1,2,3,4-tetrahydronaphthalen-1-yl)pyridin-4-amine (19c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 3:1) to give the title compound as a yellow solid (yield: 39\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3211,3114,3064,2934,2864,1590,1510,1493,1448,1352,1268,1073,984,745$, 637, 555.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.40(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 2.95-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{dd}, J=8.6,4.1 \mathrm{~Hz}$, 2H), $1.90-1.79$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.8,153.8,150.8,139.1,137.5,130.82,130.4,129.2,127.8,108.7$, 107.5, 51.9, 30.5, 30.0, 20.8.

ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 259.0997$, found: 259.1009.

2-chloro- N-(chroman-4-yl)pyridin-4-amine (20c): Prepared according to the general procedure A. ollowing workup, the product was purified by column chromatography (hexane: EtOAc, 3:1) to give the title compound as a pale yellow oily liquid (yield: 56\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3233,2961,1590,1567,1501,1452,1405,1314,1268,1223,1105,1073,907,820$, 754, 702.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.04$ ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5,155.2,153.8,150.9,131.3,131.2,122.77,122.4,118.9,108.8$, 107.6, 63.9, 47.7, 29.1.

ESI HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 261.0789$, found: 261.0786.

N-benzhydryl-2-chloropyridin-4-amine (21c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 3:1) to give the title compound as a white solid (yield: 60\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3469,3291,3026,2852,1597,1564,1498,1450,1398,1327,1300,1278,1256,1227$, 1177, 1130, 1095, 1028, 980, 941, 906, 822, 759, 697.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 10 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J$ $=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,153.5,150.8,142.3,130.6,129.4,128.7,109.3,108.7,63.3$.
ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 295.0997$, found: 295.0972.

2-chloro- N-(4-methoxybenzyl)pyridin-4-amine (22c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 2:1) to give the title compound as a pale yellow oily liquid (yield: 51%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3379,3126,3028,2958,2928,1597,1499,1453,1323,1301,1249,1173,1130,1073$, 1025, 923, 849, 713.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.48(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.81$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.7,156.7,153.66,150.6,130.6,130.2,115.8,108.8,107.1,56.8,47.9$. ESI HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 249.0789$, found: 249.0775 .

2-chloro- N-(4-chlorobenzyl)pyridin-4-amine (23c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 2:1) to give the title compound as a white solid (yield: 40%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3259,3117,3021,2964,2866,1597,1518,1445,1360,1329,1253,1131,1074,980$, 846, 817, 709.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 2 \mathrm{H})$, $6.48(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.2,152.1,149.2,135.7,133.6,129.1,128.5,107.4,106.5,46.3$.
ESI HRMS: calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: ~ 253.0294$, found: 253.0309.

N-(4-(tert-butyl)benzyl)-2-chloropyridin-4-amine (24c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 2:1) to give the title compound as a pale yellow oily liquid (yield: 67%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3248,3119,3072,3012,2917,2871,1596,1488,1405,1331,1300,1259,1113,1090$, 980, 823, 792, 659.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.32$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,153.6,152.4,150.7,135.6,128.7,127.3,108.8,107.7,48.1,36.0$, 32.8.

ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 275.1310$, found: 275.1326 .

\boldsymbol{N}-(1-(benzofuran-2-yl)ethyl)aniline (25c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 67\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3408,3052,2975,2928,1602,1564,1504,1453,1374,1315,1251,1010,805,743$, 690.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{dd}, J=13.9,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}$, $3 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}$, $1 \mathrm{H}), 1.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,154.8,146.8,129.3,128.5,123.7,122.7,120.8,118.1,113.6$, 111.1, 102.2, 47.9, 21.1.

ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 238.1226$, found: 238.1239 .

N-(1-(benzofuran-2-yl)ethyl)-4-methylaniline (26c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 3:1) to give the title compound as a pale yellow oily liquid (yield: 60%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3408,3019,2975,2922,2867,1617,1518,1453,1317,1298,1251,1183,1129,1010$, 923, 806, 749, 703.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{dd}, J=14.5,9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.8,156.2,145.9,131.2,129.9,128.7,125.1,124.0,122.2,115.2$, 112.5, 103.5, 49.6, 22.6, 21.8.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 252.1383$, found: 252.1375.

N-(1-(benzofuran-2-yl)ethyl)-4-fluoroaniline (27c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 3:1) to give the title compound as a pale yellow oily liquid (yield: 57%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3399,3252,3160,3110,3023,3003,2981,2930,2874,1602,1539,1453,1373,1250$, 1209, 1157, 1093, 1014, 823, 750, 699.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{dd}, J=19.1,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=8.7 \mathrm{~Hz}$, 2H), 6.60 (dd, $J=9.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4,157.5(\mathrm{~d}, J=235.7 \mathrm{~Hz}), 156.2,144.6(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 129.8,125.2$, $124.7(\mathrm{~d}, J=135.9 \mathrm{~Hz}), 122.3,117.1(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 112.5,103.6,49.9,22.6$.
${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-127.26$.
ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FNO}[\mathrm{M}+\mathrm{Na}]^{+}: 278.0952$, found: 278.0948 .

(2-butyl-2-(3,4-dichlorophenyl)cyclopropane-1,1-diyl)dibenzene (28c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 1:2) to give the title compound as a yellow solid (yield: 42%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3394,3163,3019,2996,2975,1645,1609,1518,1453,1426,1348,1313,1260,1243$, 1159, 1126, 1099, 1011, 945, 815, 757, 687.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 2 \mathrm{H})$, $7.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H})$, $3.98(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,164.0,161.0,157.5,129.7,128.1,125.3,123.7,121.8,115.5$, 112.5, 103.9, 70.0, 64.8, 51.6, 48.7, 23.1.

ESI HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 337.1547$, found: 337.1553.

N-(1-(benzofuran-2-yl)ethyl)-[1,1'-biphenyl]-2-amine (29c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 6:1) to give the title compound as a pale yellow solid (yield: 51%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3405,3239,3126,2980,1591,1554,1507,1453,1377,1336,1250,1163,1075,750$, 740, 705.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 5 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2,154.9,143.7,139.4,130.5,129.5,129.1,128.7,128.5,128.1$, 127.4, 123.7, 122.7, 120.9, 117.8, 111.9, 111.1, 102.1, 48.1, 21.2.

ESI HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 314.1539$, found: 314.1551.

\boldsymbol{N}-(1-(benzofuran-2-yl)ethyl)-2,3-dihydro-1H-inden-5-amine (30c): Prepared according to the procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 4:1) to give the title compound as a pale yellow oily liquid (yield: 56\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3406,2933,2842,1614,1584,1497,1454,1373,1332,1298,1250,1163,882,803$, 750, 740, 698.
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{dd}, J=13.9,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dt}, J=25.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H})$, $2.78(\mathrm{q}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.00(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.0,156.3,147.0,146.9,135.2,130.0,126.2,125.1,124.1,122.3$, 113.4, 112.5, 111.2, 103.5, 49.7, 34.6, 33.4, 27.1, 22.7.

ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+}: 300.1359$, found: 300.1347 .

\boldsymbol{N}-(1-(benzofuran-2-yl)ethyl)quinolin-8-amine (31c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 3:1) to give the title compound as a brown solid (yield: 69\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3401,3005,2991,2873,1597,1523,1465,1378,1324,1268,1220,1184,1107,1029$, 979, 862, 750, 662.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.6,3.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.6,156.3,148.4,144.7,139.5,137.7,130.1,130.0,129.1,125.0$, $124.0,122.9,122.2,116.1,112.6,107.5,103.4,49.0,22.6$.

ESI HRMS: calcd. For $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 289.1335$, found: 289.1348 .

N-(1-(benzofuran-2-yl)ethyl)quinoxalin-6-amine (32c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (EtOAc) to give the title compound as a brown oily liquid (yield: 49%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3386,3181,3105,2968,2899,1592,1503,1486,1406,1345,1325,1289,1215,1157$, 1008, 981, 750, 624.
${ }^{1} H$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}$, $1 \mathrm{H}), 4.76(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J=6.8,1.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7,154.9,154.3,152.2,149.3,128.0,124.3,123.0,121.1,111.2$, 107.7, 106.9, 102.7, 46.9, 20.4.

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 367.1674$, found: 367.1658.

N-(1-(benzofuran-2-yl)ethyl)pyridin-4-amine (33c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (EtOAc) to give the title compound as a yellow solid (yield: 34%).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}$ $1 \mathrm{H}), 5.23-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,157.6,154.8,148.1,137.6,128.4,123.8,122.7,120.8,113.6$, 111.1, 107.5, 102.0, 45.9, 20.7.

ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 261.0998$, found: 261.1009.

N-(1-(benzofuran-2-yl)ethyl)pyridin-3-amine (34c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (EtOAc) to give the title compound as a pale yellow solid (yield: 72\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3232,3159,3102,3041,2987,2941,1584,1535,1482,1449,1419,1376,1257,1246$, 1008, 810, 746, 729, 709.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.3$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4,156.2,144.2,140.8,138.1,129.6,125.4,125.1,124.2,122.3$, 120.7, 112.5, 103.9, 48.9, 22.4.

ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 239.1179$, found: 239.1167.

tert-butyl-4-(6-((1-(benzofuran-2-yl)ethyl)amino)pyridin-3-yl)piperazine-1-carboxylate
(35c):
Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 1:2) to give the title compound as a white solid (yield: 42%).

FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3223,2974,2864,2833,1654,1618,1473,1454,1398,1261,1238,1165,1153,1115$, 912, 818, 806, 774, 748, 711, 638, 607.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.93(\mathrm{t}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5,156.2,156.1,154.5,141.5,139.1,130.9,129.8,125.1,124.1$, $122.2,112.5,109.3,103.4,56.5,52.5,47.8,29.9,22.2$.
ESI HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 445.2210$, found: 445.2196 .

N-(1-(benzofuran-2-yl)ethyl)-1,2,3,4-tetrahydroacridin-9-amine (36c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:hexane, 2:1) to give the title compound as a pale yellow oily liquid (yield: 37%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3416,3156,3091,3018,2897,1956,1860,1809,1744,1623,1592,1503,1486,1406$, 1325, 1289, 1165, 1107, 924, 806, 709, 511.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{dd}, J=20.1,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{ddd}, J=8.3,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ $-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{ddd}, J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.45(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dq}, J=6.3,2.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.8,160.3,156.2,150.5,148.7,130.2,130.0,129.5,125.9,125.6$, $124.3,123.9,122.7,122.4,120.3,112.5,103.8,54.0,35.4,26.1,24.3,24.1,22.6$.
ESI HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 343.1805$, found: 343.1816.

N-(1-(benzofuran-2-yl)ethyl)pyrimidin-4-amine (37c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (EtOAc) to give the title compound as a pale yellow oily liquid (yield: 44\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3243,2955,2924,2871,1594,1500,1454,1377,1298,1253,926,808,751,740,705$. ${ }^{1} H$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.70(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6,160.0,159.5,156.8,156.2,129.5,125.6,124.3,122.4,112.6$, 106.0, 103.9, 46.5, 21.5.

ESI HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 240.1131$, found: 240.1144 .

N-(1-(benzofuran-2-yl)ethyl)-4-chloro- N-methylaniline (38c): Prepared according to the general A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 6:1) to give the title compound as a pale yellow solid (yield: 51%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3114,2983,2923,2827,1591,1495,1474,1455,1431,1377,1257,1212,938,825$, 810, 748.
${ }^{1} H$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.21-5.07(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 1.58$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3,154.9,148.3,129.0,128.2,124.1,122.8,122.3,120.8,115.0,111.3$, 103.8, 52.9, 32.1, 15.2.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClNO}[\mathrm{M}+\mathrm{Na}]^{+}: 308.0813$, found: 308.0834.

4-(1-(benzofuran-2-yl)ethyl)-3,4-dihydro-2H-benzo[b][1,4]oxazine (39c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 6:1) to give the title compound as a white solid (yield: 71\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3373,3110,3061,2978,2886,2842,1602,1500,1452,1369,1334,1307,1253,1211$, 1187, 1075, 1022, 931, 812, 760, 744.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{p}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.97-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.75-6.53(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.41-3.22(\mathrm{~m}$, $1 \mathrm{H}), 3.11$ (dd, $J=8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.6,154.9,144.5,134.3,128.1,124.2,122.8,121.6,120.8,118.0,116.8$, $112.5,111.3,104.4,64.8,50.3,40.8,14.4$.

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 318.1175$, found: 318.1169.

1-(1-(benzofuran-2-yl)ethyl)-1,2,3,4-tetrahydroquinoline (40c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, $5: 1)$ to give the title compound as a red solid (yield: 57%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3218,3165,3047,3001,2983,1905,1745,1611,1493,1435,1385,1329,1218,1129$, 1043, 985, 841, 746, 667.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.49(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.15$ $(\mathrm{m}, 1 \mathrm{H}), 3.07(\mathrm{dt}, J=11.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,154.9,145.0,129.4,128.3,127.2,123.9,123.5,122.7,120.7$, 116.26, 111.2, 111.0, 103.8, 50.7, 42.6, 28.4, 22.3, 15.0.

ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 278.1539$, found: 278.1552 .

(1-(3,4-dimethylphenyl)-2-methylcyclopropane-1,2-diyl)dibenzene (41c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 62%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 4 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.95-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.16(\mathrm{~m}, 2 \mathrm{H})$, $5.08(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8,154.9,148.7$, 136.2, 129.1, 128.3, 123.9, 122.7, 120.7, 117.4 , 115.8, 113.9, 111.2, 103.7, 51.9, 49.1, 16.7.

ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 278.1539$, found: 278.1505.

N-(1-(benzofuran-2-yl)ethyl)cyclohexanamine (42c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 52%).

FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3415,3118,3064,2927,2852,1598,1453,1369,1297,1253,1165,1126,1100,978$, 847, 750, 691.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=14.0,7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=26.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-0.97(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1,154.67,128.5,123.5,122.6,120.7,111.1,102.1,54.0,48.5,34.2$, 33.0, 26.1, 25.1, 24.9, 21.4.

ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 244.1696$, found: 244.1694.

1-(benzofuran-2-yl)- N-benzylethan-1-amine (43c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 54\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3405,3118,3059,2954,2913,1935,1841,1597,1503,1425,1376,1284,1241,1152$, 1009, 982, 864, 753, 687.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-$ $7.18(\mathrm{~m}, 3 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.52(\mathrm{dd}, J=6.8,0.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,154.8,140.1,128.5,128.4,128.2,127.0,123.7,122.6,120.7$, 111.2, 102.6, 51.3, 51.0, 20.7.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 252.1383$, found: 252.1399.

1-(benzofuran-2-yl)- N-phenethylethan-1-amine (44c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 63\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3416,3156,3091,3018,2897,1956,1860,1809,1744,1623,1592,1503,1486,1406$, 1325, 1289, 1165, 1107, 924, 806, 709, 511.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{q}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.77(\mathrm{~m}, 4 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}), 1.49$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.7,156.1,141.2,130.1,129.9,129.8,127.7,125.1,124.0,122.1$, 112.6, 103.9, 53.2, 49.9, 37.7, 21.8.

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 266.1539$, found: 266.1551 .

1-(1-(benzofuran-2-yl)ethyl)-1H-imidazole (45c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 51%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}$, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,154.9,136.1,129.5,127.6,124.8,123.1,121.2,117.5,111.4$, 103.8, 50.9, 20.0.

ESI HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 213.1022$, found: 213.1031.

1-(1-(benzofuran-2-yl)ethyl)-1H-benzo[d]imidazole (46c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 54\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3112,3067,2980,2936,2908,1945,1781,1613,1491,1454,1363,1325,1254,1172$, 1105, 1043, 1006, 978, 861, 749, 627.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4,156.0,144.1,143.2,134.4,129.0,126.4,125.0,124.7,124.5$, 122.8, 121.6, 112.9, 112.0, 106.0, 51.3, 20.4.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 263.1197$, found: 263.1184.

1-(1-(benzofuran-2-yl)ethyl)-1H-pyrrole (47c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 45%).

FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3113,3101,2986,2969,1596,1512,1485,1386,1321,1267,1190,1163,1132,1019$, 1001, 976, 908, 862, 738, 642, 565.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{ddd}, J=7.6,1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dq}, J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ $-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{qd}, J=$ $7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,156.3,129.4,125.8,124.3,122.5,120.8,112.8,109.8,104.5,54.2$, 21.5.

ESI HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 212.1070, found: 212.1077.

1-(1-(benzofuran-2-yl)ethyl)- $\mathbf{1 H}$-indole (48c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 38%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{ddd}, J=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 159.4,156.1,137.4,130.1,129.6,127.8,126.3,124.9,123.2,123.1$, $122.4,121.2,113.0,112.0,105.4,103.5,50.4,20.5$.

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 262.1226$, found: 262.1204 .

1-(1-(benzofuran-2-yl)ethyl)-1H-1,2,3-triazole (49c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 55\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3115,3056,2991,2941,1603,1586,1502,1453,1380,1301,1200,1175,1139,1108$, 1092, 1007, 988, 935, 815, 751, 680.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=$ $8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4,155.5,153.2,143.6,129.0,126.5,124.7,122.9,112.9,106.3,55.2$, 20.4.

ESI HRMS: calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 214.0975$, found: 214.0968.

1-(1-(benzofuran-2-yl)ethyl)pyrrolidine (50c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 50%).
FT-IR: $v(\mathrm{~cm}-1): 3125,3084,3001,2986,1598,1523,1451,1352,1306,1265,1186,1129,1083,1067$, 952, 924, 830, 753, 695.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78-2.65$ (m, 2H), 2.56 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (s, 4H), 1.57 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,154.7,128.3,123.7,122.6,120.7,111.3,102.9,57.4,51.77,23.4$, 19.2.

ESI HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 216.1383$, found: 216.1399.

1-(1-(benzofuran-2-yl)ethyl)piperidine (51c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 42\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3229,3171,3102,3052,2893,1594,1525,1500,1472,1419,1376,1360,1257,1168$, 1108, 971, 865, 810, 741, 641, 613, 596.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.49(\mathrm{dtd}, J=21.8,11.0,5.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.68-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{p}, J$ $=6.1 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.6,128.2,123.6,122.5,120.6,111.3,103.9,58.4,50.8,26.2,24.5$, 15.8.

ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 230.1539$, found: 230.1521 .

4-(1-(benzofuran-2-yl)ethyl)morpholine (52c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 45%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3165,3112,3091,2998,2905,1568,1541,1496,1427,1410,1354,1339,1262,1189$, 1098, 969, 874, 806, 735, 649, 636, 571.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{dd}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26$ $(\mathrm{m}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H})$, $2.58(\mathrm{q}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.53(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,156.2,129.5,125.3,124.1,122.1,112.7,105.6,68.6,59.7,51.7$, 17.2.

ESI HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 232.1332$, found: 232.1329.

tert-butyl 4-(1-(benzofuran-2-yl)ethyl)piperazine-1-carboxylate (53c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 5:1) to give the title compound as a pale yellow oily liquid (yield: 52%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3363,3110,3058,2976,2933,2860,2818,1695,1580,1453,1364,1301,1248,1174$, 1128, 1005, 952, 863, 759, 663.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.55$ $(\mathrm{s}, 1 \mathrm{H}), 3.89(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.49(\mathrm{~s}, 4 \mathrm{H}), 1.53(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, 9H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1,154.7,154.6,128.1,123.9,122.7,120.7,111.3,104.1,57.9,49.5$, 28.4, 15.7.

ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 331.2016, found: 331.2001.

ethyl 3-phenyl-3-(phenylamino)propanoate (54c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 10:1) to give the title compound as a white solid (yield: 50%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.10(\mathrm{dd}, J=8.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.89-4.77(\mathrm{~m}, 1 \mathrm{H})$, $4.57(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=7.1,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,148.2,143.6,130.6,130.2,128.9,127.7,119.2,115.1,62.2,56.4$, 44.4, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 270.1489 , found: 270.1472 .

ethyl 3-((4-fluorophenyl)amino)-3-phenylpropanoate (55c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, $10: 1$) to give the title compound as a white solid (yield: 59%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.49$ (dd, $J=9.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=7.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{qd}, J=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.85$ $-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.6,157.4(\mathrm{~d}, J=235.6 \mathrm{~Hz}), 144.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 143.5,129.6(\mathrm{~d}, J$ $=160.5 \mathrm{~Hz}) ., 129.0,127.7,117.0(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 62.3,57.1,44.4,15.6$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-127.55$.
ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 288.1394$, found: 288.1379.

ethyl 3-((4-cyanophenyl)amino)-3-phenylpropanoate (56c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 7:1) to give the title compound as a yellow solid (yield: 51%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.27(\mathrm{~m}, 7 \mathrm{H}), 6.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{dd}, J=12.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{dd}, J=15.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.75$ $(\mathrm{m}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,151.4,142.1,135.1,130.5,129.4,127.5,121.7,114.6,101.0,62.5$, 55.8, 43.9, 15.5.

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 295.1441$, found: 295.1455 .

ethyl 3-((4-methoxyphenyl)amino)-3-phenylpropanoate (57c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 10:1) to give the title compound as a white solid (yield: 35%).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{qd}, J=7.2,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,153.7,143.9,142.4,130.2,128.8,127.8,116.6,116.2,62.2,57.4$, 57.1, 44.4, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 300.1594$, found: 300.1608 .

ethyl 3-phenyl-3-(p-tolylamino)propanoate (58c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 10:1) to give the title compound as a white solid (yield: 59\%).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.82-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 4.17-4.02(\mathrm{~m}, 2 \mathrm{H})$, $2.78(\mathrm{dd}, J=6.7,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,156.1,145.6,143.7,143.3,141,4,131.1,130.2,128.8,128.4$, 127.7, 115.3, 62.2, 56.7, 44.4, 21.8, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 284.1645$, found: 284.1659.

ethyl 3-((4-(3-oxomorpholino)phenyl)amino)-3-phenylpropanoate (59c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a white solid (yield: 51\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3379,3059,2986,2936,2870,1714,1646,1611,1521,1493,1480,1373,1344$, 1289,1274, 1258, 1225, 1123, 1098, 1016, 923, 864, 820, 761, 723, 700.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.92-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 4.19-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{t}$, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{td}, J=4.8,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,168.3,147.4,143.3,132.8,130.3,129.0,128.0,127.7,115.4,70.0$, 65.6, 62.3, 56.5, 51.6, 44.3, 15.6, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 369.1809, found: 369.1822 .

ethyl 3-((3,5-dimethylphenyl)amino)-3-phenylpropanoate (60c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, $10: 1$) to give the title compound as a white solid (yield: 63%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H})$, $6.33(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{qd}, J=7.1,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,148.4,143.9,140.2,130.2,128.8,127.7,121.3,113.0,62.2,56.3$, 44.3, 22.9, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 298.1802 , found: 298.1808.

ethyl 3-((3-fluoro-4-methylphenyl)amino)-3-phenylpropanoate (61c): Prepared according to the general procedure A e. Following workup, the product was purified by column chromatography (hexane:EtOAc, 10:1) to give the title compound as a white solid (yield: 61%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{qd}, J=7.1$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,163.4(\mathrm{~d}, J=242.1 \mathrm{~Hz}), 147.9(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 143.3,133.0(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}), 130.3,129.0,127.6,114.7(\mathrm{~d}, J=17.7 \mathrm{~Hz}), 110.8(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 102.1(\mathrm{~d}, J=26.3 \mathrm{~Hz})$, $62.3,56.6,44.2,15.3(\mathrm{~d}, J=67.2 \mathrm{~Hz})$.
${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.80$.
ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 302.1551$, found: 302.1569.

ethyl 3-((2,3-dihydro-1H-inden-5-yl)amino)-3-phenylpropanoate (62c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 10:1) to give the title compound as a white solid (yield: 60\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3384,3007,2919,2846,1708,1612,1585,1509,1492,1460,1376,1355,1297,1280$, 1226, 1188, 1171, 1098, 1015, 807, 757, 722, 701.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.72(\mathrm{~m}, 6 \mathrm{H}), 2.01(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C ~ N M}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,147.0,146.8,144.0,134.9,130.2,128.8,127.7,126.1,113.4,111.4$, 62.2, 56.9, 44.4, 34.6, 33.4, 27.1, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 310.1802$, found: 310.1791.

ethyl 3-(naphthalen-1-ylamino)-3-phenylpropanoate (63c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, $10: 1$) to give the title compound as a white solid (yield: 38%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.31$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{dd}, J=6.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}$, $1 \mathrm{H}), 5.04-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{qq}, J=7.4,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-2.85(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,143.3,143.2,135.7,130.3,130.1,129.0,127.9,127.7,127.2$, 126.3, 125.0, 121.5, 119.1, 107.6, 62.4, 56.6, 44.4, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 320.1645$, found: 320.1632.

ethyl 3-phenyl-3-(37 yridine-4-ylamino)propanoate (64c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a white solid (yield: 38%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3234,3131,2982,1729,1599,1521,1493,1453,1373,1348,1295,1260,1216,1172$, 1113, 1091, 1173, 1020, 990, 811, 761, 700.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.45-6.35(\mathrm{~m}, 2 \mathrm{H}), 5.36$ $(\mathrm{s}, 1 \mathrm{H}), 4.87(\mathrm{td}, J=7.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,151.9,149.3,140.1,128.5,127.2,125.6,108.0,60.6,53.4,41.8$, 13.6.

ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$271.1441, found: 271.1448 .

ethyl 3-phenyl-3-(37 yridine-3-ylamino)propanoate (65c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 5:1) to give the title compound as a white solid (yield: 52%).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 4 \mathrm{H})$, $7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.80$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,144.7,142.4,139.9,137.9,130.39,129.2,127.6,125.5,121.6$, 62.4, 56.1, 44.2, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{22}[\mathrm{M}+\mathrm{H}]^{+}: 271.1441$, found: 271.1456.

ethyl 3-((2-chloropyridin-4-yl)amino)-3-phenylpropanoate (66c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, $5: 1)$ to give the title compound as a white solid (yield: 59%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3245,3135,2982,1728,1593,1509,1452,1405,1374,1344,1296,1266,1174,1131$, 1097, 1074, 1027, 982, 823, 761, 699.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.34(\mathrm{dd}, J=5.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.92-2.74(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,155.7,153.5,150.7,141.5,130.5,129.47,127.4,109.3,108.6$, 62.5, 55.3, 43.5, 15.5.

ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 305.1051$, found: 305.1058.

ethyl 3-((6-methylpyridin-3-yl)amino)-3-phenylpropanoate (67c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, $5: 1)$ to give the title compound as a white solid (yield: 58%).

FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3251,3121,2981,1728,1602,1579,1499,1453,1373,1351,1294,1232,1172,1096$, 1073, 1023, 822, 760, 700.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.84$ $(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, \mathrm{J}=8.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, \mathrm{J}=8.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{q}, \mathrm{J}$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,148.7,142.9,142.0,137.4,130.3,129.1,127.6,124.5,122.3,62.3$, 56.5, 44.3, 24.5, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 285.1598$, found: 285.1587.

tert-butyl 4-(6-((3-ethoxy-3-oxo-1-phenylpropyl)amino) pyridine-3-yl)piperazine-1-carboxylate (68c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a white solid (yield: 42%). ${ }^{1} \mathbf{H} \mathbf{N M}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.96-2.75(\mathrm{~m}, 6 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.16$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.5,156.1,141.4,130.1,128.9,127.8,109.3,62.2,54.79,52.5,43.8$, 29.9, 15.5.

ESI HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{44}[\mathrm{M}+\mathrm{H}]^{+}: 455.2653$, found: 455.2657.

ethyl 3-(diphenylamino)-3-phenylpropanoate (69c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 15:1) to give the title compound as a yellow oil liquid (yield: 50\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 2981,1730,1588,1493,1450,1371,1346,1261,1220,1187,1151,1094,1048,1030$, 871, 746, 695.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.18(\mathrm{~m}, 9 \mathrm{H}), 6.95(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{dd}, J=8.8,1.1$ $\mathrm{Hz}, 4 \mathrm{H}), 5.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-2.90(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8,147.8,142.2,130.1,129.8,128.9,128.8,124.5,123.8,62.1,60.0$, 39.4, 15.5 .

ESI HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 346.1802$, found: 346.1793.

ethyl 3-(methyl(phenyl)amino)-3-phenylpropanoate (70c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 10:1) to give the title compound as a white solid (yield: 84%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.80$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,151.3,137.3,130.8,130.1,129.9,129.6,119.6,114.9,67.2,53.5$, 35.9.

ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 284.1645 , found: 284.1659.

ethyl 3-(indolin-1-yl)-3-phenylpropanoate (71c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 10:1) to give the title compound as a yellow oil liquid (yield: 44%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3028,2980,2848,1730,1605,1487,1473,1454,1390,1371,1330,1299,1253,1156$, 1138, 1025, 952, 871, 842, 742, 698.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.09-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.68-$ $6.54(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{ddd}, J=9.3,8.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (ddd, $J=9.8,8.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.82(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,152.2,140.4,131.1,129.9,129.0,129.0,128.7,126.0,118.7$, 108.5, 62.1, 57.2, 48.5, 37.5, 29.6, 15.5.

ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 296.1645$, found: 296.1650.

ethyl 3-(allyl(phenyl)amino)-3-phenylpropanoate (72c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 10:1) to give the title compound as a white solid (yield: 46%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.22(\mathrm{~m}, 7 \mathrm{H}), 6.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 1 \mathrm{H}), 5.76$ $-5.56(\mathrm{~m}, 2 \mathrm{H}), 5.14-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{qd}, J=7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{dd}, J=$ $7.5,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,150.0,141.3,137.1,130.5,129.9,128.9,128.7,119.3,117.6$, 116.4, 62.2, 60.4, 50.1, 38.6, 15.5 .

ESI HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 310.1802$, found: 310.1821.

2-(thiophen-2-yl)ethyl-4-(2-methyl-10',11'-dihydrospiro[cyclopropane-1,5'
dibenzo[a,d][7]annulen]-2-yl)benzoate (73c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 10:1) to give the title compound as a yellow oil liquid (yield: 66\%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{q}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.10(\mathrm{dd}, J=8.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.52$ (dd, $J=8.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.83-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.59$ (s, 1H), $4.10(\mathrm{qd}, J=7.1,2.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.81-2.71(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,148.0,142.2,134.5,130.6,130.4,129.2,119.5,115.1,62.4,55.85$, 44.2, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 304.1099$, found: 304.1092.

ethyl 3-(4-bromophenyl)-3-(phenylamino)propanoate (74c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 10:1) to give the title compound as a white solid (yield: 72\%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{tt}$, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.44(\mathrm{~m}, 2 \mathrm{H}), 4.84-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{qd}, J=7.1,2.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.84-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,147.9,142.8,133.3,131.2,129.5,122.6,119.5,115.1,62.4,55.9$, 44.1, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 348.0594$, found: 348.0607.

ethyl 3-(4-methoxyphenyl)-3-(phenylamino)propanoate (75c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 10:1) to give the title compound as a white solid (yield: 44\%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=8.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.66(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=8.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H})$, 4.09 (qq, $J=6.9,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,160.3,148.3,135.6,130.6,128.8,119.1,115.5,115.1,62.2,56.7$, 55.9, 44.4, 15.6.

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 300.1594$, found: 300.1583 .

methyl 3-(phenylamino)-3-(4-(trifluoromethyl)phenyl)propanoate (76c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 10:1) to give the title compound as a white solid (yield: 41\%).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=8.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.69$ $(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=8.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.91-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $2.88-2.75$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6, \delta 147.8(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 130.7,128.1,127.26(\mathrm{q}, J=3.7 \mathrm{~Hz}), 126.8$, 124.4, 119.7, 115.1, 56.0, 53.5, 43.8.

ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 324.1206$, found: 324.1193.

ethyl 3-(phenylamino)-3-(2,3,4,5-tetrafluorophenyl)propanoate (77c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 10:1) to give the title compound as a white solid (yield: 47%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3371,3070,2984,2939,1714,1602,1520,1419,1379,1348,1295,1240,1180,1123$, 1073, 1020, 953, 860, 832, 757, 716, 578.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{dddd}, J=10.5,8.3,6.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{tt}$, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=8.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.93-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,147.0,141.6,139.8,130.8,120.2,114.9,110.7,110.6,110.6$, $110.5,62.6,50.0,41.9,15.5$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-138.16, $-144.86,-154.89,-156.44$.
ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{4} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 342.1112$, found: 342.1121.

methyl 1-(phenylamino)-1,2,3,4-tetrahydronaphthalene-2-carboxylate (78c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 7:1) to give the title compound as a yellow solid (yield: $54 \%, \mathrm{dr}=2: 3$).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3391,3021,2949,1728,1599,1498,1451,1434,1373,1310,1277,1251,1220,1170$, 1115, 1087, 1068, 993, 868, 748, 692.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.76-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{dd}, J=8.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=28.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}$, $2 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{td}, J=7.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,175.1,149.0,148.6,139.1,138.5,137.6,136.8,130.9,130.8$, $130.4,130.3,130.2,129.9,128.8,128.8,127.9,127.8,119.4,119.1,115.2,114.5,54.9,54.7,53.3,53.04$, 46.5, 46.1, 29.1, 28.6, 24.8, 22.9.

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 282.1489$, found: 282.1496.

2-chloro- N-(2-phenylchroman-4-yl)pyridin-4-amine (79c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 2:1) to give the title compound as a white solid (yield: $36 \%, \mathrm{dr}=2: 3$).

FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3393,3245,3036,2923,1592,1485,1452,1402,1267,1227,1094,1074,904,816$, 756, 725, 698.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=15.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.31(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=15.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.45(\mathrm{dd}, J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=11.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.58(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.24-2.08(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,156.5,156.3,154.8,153.8,150.9,150.9,141.7,141.5,131.8$, $131.5,131.0,130.2,130.2,129.8,129.8,128.7,127.6,127.4,123.9,122.7,122.7,121.8,119.2,118.9$, 108.9, 107.6, 49.6, 48.3, 37.8, 36.5.

ESI HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 337.1002$, found: 337.0992.

N-(2-phenylchroman-4-yl)pyridin-3-amine (80c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 2:1) to give the title compound as a white solid (yield: $41 \%, \mathrm{dr}=2: 3$).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3233,3038,2958,2925,1580,1530,1481,1454,1418,1298,1227,1150,1099,1074$, 1057, 899, 758, 697.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 4 \mathrm{H})$, $7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 3 \mathrm{H}), 5.16(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H})$, $4.30(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=13.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dt}, J=14.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.6,156.6,142.0,141.9,140.1,140.0,137.3,137.0,131.8,131.2$, 130.7, 130.1, 130.1, 129.7, 129.6, 128.8, 127.6, 127.4, 125.6, 125.0, 122.9, 122.6, 122.5, 121.0, 120.3, 119.1, 118.7, 50.3, 48.7, 38.1, 36.5 .

ESI HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 303.1492$, found: 303.1494.

N,2-diphenylchroman-4-amine (81c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 5:1) to give the title compound as a white solid (yield: 39%, $\mathrm{dr}=2: 3$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=7.5,2.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{dd}, J=17.7,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=29.2 \mathrm{~Hz}, 3 \mathrm{H}), 5.18(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.06(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.7,142.3,132.0,131.0,130.0,129.5,127.7,122.4,118.9,114.2,36.8$.
ESI HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 302.1439$, found: 302.1547.

methyl 2-(3-(((2-chloropyridin-4-yl)amino)(phenyl)methyl)phenyl)propanoate (82c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 10:1) to give the title compound as a white solid (yield: 54%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3230,2979,1731,1592,1495,1451,1401,1376,1331,1265,1231,1196,1169,1131$, 1073, 1028, 981, 908, 823, 735, 699.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{q}, J=6.9,6.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=5.8,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.46(\mathrm{dd}, J=7.2,2.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,155.8,153.3,150.6,142.8,142.6,142.1,130.8,130.5,129.5$, $128.8,128.1,127.6,109.3,108.7,63.2,53.5,46.8,20.0$.
ESI HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 381.1364$, found: 381.1349.

2-chloro- N-(4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl) pyridin-4-amine (83c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 10:1) to give the title compound as a white solid (yield: 57%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3421,3230,3116,3061,3020,2935,2860,1594,1504,1467,1397,1320,1236,1129$, 1101, 1073, 1028, 982, 819, 762, 743, 616.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0,153.6,150.6,147.9,139.9,138.2,133.9,132.0,131.9,131.8$, 130.0, 129.7, 129.5, 128.9, 108.7, 107.6, 52.1, 45.7, 30.8, 27.7.

ESI HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 403.0530$, found: 403.0528.

isopropyl 2-(4-((4-chlorophenyl)((2-chloropyridin-4-yl)amino)methyl)phenoxy)acetate (84c):
Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 10:1) to give the title compound as a white solid (yield: 68\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3234,2983,1725,1593,1504,1490,1466,1405,1384,1333,1283,1235,1177,1148$, 1101, 1075, 1013, 981, 822, 734.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, 2H), 7.09 ($\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.80(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, \mathrm{J}=5.8,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{dd}, \mathrm{J}=$ $6.2,2.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,155.5,154.2,151.9,149.1,139.3,133.7,133.6,129.2,128.6,128.3$, 119.1, 107.9, 107.2, 69.1, 60.6, 25.4, 25.4, 21.6.

ESI HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 473.1393$, found: 473.1391.

3-(4-(1-(benzofuran-2-yl)ethyl)piperazin-1-yl)benzo[d]isothiazole (85c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 10:1) to give the title compound as a white solid (yield: 51%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-$ $7.19(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.51(\mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{dt}, J=10.5$, $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{dt}, J=10.9,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,154.8,152.7,128.1,127.5,123.9,122.8,122.7,120.5,111.3$, 111.2, 104.3, 101.8, 64.2, 58.0, 50.2, 49.5, 21.5, 16.0.

ESI HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 364.1478$, found: 364.1472.

N-(1-(benzofuran-2-yl)ethyl)-3,3-diphenylpropan-1-amine (86c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane:EtOAc, 10:1) to give the title compound as a white solid (yield: 56\%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3026,2929,1599,1493,1452,1371,1299,1253,1154,1119,1030,1007,938,882$, 810, 738, 697.
${ }^{1} H$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 10 \mathrm{H}), 7.20$ $-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.34$ $-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7,156.1,146.2,146.0,129.9,129.79,129.3,129.2,127.6,125.1$, 124.0, 122.1, 112.5, 103.8, 53.1, 50.4, 47.0, 37.2, 21.8.

ESI HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 356.2009$, found: 356.2015 .

1-([1,1'-biphenyl]-4-yl(p-tolyl)methyl)-1H-imidazole (87c): Prepared according to the general procedure A. Following workup, the product was purified by column chromatography (hexane: EtOAc, 1:1) to give the title compound as a clear oily liquid (yield: 52%).
FT-IR: $v\left(\mathrm{~cm}^{-1}\right): 3126,3107,2984,2923,2817,1604,1597,1509,1446,1382,1349,1300,1268,1241$, 1198, 1129, 1067, 1022, 989, 961, 857, 823, 753.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.67(\mathrm{t}, J=8.3 \mathrm{~Hz}, 5 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.1,5.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 140.2,140.0,139.8,137.8,137.7,137.4,129.8,129.4,129.2,128.8$, 128.3, 128.1, 127.4, 127.2, 119.7, 63.3, 21.1.

ESI HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 325.1699$, found: 325.1713 .

Characterization data for the formic acid

1,5-Diazabicyclo[4.3.0]non-5-ene formic acid salt (1m): Following the synthesis method of DBN $\cdot \mathrm{HCOOH}$, it was obtained as a white solid by recrystallization (isolated yield: 80\%)
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.02$ (p, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{p}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta 166.3,164.1,53.2,42.4,37.9,30.0,18.9,18.8$.

Characterization data for the \boldsymbol{N}-tosylhydrazone anion

sodium (E)-2-(1-phenylethylidene)-1-tosylhydrazin-1-ide (10a'): Following the synthesis method of the N-tosylhydrazone anion 10a', it was obtained as a white solid by recrystallization (isolated yield: 98\%).
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathbf{D M S O}-\mathbf{d}_{\mathbf{6}}$) $\delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 5 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO-d6) δ 142.5, 138.8, 129.6, 128.8, 128.6, 127.8, 125.9, 21.4, 14.2.
Characterization data for the N-tosylhydrazones

N^{\prime}-(1-(benzofuran-2-yl)ethylidene)-4-methylbenzenesulfonohydrazide (1a): Following the general procedure B , it was obtained as a white solid by recrystallization (isolated yield: 80%). 1a was known in the published literature. ${ }^{5}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30$ (m, 3H), 7.23 (ddd, $J=8.1,7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$.
ESI HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 351.0779$, found: 351.0763 .

N^{\prime}-(1-(7-methoxybenzofuran-2-yl)ethylidene)-4-methylbenzenesulfonohydrazide (2a): Following the general procedure B , it was obtained as a yellow solid by recrystallization (isolated yield: 99\%).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, DMSO-d \mathbf{d}_{6}) $\delta 10.79(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ ($\mathrm{s}, 1 \mathrm{H}$), $7.21-7.12$ (m, 2H), 6.95 (dd, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) δ 152.9, 144.9, 144.6, 143.6, 143.5, 136.2, 129.6, 129.4, 127.4, 124.1, 113.7, 108.2, 107.4, 55.8, 21.0, 13.9 .

ESI HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 381.0885$, found: 381.0876 .

N^{\prime}-(1-(benzo[b]thiophen-2-yl)ethylidene)-4-methylbenzenesulfonohydrazide (3a): Following the general procedure B , it was obtained as a white solid by recrystallization (isolated yield: 75\%).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{D M S O}-\boldsymbol{d}_{6}\right) \delta 10.73(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{td}, J=8.1,1.8 \mathrm{~Hz}, 3 \mathrm{H})$, $7.75(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, DMSO- d_{6}) $\delta 149.9,144.0,143.3,140.0,139.9,136.4,129.9,128.1,126.3,125.1$, 125.0, 124.8, 122.8, 21.5, 14.6.

ESI HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 345.0726$, found: 345.0764.

tert-butyl 3-(1-(2-tosylhydrazono)ethyl)-1H-indole-1-carboxylate (4a): Following the general procedure B , it was obtained as a yellow solid by recrystallization (isolated yield: 78\%).
${ }^{1}{ }^{1}$ NMR (500 MHz, DMSO-d6) $\delta 10.56(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.02(\mathrm{~m}, 2 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=7.6,7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$, 1.63 ($\mathrm{s}, 9 \mathrm{H}$).

ESI HRMS: calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 428.1639$, found: 428.1656 .

4-methyl- N^{\prime}-(1-(thiophen-2-yl)ethylidene)benzenesulfonohydrazide (5a): Following the general procedure B, it was obtained as a white solid by recrystallization (isolated yield: 80%). $\mathbf{5 a}$ was known in the published literature. ${ }^{6}$
${ }^{1} H$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=3.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 150.19,143.88,143.01,136.46,129.83,129.12,128.16,127.95$, 21.47, 14.97.

ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 295.0569$, found: 295.0583.

N^{\prime}-(2-(4-chlorophenyl)-1-(thiophen-2-yl)ethylidene)-4-methylbenzenesulfonohydrazide (6a):
Following the general procedure B, it was obtained as a yellow solid by recrystallization (isolated yield: 92\%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=3.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{dd}, J=5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ $-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$.
ESI HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 405.0493$, found: 405.0465.

N^{\prime}-(6,7-dihydrobenzo[b]thiophen-4(5H)-ylidene)-4-methylbenzenesulfonohydrazide
(7a):
Following the general procedure B, it was obtained as a yellow solid by recrystallization (isolated yield: 77%). 7a was known in the published literature. ${ }^{7}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.3,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.01$ (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H})$.
ESI HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 321.0726$, found: 321.0741.

4-methyl- N^{\prime}-(1-(2-methylimidazo[1,2-a]pyridin-3-yl)ethylidene)benzenesulfonohydrazide
(8a):
Following the general procedure B, it was obtained as a yellow solid by recrystallization (isolated yield: 77%). 8a was known in the published literature. ${ }^{8}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.70(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 6 \mathrm{H})$.
ESI HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 343.1223$, found: 343.1246 .

Tert-butyl-4-(2-tosylhydrazono)-4,5,6,7-tetrahydro-1H-indole-1-carboxylate (9a): Following the general procedure B , it was obtained as a white solid by recrystallization (isolated yield: 80%).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.45(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-$ 1.92 (m, 2H), 1.57 (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 148.5,143.5,134.9,129.5,129.0,127.8,127.7,120.7,120.6,106.6$, 83.8, 27.5, 23.3, 23.2, 21.7, 21.1.

ESI HRMS: calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 404.1639$, found: 404.1621.

4-methyl- N^{\prime}-(1-(4-phenoxyphenyl)ethylidene)benzenesulfonohydrazide (12a): Following the general procedure B , it was obtained as a yellow solid by recrystallization (isolated yield: 72\%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.64(\mathrm{~s}, 1 \mathrm{H}), 8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.55$ (ddd, J $=9.8,6.3,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~s}$, $3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 158.38,156.48,153.13,143.77,136.70,132.89,130.61,129.93$, 128.32, 128.07, 124.40, 119.57, 118.41, 21.47, 14.70.

ESI HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 381.1273$, found: 381.1269.

N^{\prime}-(1-(4-cyclohexylphenyl)ethylidene)-4-methylbenzenesulfonohydrazide (13a): Following the general procedure B, it was obtained as a yellow solid by recrystallization (isolated yield: 86%).
${ }^{1}$ H NMR (500 MHz, DMSO- d_{6}) $\delta 10.43$ (s, 1H), $7.84-7.75$ (m, 2H), $7.55-7.48$ ($\mathrm{m}, 2 \mathrm{H}$), $7.44-7.34$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 4 \mathrm{H})$, $1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , DMSO- d_{6}) δ 153.2, 149.0, 143.3, 136.3, 135.1, 129.4, 127.6, 126.6, 126.0, 43.5, 33.8, 26.3, 25.6, 21.0, 14.3.

ESI HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 371.1793$, found: 371.1771.

N^{\prime}-(1-(3,4-dichlorophenyl)ethylidene)-4-methylbenzenesulfonohydrazide (14a): Following the general procedure B, it was obtained as a white solid by recrystallization (isolated yield: 86%). 14a was known in the published literature. ${ }^{9}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.95-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.
ESI HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 379.0051$, found: 379.0038.

N^{\prime}-(1-(benzo[d][1,3]dioxol-5-yl)ethylidene)-4-methylbenzenesulfonohydrazide (15a): Following the general procedure B , it was obtained as a white solid by recrystallization (isolated yield: 78%).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (dd, $J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, DMSO- d_{6}) $\delta 153.4,148.9,148.0,143.8,136.7,132.1,129.9,128.1,121.2,108.3$, 106.0, 101.8, 21.5, 14.8.

ESI HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 333.0904$, found: 333.0917.

4-methyl- N^{\prime}-(1-(naphthalen-2-yl)ethylidene)benzenesulfonohydrazide (16a): Following the general procedure B, it was obtained as a white solid by recrystallization (isolated yield: 95\%). 16a was known in the published literature. ${ }^{10}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.86-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38$ $-7.30(\mathrm{~m}, 4 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl 3) $\delta 154.1,143.7,136.0,135.0,133.4,129.8,129.2,129.0,128.0,127.8$, 126.0, 125.7, 125.5, 125.0, 124.5, 21.2, 17.7.

ESI HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 339.1167$, found: 339.1154 .

N^{\prime}-(cyclopentyl(phenyl)methylene)-4-methylbenzenesulfonohydrazide (17a): Following the general procedure B, it was obtained as a white solid by recrystallization (isolated yield: 95\%). 17a was known in the published literature. ${ }^{11}$
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.44(\mathrm{~m}, 9 \mathrm{H})$.
ESI HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 365.1294$, found: 365.1305 .

N^{\prime}-(2,3-dihydro-1H-inden-1-ylidene)-4-methylbenzenesulfonohydrazide (18a): Following the general procedure B , it was obtained as a white solid by recrystallization (isolated yield: 78\%).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.93(\mathrm{~s}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.20$ (m, 2H), 3.08-2.99 (m, 2H), 2.73-2.63(m, 2H), $2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 161.9,147.9,143.6,136.6,135.0,130.4,129.1,127.6,126.5,124.9$, 121.7, 27.9, 26.2, 21.1.

ESI HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 301,1005$, found: 301.1018 .

N^{\prime}-(3,4-Dihydronaphthalen-1(2H)-ylidene)-4-methylbenzenesulfonohydrazide (19a) : Following the general procedure B , it was obtained as a white solid by recrystallization (isolated yield: 90%).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.41$ ($\mathrm{s}, 3 \mathrm{H}$), 1.89 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 143.7,139.3,135.0,131.0,129.1,129.1,127.9,127.7,126.0,124.6$, 28.8, 24.9, 21.2, 20.9

ESI HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 315.1163$, found: 315.1181.

N^{\prime}-(chroman-4-ylidene)-4-methylbenzenesulfonohydrazide (20a): Following the general procedure B, it was obtained as a white solid by recrystallization (isolated yield: 95\%).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.94-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.93$ (ddd, $J=8.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.42$ (s, 3H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 156.7,147.5,143.9,134.7,131.1,129.2,127.7,124.5,121.1,119.2$, 117.1, 64.0, 24.6, 21.2.

ESI HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 317.0954$, found: 317.0945 .

N^{\prime}-(diphenylmethylene)-4-methylbenzenesulfonohydrazide (21a): Following the general procedure B, it was obtained as a white solid by recrystallization (isolated yield: 81\%). 21a was known in the published literature. ${ }^{12}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.42$ (m, 2H), $7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$.
ESI HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 373.0987$, found: 373.0969.

N^{\prime}-(4-(tert-butyl)benzylidene)-4-methylbenzenesulfonohydrazide (23a): Following the general procedure B , it was obtained as a white solid by recrystallization (isolated yield: 71\%).
${ }^{1} H$ NMR (500 MHz, Chloroform- d) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=0.9 \mathrm{~Hz}$, 9H).
${ }^{13}$ C NMR (151 MHz, DMSO- d_{6}) $\delta 153.4,147.4,143.9,136.6,131.5,130.1,127.7,127.0,126.1,35.0$, 31.4, 21.5 .

ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 331.1475$, found: 331.1471.

N^{\prime}-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide (24a): Following the general procedure B, Following the general procedure, was obtained as a white solid (isolated yield: 88\%).
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.57(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.53(\mathrm{~m}$, $2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta 146.12,143.97,136.57,135.01,133.05,130.15,129.33,128.83$, 127.69, 21.45.

ESI HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 309.0459$, found: 309.0456.

Ethyl 3-phenyl-3-(2-tosylhydrazono)propanoate (54a): Following the general procedure B, it was obtained as a white solid purified by chromatography (isolated yield: 79\%).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34$ (m, 3H), $7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 168.6,148.3,143.6,135.5,135.1,129.6,129.1,128.1,127.7,125.9$, $62.0,34.8,21.1,13.5$

ESI HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 361.1217$, found: 361,1224

methyl (Z)-2-phenyl-2-(2-tosylhydrazineylidene)acetate (70a): Following the general procedure B, it was obtained as a white solid purified by chromatography (isolated yield: 85\%). 70a was known in the published literature. ${ }^{13}$
${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 11.58(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38$ $-7.29(\mathrm{~m}, 5 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
ESI HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 355.0723$, found: 355.0729.

ethyl -3-(4-chlorophenyl)-3-(2-tosylhydrazineylidene)propanoate (73a): Following the general procedure B, it was obtained as a white solid purified by chromatography (isolated yield: 87\%). 73a was known in the published literature. ${ }^{14}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.23(\mathrm{~s}, \mathrm{H}), 7.92-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}$, $4 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
ESI HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 395.0827$, found: 395.0841.

ethyl -3-(4-bromophenyl)-3-(2-tosylhydrazineylidene)propanoate (74a): Following the general procedure B, it was obtained as a white solid purified by chromatography (isolated yield: 89%). 74a was known in the published literature. ${ }^{15}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
ESI HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 395.0827$, found: 395.0845 .

ethyl -3-(4-methoxyphenyl)-3-(2-tosylhydrazineylidene)propanoate (75a): Following the general procedure B , it was obtained as a white solid purified by chromatography (isolated yield: 82%).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 9.23(\mathrm{~s}, \mathrm{H}), 7.92-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}$, $4 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, DMSO- d_{6}) $\delta 168.4,160.8,149.0,143.9,136.7,130.0,129.6,128.1,128.0,128.0$, 114.2, 61.1, 55.7, 33.7, 21.5, 14.5.

ESI HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 413.1142$, found:413.1169.

ethyl -3-(2-tosylhydrazineylidene)-3-(4-(trifluoromethyl)phenyl)propanoate (76a): Following the general procedure B, it was obtained as a white solid purified by chromatography (isolated yield: 87%). 76a was known in the published literature. ${ }^{16}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 9.23(\mathrm{~s}, \mathrm{H}), 7.92-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}$, $4 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
ESI HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 451.0910$, found: 451.0928 .

ethyl -3-(2,3,4,5-tetrafluorophenyl)-3-(2-tosylhydrazineylidene)propanoate(77a): Following the general procedure B, it was obtained as a white solid purified by chromatography (isolated yield: 80%). ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.42(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ $-7.29(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta 167.57$, $147.08(\mathrm{~d}, J=80.9 \mathrm{~Hz}), 144.18,142.68,136.41,130.01(\mathrm{~d}$, $J=16.6 \mathrm{~Hz}), 128.14,127.84,122.58,110.83(\mathrm{~d}, J=20.6 \mathrm{~Hz}), 61.28,35.97,21.44,14.26$.

ESI HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 433.0840$, found: 433.0831.

4-methyl- N^{\prime}-(2-phenylchroman-4-ylidene)benzenesulfonohydrazide-4-methyl-N'-(2-phenylchroman-4-ylidene)benzenesulfonohydrazide (79a): Following the general procedure B, it was obtained as a white solid (isolated yield: 55\%). 79a was known in the published literature. ${ }^{17}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.99-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 3 \mathrm{H}), 7.03-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.11-4.99(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=16.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=16.5$, $12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (s, 3H).
ESI HRMS: calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 393.1267$, found: 393,1279.

N^{\prime}-(4-(3,4-dichlorophenyl)-3,4-dihydronaphthalen-1(2H)-ylidene)-4
methylbenzenesulfonohydrazide (83a): Following the general procedure B, was obtained as a white solid (isolated yield: 89\%).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 3 \mathrm{H}) 7.14-7.30(\mathrm{~m}, 3 \mathrm{H})$, $7.29-7.26(\mathrm{~m}, 1 \mathrm{H}) .7 .24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (dd, $J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=7.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.34$ $(\mathrm{m}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta 145.0,143.4,140.6,136.2,131.8,131.1,130.6,130.3,129.7,129.5$, 129.1, 128.8, 128.6, 127.6, 127.0, 124.3, 42.7, 28.6, 23.3, 21.0.

ESI HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 459.0701$, found: 459.0712.

isopropyl 2-(4-((4-chlorophenyl)(2-tosylhydrazono)methyl)phenoxy)-2-methylpropanoate (84a): Following the general procedure B, was obtained as a white solid (isolated yield: 40\%).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-4.91(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.19$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,157.5,153.0,144.8,144.4,136.4,135.5,133.3,130.2,130.1$, 130.0, 129.8, 129.7, 129.7, 128.7, 128.4, 128.1, 118.1, 79.3, 69.3, 25.4, 21.8, 21.8, 21.9.

ESI HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{ClO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 529.1564$, found: 529.1578.

(1-methylcyclopropane-1,2-diyl)dibenzene (10aa): N-tosylhydrazone (0.2 mmol), styrene (5.0 equiv.), DBN (1.5 equiv.), and DCM (2.0 mL) irradiated with 427 nm 40 W Kessil lamp at room temperature for 16 h . Following workup, the product was purified by column chromatography (hexane: EtOAc, 20:1) to give the title compound as a colorless oil (yield: $61 \%, \mathrm{dr}=1: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.10-$ $6.95(\mathrm{~m}, 3 \mathrm{H}), 6.76-6.71(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{dd}, J=8.8,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, Chloroform-d) $\delta 147.97$, 142.44, 140.00, 139.24, 130.00, 129.30, 128.49, 128.21, $128.02,127.63,127.60,127.04,126.13,126.00,125.85,125.18,31.53,31.25,29.75,27.07,21.13,19.81$, 18.78.

ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{16}[\mathrm{M}+\mathrm{Na}]^{+}$: 232.1417 , found: 232.1419 .

8. References

1. Zhang, B.H., Lei, L.S., Liu, S.Z., Mou, X.Q., Liu, W.T., Wang, S.H., Wang, J., Bao, W., Zhang, K. Zinc-promoted cyclization of tosylhydrazones and 2-(dimethylamino) malononitrile: an efficient strategy for the synthesis of substituted 1-tosyl-1H-pyrazoles. Chem. Commun. 2017, 53, 8545-8548.
2. Aggarwal, V. K., Bae, I., Lee, H. Y. Application of sulfur ylide mediated epoxidations in the asymmetric synthesis of β-hydroxy- δ-lactones. Synthesis of a mevinic acid analogue and (+)-prelactone B. Tetrahedron, 2004, 60, 9725-9733.
3. Liang, X., Li, Y., Xia, Q., Cheng, L., Guo, J., Zhang, P., Wang, Q. Visible-light-driven electron donoracceptor complex induced sulfonylation of diazonium salts with sulfinates. Green Chem, 2021, 22, 88658870.
4. Bai, J., Li, S., Zhu, R., Li, Y., Li, W. $\mathrm{B}_{2}(\mathrm{OH})_{4}$-Mediated Reductive Transamidation of N-Acyl Benzotriazoles with Nitro Compounds En Route to Aqueous Amide Synthesis. J. Org. Chem. 2023, 88, 3714-3723.
5. Xiong, W., Qi, C., He, H., Ouyang, L., Zhang, M., Jiang, H. Base-Promoted Coupling of Carbon Dioxide, Amines, and N-Tosylhydrazones: A Novel and Versatile Approach to Carbamates. Angew. Chem. Int. Ed, 2015, 127, 3127-3130.
6. Rao, K. P., Basak, A. K., Raju, A., Patil, V. S., Reddy, L. K. Microwave assisted efficient aminocarbonylation of N-tosylhydrazones with molybdenum hexacarbonyl and amines. Tetrahedron Lett. 2013, 54, 5510-5513.
7. Ping, Y., Wang, R., Wang, Q., Chang, T., Huo, J., Lei, M., Wang, J. Synthesis of alkenylboronates from N-tosylhydrazones through palladium-catalyzed carbene migratory insertion. J. Am. Chem. Soc. 2021, 143, 9769-9780.
8. García-Carrillo, M. A., Guzmán, Á., Díaz, E. Metal free coupling of heteroaryl N-tosylhydrazones and thiols: Efficient synthesis of sulfides. Tetrahedron Lett, 2017, 58, 1952-1956.
9. Huang, Y. B.; Lin, Z. M.; Chen, Y.; Fang, S. J.; Jiang, H. F. Transition-metal-free N difluoromethylation of hydrazones with $\mathrm{TMSCF}_{2} \mathrm{Br}$ as the difluoromethylation reagent. Org. Chem. Front. 2019, 6, 2462-2466.
10. Wang, F., Xu, P., Wang, S. Y., Ji, S. J. Cu(II)/Ag(I)-catalyzed cascade reaction of sulfonylhydrazone with anthranils: Synthesis of 2-aryl-3-sulfonyl substituted quinoline derivatives. Org. Lett. 2018, 20, 2204-2207.
11. Celebi, S., Leyva, S., Modarelli, D. A., Platz, M. S. 1, 2-Hydrogen migration and alkene formation in the photoexcited states of alkylphenyldiazomethanes. J. Am. Chem. Soc. 1993, 115, 8613-8620.
12. Huang, X.; Chen, X.; Xie, H. S.; Tan, Z.; Jiang, H. F.; Zeng, W. Visible-Light-Catalyzed in Situ Denitrogenative Sulfonylation of Sulfonylhydrazones. Org. Lett. 2021, 23, 6784-6788.
13. Li, P., Zhao, J., Wu, C., Larock, R. C., Shi, F. Synthesis of 3-substituted indazoles from arynes and N-tosylhydrazones. Org. Lett, 2011, 13, 3340-3343.
14. Panish, R., Thieu, T., Balsells, J. Copper-Catalyzed Synthesis of 5-Carboxyl-4-perfluoroalkyl Triazoles. Org. Lett. 2021, 23, 5937-5941.
15. Zhu, S. Y., Zhang, Y., Wang, W., Hui, X. P. Stereoselective Synthesis of Functionalized Tetrahydro-1H-1, 2-diazepines by N-Heterocyclic Carbene-Catalyzed [3+4] Annulation. Org. Lett, 2017, 19, 53805383.
16. Xu, K., Zheng, Y., Ye, Y., Liu, D., Zhang, W. Desymmetrization of meso-Dicarbonatecyclohexene with β-Hydrazino Carboxylic Esters via a Pd-Catalyzed Allylic Substitution Cascade. Org. Lett. 2020, 22, 8836-8841.
17. Tran, C., Abdallah, A., Duchemann, V., Lefèvre, G., Hamze, A. Iron-catalyzed reductive cyclization of nitroarenes: Synthesis of aza-heterocycles and DFT calculations. Chinese Chem Lett, 2023, 34, 107758.

9. NMR spectra of products and synthesized substrates

\boldsymbol{N}-(1-(benzofuran-2-yl)ethyl)-2-chloropyridin-4-amine (1c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

\% ¢ ¢ ¢ ¢ ¢ ¢		
		$\stackrel{\infty}{\infty}$
-1\%	¢\t	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(1-(7-methoxybenzofuran-2-yl)ethyl)pyridin-4-amine (2c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\begin{array}{cc}\text { N } \\ \underset{\sim}{\text { N }} \\ \text { in } \\ 1 & \vdots \\ 0\end{array}$
$\stackrel{\rightharpoonup}{\mathrm{N}}$
$\stackrel{1}{2}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N-(1-(benzo[b]thiophen-2-yl)ethyl)-2-chloropyridin-4-amine (3c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\text { ® }}{\stackrel{\text { ¢ }}{\sim}}$	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

tert-butyl-3-(1-((2-chloropyridin-4-yl)amino)ethyl)-1H-indole-1-carboxylate (4c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.
\circ
$\stackrel{0}{0}$
0
0
1

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(1-(thiophen-2-yl)ethyl)pyridin-4-amine (5c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N -(2-(4-chlorophenyl)-1-(thiophen-2-yl)ethyl)pyridin-4-amine (6c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(4,5,6,7-tetrahydrobenzo[b]thiophen-4-yl)pyridin-4-amine (7c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(1-(2-methylimidazo[1,2-a]pyridin-3-yl)ethyl)pyridin-4-amine (8c):

${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{OD}$.

N N * moy	
¢i¢ ¢ ¢ ¢ ¢	
, ,	11

${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{OD}$.
tert－butyl－4－（（2－chloropyridin－4－yl）amino）－4，5，6，7－tetrahydro－1H－indole－1－carboxylate（9c）：

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

$\stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	－	人
in	ल	ベํ	\bigcirc
\checkmark	$\stackrel{T}{1}$	\％	－17

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．

2-chloro- N -(1-(p-tolyl)ethyl)pyridin-4-amine (10c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

	へ Nọ	ㅇ.	O
	$\stackrel{\sim}{\sim}$ N	승웅	م
11\%	-1\%	,	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
N-(1-(3-(1H-pyrrol-1-yl)phenyl)ethyl)-2-chloropyridin-4-amine (11c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

〇込	ค
	\%
-1) - 11	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(1-(4-phenoxyphenyl)ethyl)pyridin-4-amine (12c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(1-(4-cyclohexylphenyl)ethyl)pyridin-4-amine (13c):

> ดิ์
> $\underset{~+~+~+~}{~+~}$

Ғ

${ }^{1} H$ NMR spectrum in DMSO- d_{6}

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.

2-chloro- N -(1-(3,4-dichlorophenyl)ethyl)pyridin-4-amine (14c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\underset{\sim}{\infty}}{\substack{\infty \\ i}}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
N-(1-(benzo[d][1,3]dioxol-5-yl)ethyl)-2-chloropyridin-4-amine (15c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(1-(naphthalen-2-yl)ethyl)pyridin-4-amine (16c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

n
$\substack{0 \\ i}$

$\stackrel{\curvearrowleft}{\stackrel{\circ}{\circ}}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N -(cyclopentyl(4-fluorophenyl)methyl)pyridin-4-amine (17c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N -(2,3-dihydro-1H-inden-1-yl)pyridin-4-amine (18c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

\bar{N}
0
0
1

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(1,2,3,4-tetrahydronaphthalen-1-yl)pyridin-4-amine (19c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\infty}{\infty}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(chroman-4-yl)pyridin-4-amine (20c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
N－benzhydryl－2－chloropyridin－4－amine（21c）：

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

$\stackrel{0}{1}$	N	\cdots ¢	$\stackrel{\sim}{\infty}$	$\stackrel{1}{2}$
¢ ¢ ¢	～	－${ }_{\text {N }}^{\sim}$	\bigcirc	N
「「フ	｜	－5	－	\bigcirc

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．

2-chloro- N -(4-methoxybenzyl)pyridin-4-amine (22c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2－chloro－N－（4－chlorobenzyl）pyridin－4－amine（23c）：

ヘNヘNNNN

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

$$
\begin{aligned}
& \begin{array}{l}
\bar{m} \\
\dot{6} \\
\vdots
\end{array}
\end{aligned}
$$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{l}110 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & (\end{array}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．

2-(1-methyl-2,2-diphenylcyclopropyl)benzofuran (24c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N -(1-(benzofuran-2-yl)ethyl)aniline (25c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\otimes}{\infty}$
$\stackrel{0}{\stackrel{1}{\grave{N}}}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N-(1-(benzofuran-2-yl)ethyl)-4-methylaniline (26c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N-(1-(benzofuran-2-yl)ethyl)-4-fluoroaniline (27c):

$\stackrel{8!8}{-}$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
\qquad

${ }^{19} \mathrm{~F}$ NMR spectrum in CDCl_{3}.

4-(4-((1-(benzofuran-2-yl)ethyl)amino)phenyl)morpholin-3-one (28c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\circ}{\infty} \underset{\substack{\dot{\infty}}}{\stackrel{N}{\dot{N}}}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$$
\begin{array}{cc}
\stackrel{\circ}{\infty} & \stackrel{\circ}{\dot{+}} \\
\stackrel{\circ}{1} & \stackrel{1}{i}
\end{array}
$$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
N-(1-(benzofuran-2-yl)ethyl)quinoxalin-6-amine (32c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

-5\%	-Kit -ivj

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N-(1-(benzofuran-2-yl)ethyl)pyridin-4-amine (33c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

¢	$\stackrel{\infty}{\sim}$	¢®®
	-	ヘّ
-		T

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\underset{\sim}{\sim}$	N-	\pm	
\bigcirc		∞	
\|		11,	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
tert－butyl－4－（6－（（1－（benzofuran－2－yl）ethyl）amino）pyridin－3－yl）piperazine－1－carboxylate（35c）：

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

ざ			m	片ら号		
¢¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		$\stackrel{\sim}{\sim} \stackrel{\text { N }}{\sim}$	$\stackrel{-}{\infty}$	¢i¢		
Vi	¢ \rightarrow	1／1	｜	111		

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．

N-(1-(benzofuran-2-yl)ethyl)-1,2,3,4-tetrahydroacridin-9-amine (36c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
N-(1-(benzofuran-2-yl)ethyl)pyrimidin-4-amine(37c):

$$
\begin{aligned}
& \stackrel{\infty}{\circ} \stackrel{\ominus}{-}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\begin{array}{ll}\stackrel{0}{6} & \stackrel{0}{0} \\ \stackrel{6}{6} & \stackrel{1}{+} \\ 1 & \stackrel{1}{+}\end{array}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
N-(1-(benzofuran-2-yl)ethyl)-4-chloro-N-methylaniline (38c):
 $\stackrel{\text { N }}{\text { N }} \stackrel{\infty}{\infty}$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

¢ ¢ ¢ ¢ ¢	
-	-

®	¢
ก	ल

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

4-(1-(benzofuran-2-yl)ethyl)-3,4-dihydro-2H-benzo[b][1,4]oxazine (39c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

\bigcirc	
べ	
$\stackrel{\sim}{\sim}$	-
11	

∞	N	∞
¢	앙	\%

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

1-(1-(benzofuran-2-yl)ethyl)-1,2,3,4-tetrahydroquinoline (40c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\infty}{\circ}$	$\stackrel{\circ}{\circ}$	
¢ ¢	-	
1	${ }^{-}$	$\checkmark-5$

$\underset{\sim}{\sim} \times$	
i	-

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N-allyl- N-(1-(benzofuran-2-yl)ethyl)aniline (41c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

$\bigcirc{ }_{-}^{\infty}$			人
¢ ¢ ¢－	$\stackrel{\sim}{\sim}$ NัN	$\stackrel{+}{\circ}$	
1 ｜	－「テ 「	－	mmNNN

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．

1-(benzofuran-2-yl)- N -benzylethan-1-amine (43c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

1-(benzofuran-2-yl)- N -phenethylethan-1-amine (44c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

1－（1－（benzofuran－2－yl）ethyl）－1H－imidazole（45c）：

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

－\ddagger	〒	$\hat{\infty}$
尔㚱		$\stackrel{\infty}{0}$
\	1 l	｜

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．

1-(1-(benzofuran-2-yl)ethyl)-1H-benzo[d]imidazole (46c):

®®웅

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.
(

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

1-(1-(benzofuran-2-yl)ethyl)-1H-pyrrole (47c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

ก ¢	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

1-(1-(benzofuran-2-yl)ethyl)-1H-indole (48c):

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.

1－（1－（benzofuran－2－yl）ethyl）－1H－1，2，3－triazole（49c）：

N
O
N

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

N ${ }_{\text {¢ }}^{\text {¢ }}$	ه冂o
	$\stackrel{\sim}{\sim}$ ペ¢

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．

1－（1－（benzofuran－2－yl）ethyl）pyrrolidine（50c）：

$$
\begin{aligned}
& \text { へ人NへN人NNN人。 }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

$\begin{aligned} & \text { ᄃ } \\ & \underset{\sim}{x} \\ & \text { in } \end{aligned}$	ल
	N

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．

1-(1-(benzofuran-2-yl)ethyl)piperidine (51c):

NNNNNNNNNNN人N

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

4-(1-(benzofuran-2-yl)ethyl)morpholine (52c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
tert－butyl 4－（1－（benzofuran－2－yl）ethyl）piperazine－1－carboxylate（53c）：
$\underbrace{\circ} \mathrm{O}$
へ人NへNへ人N人。

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．
ethyl 3-phenyl-3-(phenylamino)propanoate (54c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

N ${ }^{\text {\% }}$	$\stackrel{\sim}{0}$
-	$\dot{\text { F }}$
1 \|	।

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-((4-fluorophenyl)amino)-3-phenylpropanoate (55c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\stackrel{i}{5}}{\stackrel{i}{\circ}}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

${ }^{19} \mathrm{~F}$ spectrum in CDCl_{3}.
ethyl 3-((4-cyanophenyl)amino)-3-phenylpropanoate (56c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\circ}{\circ}$	
N	
	, - -

en
$\stackrel{0}{6}$
Γ
${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-((4-methoxyphenyl)amino)-3-phenylpropanoate (57c):

\qquad

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\infty}{-}$
$\stackrel{0}{\dot{j}}$
ion

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-phenyl-3-(p-tolylamino)propanoate (58c):

$\stackrel{\circ}{ } \stackrel{\infty}{ } \stackrel{1}{\rightleftharpoons}$ $\underbrace{\wedge N N}$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\circ}{-}$	9\%	\bigcirc	$\stackrel{\infty}{\infty}$
¢ \%	-	$\stackrel{\text { N }}{ }$	
I	,	।	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
thyl 3-((4-(3-oxomorpholino)phenyl)amino)-3-phenylpropanoate (59c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

\bigcirc	
$\stackrel{\text { N® }}{\sim}$	
	11 ni

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3－（（3，5－dimethylphenyl）amino）－3－phenylpropanoate（60c）：
$\stackrel{\circ}{\stackrel{\circ}{\ulcorner } \stackrel{0}{\leftarrow}}$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

\％	$\mathfrak{\sim}$	ำロヘベ	8
N	$\stackrel{\infty}{\sim} \stackrel{(}{\sim}$	－${ }_{\sim}^{\infty} \times$	$\stackrel{m}{\square}$
$\stackrel{\square}{1}$	「「	$1 /$	

$\stackrel{\text { ® }}{\sim}$	\bar{m}	N
ベ宀	J	ผ่
$1>1$		

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．
ethyl 3-((3-fluoro-4-methylphenyl)amino)-3-phenylpropanoate (61c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$$
\begin{aligned}
& \text { N~~~ }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}
${ }^{19} \mathrm{~F}$ NMR spectrum in CDCl_{3}.
ethyl 3-((2,3-dihydro-1H-inden-5-yl)amino)-3-phenylpropanoate (62c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-(naphthalen-1-ylamino)-3-phenylpropanoate (63c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

8
$\stackrel{0}{6}$
$\stackrel{1}{6}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-phenyl-3-(pyridin-4-ylamino)propanoate (64c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

ल.	® へ	$\stackrel{\rightharpoonup}{*}$	ธ~\%	\%				0
$\stackrel{\text { }}{ }$	$\stackrel{5}{50}$	$\stackrel{+}{\square}$	$\stackrel{\sim}{\sim}$ N	-	\%	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\infty}{+}$	$\stackrel{\square}{\stackrel{-}{\square}}$
।	11	\|	-	,	1	1	-	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-phenyl-3-(pyridin-3-ylamino)propanoate (65 c): ©

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

	- ${ }_{\text {N }}^{\text {N }}$
1	-

\%	F
ベ	\%

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3－（（2－chloropyridin－4－yl）amino）－3－phenylpropanoate（66c）：

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

$\stackrel{\circ}{-}$	さ ${ }_{\text {－}}^{\text {N }}$	ก	ヲべ	N
N	¢i¢	$\stackrel{\dot{J}}{\dot{+}}$	¢ ¢	¢
1	\1	1	\1	，

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．
ethyl 3-((6-methylpyridin-3-yl)amino)-3-phenylpropanoate (67c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.
$\underset{\text { N }}{\text { N }}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
tert-butyl 4-(6-((3-ethoxy-3-oxo-1-phenylpropyl)amino)pyridin-3-yl)piperazine-1-carboxylate (68c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

-81.34

-62.16
-54.79
$\int_{52.15}^{5} .45$
-43.78

-29.85

-15.53

210	200	190	180	170	160	150	140	130	120	110	100	0	80	70	60	50	40	0	20
											pm)								

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-(diphenylamino)-3-phenylpropanoate (69c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
methyl 2-(methyl(phenyl)amino)-2-phenylacetate (70c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{ }{-}$	$\stackrel{\circ}{7}$
$\stackrel{\rightharpoonup}{6}$	ก
\|	।

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-(indolin-1-yl)-3-phenylpropanoate (71c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

\&	$\stackrel{1}{2}$	
$\stackrel{\text { N }}{ }$	ก	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-(allyl(phenyl)amino)-3-phenylpropanoate (72c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\bar{\circ}$	
$\stackrel{\sim}{\sim}$	
-	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-(4-chlorophenyl)-3-(phenylamino)propanoate (73c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

\%	
N	¢ ${ }_{\text {¢ }}^{\text {¢ }}$
-	¢- -

合
$\stackrel{0}{0}$
$\stackrel{1}{1}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-(4-bromophenyl)-3-(phenylamino)propanoate (74c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\begin{array}{r}8 \\ \stackrel{8}{6} \\ \stackrel{1}{6} \\ \hline\end{array}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-(4-methoxyphenyl)-3-(phenylamino)propanoate (75c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\odot}{\bullet}$	$\stackrel{\sim}{N}$	¢	N	\cdots M
N	\bigcirc	$\stackrel{\infty}{+}$	¢0 ${ }^{\circ} \mathrm{N}$	$\stackrel{\circ}{\square}$
		\leftarrow		

$\bigcirc \bigcirc$	¢
-	-
く	\|

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
methyl 3-(phenylamino)-3-(4-(trifluoromethyl)phenyl)propanoate (76c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\text { ® }}{6}$	¢	
$\stackrel{\text { N }}{\sim}$	お矿	

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
ethyl 3-(phenylamino)-3-(2,3,4,5-tetrafluorophenyl)propanoate (77c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\text { N }}{ }$	
	「「

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

${ }^{19} \mathrm{~F}$ NMR spectrum in CDCl_{3}.

methyl 1-(phenylamino)-1,2,3,4-tetrahydronaphthalene-2-carboxylate (78c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(2-phenylchroman-4-yl)pyridin-4-amine (79c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

8	$\bar{\circ}$
$\stackrel{\ominus}{\sim}$	
।	\/ \}

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N-(2-phenylchroman-4-yl)pyridin-3-amine (80c)

mo

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1	pm)										

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

$N, 2$-diphenylchroman-4-amine (81c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{\square}{\square}$		∞	\bigcirc
$\stackrel{\circ}{\stackrel{\circ}{\square}}$	ホ ¢ ¢ ¢	$\stackrel{5}{\circ}$	$\stackrel{\infty}{+}$
		+	$\stackrel{+}{1}$

?10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											m)										

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
methyl 2-(3-(((2-chloropyridin-4-yl)amino)(phenyl)methyl)phenyl)propanoate (82c):

$$
\begin{aligned}
& \text { F }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{-}{-5}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\stackrel{0}{\stackrel{0}{i}}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

2-chloro- N-(4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)pyridin-4-amine (83c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
isopropyl 2－（4－（（4－chlorophenyl）（（2－chloropyridin－4－yl）amino）methyl）phenoxy）acetate（84c）：

$$
\begin{aligned}
& \text { 人 }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} ．

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} ．

3-(4-(1-(benzofuran-2-yl)ethyl)piperazin-1-yl)benzo[d]isothiazole (85c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.
$\stackrel{\infty}{\circ}$ N
过 in io
$\stackrel{\text { ¢ }}{\stackrel{\circ}{\circ}}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N-(1-(benzofuran-2-yl)ethyl)-3,3-diphenylpropan-1-amine (86c):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

N	$\stackrel{\circ}{\infty}$
es	$\stackrel{\sim}{\sim}$

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

1-([1,1'-biphenyl]-4-yl(p-tolyl)methyl)-1H-imidazole (87c):

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.
sodium (E)-2-(1-phenylethylidene)-1-tosylhydrazin-1-ide (10a'):

$\stackrel{\stackrel{y}{*}}{\stackrel{y}{*}}$

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

$$
\begin{aligned}
& \text { NTO }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.

1,5-Diazabicyclo[4.3.0]non-5-ene formic acid salt (1m):

$\underset{\substack{\text { a } \\ 1}}{\substack{0}}$

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

$\stackrel{\circ}{+}$ ㅇ.	๑	へo ${ }^{\circ}$
¢ ¢	\cdots	$\stackrel{\sim}{\sim}$
,	$\stackrel{1}{1}$	¢

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.
N^{\prime}-(1-(benzofuran-2-yl)ethylidene)-4-methylbenzenesulfonohydrazide(1a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.
N^{\prime}-(1-(7-methoxybenzofuran-2-yl)ethylidene)-4-methylbenzenesulfonohydrazide(2a):

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

18.ss-

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.
N^{\prime}-(1-(benzo[b]thiophen-2-yl)ethylidene)-4-methylbenzenesulfonohydrazide (3a):

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.
tert-butyl 3-(1-(2-tosylhydrazono)ethyl)-1H-indole-1-carboxylate (4a):

Boc

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

4-methyl- N^{\prime}-(1-(thiophen-2-yl)ethylidene)benzenesulfonohydrazide (5a):

$\stackrel{\sim}{\sim} \sim$

$\begin{array}{lll}11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0 .\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

N^{\prime}-(6,7-dihydrobenzo[b]thiophen-4(5H)-ylidene)-4-methylbenzenesulfonohydrazide (7a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

4-methyl- N^{\prime}-(1-(2-methylimidazo[1,2-a]pyridin-3-yl)ethylidene)benzenesulfonohydrazide (8a):

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

Tert-butyl-4-(2-tosylhydrazono)-4,5,6,7-tetrahydro-1H-indole-1-carboxylate (9a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

4-methyl- N^{\prime}-(1-(4-phenoxyphenyl)ethylidene)benzenesulfonohydrazide(12a):

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.
N^{\prime}-(1-(3,4-dichlorophenyl)ethylidene)-4-methylbenzenesulfonohydrazide(14a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

N^{\prime}-(1-(benzo[d][1,3]dioxol-5-yl)ethylidene)-4-methylbenzenesulfonohydrazide (15a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-D 6.

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

4-methyl- N^{\prime}-(1-(naphthalen-2-yl)ethylidene)benzenesulfonohydrazide(16a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N^{\prime}-(cyclopentyl(phenyl)methylene)-4-methylbenzenesulfonohydrazide (17a):

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-D 6.
N^{\prime}-(2,3-dihydro-1 H-inden-1-ylidene)-4-methylbenzenesulfonohydrazide (18a):
nn mi i ત~

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

[^0]${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N^{\prime}-(3,4-Dihydronaphthalen-1(2H)-ylidene)-4-methylbenzenesulfonohydrazide (19a) :

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

N^{\prime}-(chroman-4-ylidene)-4-methylbenzenesulfonohydrazide (20a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
N^{\prime}-(diphenylmethylene)-4-methylbenzenesulfonohydrazide(21a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

N^{\prime}-(4-(tert-butyl)benzylidene)-4-methylbenzenesulfonohydrazide (23a):


```
心NNNNNNNNNN
~/~
```


${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}

${ }^{13}$ C NMR spectrum in DDMSO-D ${ }_{6}$.
N^{\prime}－（4－chlorobenzylidene）－4－methylbenzenesulfonohydrazide（24a）：

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO－d_{6} ．
sがしてー

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO－d_{6} ．

Ethyl 3-phenyl-3-(2-tosylhydrazono)propanoate (54a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

$\begin{array}{llllllllllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.
methyl (Z)-2-phenyl-2-(2-tosylhydrazineylidene)acetate (70a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.
ethyl (Z)-3-(4-chlorophenyl)-3-(2-tosylhydrazineylidene)propanoate (73a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.
ethyl－3－（4－bromophenyl）－3－（2－tosylhydrazineylidene）propanoate（74a）：

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO－d_{6} ．

$\stackrel{\square}{\square}$	$\stackrel{\infty}{\text { ¢ ¢ ¢ }}$
∞	র寸⿰亻寸
	－

$\stackrel{+}{\sim}$	\bigcirc	9	\cdots
$\bar{¢}$	ल	N	
，			

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO－d_{6} ．
ethyl -3-(4-methoxyphenyl)-3-(2-tosylhydrazineylidene)propanoate (75a):

$\stackrel{\hat{s}}{i}$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-D ${ }_{6}$.
ethyl -3-(2-tosylhydrazineylidene)-3-(4-(trifluoromethyl)phenyl)propanoate (76a):

$\stackrel{\infty}{\infty} \underset{\substack{\infty}}{\underset{\sim}{\infty}}$

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}
ethyl -3-(2,3,4,5-tetrafluorophenyl)-3-(2-tosylhydrazineylidene)propanoate (77a):
$\underset{\underset{i}{\sim}}{\underset{\sim}{*}}$

${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6}.

ก	
-	
	-r-r-r-r-r

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.

4-methyl- N^{\prime}-(2-phenylchroman-4-ylidene)benzenesulfonohydrazide-4-methyl- N^{\prime}-(2-phenylchroman-4-ylidene)benzenesulfonohydrazide (79a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.
N^{\prime}-(4-(3,4-dichlorophenyl)-3,4-dihydronaphthalen-1(2H)-ylidene)-4-
methylbenzenesulfonohydrazide (83a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6}.
isopropyl 2-(4-((4-chlorophenyl)(2-tosylhydrazono)methyl)phenoxy)-2-methylpropanoate (84a):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

(1-methylcyclopropane-1,2-diyl)dibenzene (10aa):

${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}.

[^0]: $\begin{array}{llllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

