Supporting Information

Synthesis of 3-arylamino-2-polyhydroxyalkyl-substituted indoles from unprotected saccharides and anilines

JilaiWu,^a Likai Zhou,^{ab} Song Xie,^a Chao Wei,^a Xiaoliu Li,^a Hua Chen*,^a

^akey Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding Hebei, 071002, P. R. China; Email: hua-todd@163.com

^bCollege of Chemistry and Chemical Engineering, Xingtai University, Hebei, Xingtai, 054001, China

Contents

1.	General Considerations	-S2
2.	Experimental Section	-S2
3.	NMR spectra of the compounds	·S25
4.	2D NMR analysis spectra	·S76
5.	High resolution mass spectra	-S79
6.	Crystal Information	- S8 0

1. General Considerations:

Solvents were all analytical grade and other reagents were purchased from energy chemical and Bide Pharmatech Ltd. All reactions need to be carried out under nitrogen atmosphere. ¹H NMR spectra were measured on Bruker AVANCE 600 MHz and 400 MHz spectrometers. ¹³C NMR spectra were recorded on Bruker 100 MHz spectrometers with complete proton decoupling. Chemical shifts were reported in ppm from tetramethylsilane in the case of MeOH or DMSO as an internal standard. Melting points were measured on glass slides on an SGW X-4 Melting Point Apparatus. Optical rotations were determined on an SGW-1 automatic polarimeter. Mass Spectra (MS) and High resolution mass spectrometry (HRMS) is conducted on FTICR-MS (Ionspec 7.0T) mass spectrometer with electric spray ionization (ESI) manufactured by Ionspec Company in the United States.Thin-layer chromatography (TLC) was performed on precoated plates (Qingdao GF254) with detection by UV light, Puke (china) silica gel (200-300 mesh) was used for column chromatography.Structural assignments were made with additional information from gCOSY, gHSQC, and gHMBC experiments. X-Ray diffraction data were gathered on a Bruker D8 VENTURE diffractometer equipped with Mo-Kα radiation ($\lambda = 0.71073$ Å) at 273 K.

2. Experimental Section:

SchemeS1Synthesis of the indoles using unprotected L-rhamnose.

General experimental procedure: L-rhamnose (66 mg, 0.4 mmol), aniline (2.5 equiv.) and Sc(OTf)₃ (0.05 equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of 80 °C under air atmosphere for 12h. Upon completion, the mixture was cooled to room temperature. The solvent was evaporated in *vacuo*. The crude product was purified by column chromatography (petroleum ether : ethyl acetate V/V = 1 : 1) to give **1a** as a pale white solid with a yield of 78%. Under similar conditions, different aromatic amines were used as starting materials for the reaction, and the corresponding products **2a-20a** were obtained, respectively (Scheme S1).

cheme S2 Synthesis of the indoles using unprotected five-carbons or six-carbons sugars.

General experimental procedure: D-lyxose (60 mg, 0.4 mmol), aromatic amines (2.5 equiv.) and Sc(OTf)₃ (0.05 equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of 80 °C under air atmosphere for 12 h. Upon completion, the mixture was cooled to room temperature. The solvent was evaporated in *vacuo*. The crude product was purified by column chromatography (petroleum ether : ethyl acetate V/V = 1 : 1) to give **1b-8b** as pale yellow solids. Under similar conditions, D/L-ribose(60 mg, 0.4 mmol), D-arabinose(60 mg, 0.4 mmol), and D-xylose(60 mg, 0.4 mmol) with different aromatic amines were used as starting materials for the reaction, and the corresponding products **9b-14b** were obtained, respectively (Scheme S2-a).

D-mannose (72 mg, 0.4 mmol), aromatic amines (2.5 equiv.) and Sc(OTf)₃ (0.05 equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of 80 °C under air atmosphere for 12 h. Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in *vacuo*. The crude product was purified by column chromatography (petroleum ether : ethyl acetate V/V = 1 : 1) to give **15b** as a pale yellow solid. Under similar conditions, D-glucose(72 mg, 0.4 mmol), D-galactose(72 mg, 0.4 mmol) or D-fructose(72 mg, 0.4 mmol)with different aromatic amines were used as starting materials for the reaction, and the corresponding products **15b** and **16b** were obtained, respectively (Scheme S2-b).

Scheme S3Synthesis of the indoles using unprotected disaccharides.

General experimental procedure: Lactose (68 mg, 0.2 mmol), 3,5-dimethylaniline (2.5 equiv.) and Sc(OTf)₃ (0.05 equiv.) were added into a 10 mL flask, 2.5 mL acetonitrile and water (*V*:*V*=4:1) as the mixed solvent. Then the solution was stirred at the temperature of 80 °C under air atmosphere for 12 h. Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in *vacuo*. The crude product was purified by column chromatography (dichloromethane : methanol V/V = 5 : 1) to give **17b** as a pale yellow solid. Under similar conditions, maltose (68mg, 0.2mmol) with 3,5-dimethylaniline were used as starting materials for the reaction, and the corresponding **18b** product was obtained(SchemeS3).

Scheme S4 Extension experiments.

General experimental procedure:Product **13a** (50 mg, 0.11 mmol), Ph-B(OH)₂ (2.4 equiv.), CsCO₃ (1.5 equiv.) and DPPF PbCl₂ (0.1 equiv.) were added into a 20 mL flask, 2.2 mL 1,4-dioxane : H₂O (V:V=5:1) as the mixed solvent. Then the solution was stirred at the temperature of 90 °C under N₂ atmosphere for 3 h. Upon completion, the mixture was cooled to room temperature, 20 mL methanol was added to dissolve the solid residue, and then the solvent was evaporated in *vacuo*. The crude product was purified by column

chromatography (petroleum ether : ethyl acetate V/V = 1 : 1) to give **15a** as a pale yellow solid (SchemeS4-a). General experimental procedure: L-rhamnose (1g, 6.1mmol), aniline (2.5 equiv.) and Sc(OTf)₃ (0.05 equiv.) were added into a 20 mL flask, 6.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of 80 °C under air atmosphere for 12 h. Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in *vacuo*. The crude product was purified by column chromatography (petroleum ether : ethyl acetate V/V = 1 : 1) to give **1a** as a pale white solid with a yield of 54% (SchemeS4-b).

Scheme S5 Controlled experiment.

General experimental procedure: 2,3-*O*-Isopropylidene L-rhamnose(88 mg, 0.4mmol), aniline (4.0 equiv.) and Sc(OTf)₃(0.2 equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of 80 °C under air atmosphere for 10 minutes, subsequently, 2.0 equiv NaBH(OAc)₃ was added into the reaction for another 20 minutes. Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in *vacuo*. The crude product was purified by silica gel column chromatography (petroleum ether : ethyl acetate V/V = 1 : 1) to give **1c** as a pale yellow solid (Scheme S5-a).

General experimental procedure:2-Deoxy-D-ribose(55 mg, 0.4 mmol), aniline (4.0 equiv.) and $Sc(OTf)_3$ (0.2 equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of 80 °C under air atmosphere for 3h. Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in *vacuo*. The crude product was purified by column chromatography (petroleum ether : ethyl acetate V/V = 3 : 1) to give **2c** and **2c'** as pale yellow solids. Under similar conditions, 2-deoxy-D-ribose and different aromatic amines were used as starting materials for the reaction, and the corresponding products **3c,3c'-6c,6c'** were obtained, respectively (Scheme S5-b).

General experimental procedure: Tetrahydro-2*H*-pyran-2,3-diol (60 mg, 0.5mmol), aniline (2.5 equiv.) and $Sc(OTf)_3$ (0.05 equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of 80 °C under air atmosphere for 12 h. Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in *vacuo*. The crude product was purified by column chromatography (petroleum ether : ethyl acetate V/V = 1 : 1) to give **7c** (Scheme S5-c).

(2*S*,3*R*)-1-(3-(phenylamino)-1*H*-indol-2-yl)butane-2,3-diol (1a). Yellow solid, 90 mg, yield 78%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 102.5 - 103.3 °C. $[\alpha]_D^{25}$ +10.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CD₃OD) δ 7.30 (d, *J* = 8.2 Hz, 1H), 7.21 (d, *J* = 7.8 Hz, 1H), 7.07 – 7.00 (m, 3H), 6.91 (d, *J* = 7.2 Hz, 1H), 6.63 – 6.53 (m, 3H), 3.76 (dt, *J* = 8.6, 4.8 Hz, 1H), 3.64 – 3.57 (m, 1H), 3.03 (dd, *J* = 14.8, 4.2 Hz, 1H), 2.80 (dd, *J* = 14.8, 8.4 Hz, 1H), 1.16 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CD₃OD) δ 149.0, 134.8, 131.9, 128.5, 125.6, 120.5, 118.2, 117.5, 116.6, 114.8, 113.0, 110.5, 75.1, 70.0, 28.7, 17.1. MS (ESI): Calculated for C₁₈H₂₁N₂O₂ ([M+H]⁺): 297.1598, found: 297.1597.

(2*R*,3*S*)-1-(7-methyl-3-(*o*-tolylamino)-1*H*-indol-2-yl)butane-2,3-diol(2a). Yellow solid, 91mg, yield 72%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 100.5 - 101.3 °C. $[\alpha]_D^{25}$ +9.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CD₃OD) δ 7.06 (t, *J* = 6.2 Hz, 2H), 6.89 – 6.82 (m, 3H), 6.57 (t, *J* = 7.4 Hz, 1H), 6.36 (d, *J* = 8.2 Hz, 1H), 3.81 (dd, *J* = 8.6, 4.4 Hz, 1H), 3.64 (d, *J* = 7.2 Hz, 1H), 3.05 (dd, *J* = 14.6, 4.2 Hz, 1H), 2.87 (dd, *J* = 14.8, 8.2 Hz, 1H), 2.53 (s, 3H), 2.37 (s, 3H), 1.20 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 146.5, 134.0, 131.1, 129.5, 126.2, 125.3, 121.5, 121.1, 119.9, 118.4, 116.6, 115.8, 115.4, 111.7, 75.3, 70.0, 28.8, 17.3, 16.6, 15.3.MS (ESI): Calculated for C₂₀H₂₅N₂O₂ ([M+H]⁺): 325.1911, found: 325.1918.

(2*R*,3*S*)-1-(6-methyl-3-(*m*-tolylamino)-1*H*-indol-2-yl)butane-2,3-diol(3a). Yellow solid, 95 mg, yield 62%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 90.5 - 92.3 °C. $[\alpha]_D^{25}$ +18.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CD₃OD) δ 7.16 - 7.11 (m, 1H), 6.94 (dd, *J* = 7.8, 5.6 Hz, 2H), 6.67 (d, *J* = 7.2 Hz, 1H), 6.48 - 6.32 (m, 3H), 3.78 (dd, *J* = 8.8, 4.6 Hz, 1H), 3.66 - 3.62 (m, 1H), 3.08 - 2.95 (m, 1H), 2.78 (dd, *J* = 14.8, 8.4 Hz, 1H), 2.42 (d, *J* = 8.8 Hz, 3H), 2.19 (s, 3H), 1.18 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 150.5, 138.2, 134.9, 133.0, 128.9, 128.4, 120.5, 119.8, 117.3, 117.2, 113.6, 113.2, 109.9, 108.3, 75.1, 70.0, 47.6, 28.4, 20.4, 17.5, 17.0.MS (ESI): Calculated for C₂₀H₂₅N₂O₂ ([M+H]⁺): 325.1911, found: 325.1907.

(2*R*,3*S*)-1-(5-methyl-3-(*p*-tolylamino)-1*H*-indol-2-yl)butane-2,3-diol(4a). Yellow solid, 84 mg, yield 71%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 97.4 - 98.6 °C. $[\alpha]_D^{25}$ +16.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CD₃OD) δ 7.20 (d, *J* = 8.2 Hz, 1H), 7.03 (s, 1H), 6.89 (dd, *J* = 8.4, 2.4 Hz, 3H), 6.57 – 6.51 (m, 2H), 3.77 (ddd, *J* = 8.2, 5.4, 4.2 Hz, 1H), 3.68 – 3.60 (m, 1H), 3.03 (dd, *J* = 14.8, 4.2 Hz, 1H), 2.81 (dd, *J* = 14.8, 8.2 Hz, 1H), 2.34 (s, 3H), 2.21 (s, 3H), 1.18 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 146.7, 133.2, 131.9, 128.9, 127.2, 125.9, 125.7, 122.0, 117.2, 114.8, 113.2, 110.3, 75.1, 70.0, 48.3, 48.1, 47.9, 47.6, 47.4, 47.2, 47.0, 28.8, 20.3, 19.2, 17.1.MS (ESI): Calculated for C₂₀H₂₅N₂O₂ ([M+H]⁺): 325.1911, found: 325.1913.

(2R,3S)-1-(6-(tert-butyl)-3-((3-(tert-butyl)phenyl)amino)-1H-indol-2-yl)butane-2,3-diol(5a). Yellow

solid, 124 mg, yield 72%, petroleum ether/ethyl acetate (V/V)=1:1, m.p. 93.7 - 94.3 °C. [α]_D²⁵ +15.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.36 (d, *J* = 1.8 Hz, 1H), 7.18 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.05 (d, *J* = 8.4Hz, 1H), 6.99 (t, *J* = 7.8 Hz, 1H), 6.80 (q, *J* = 2.0 Hz, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 6.41 (dd, *J* = 7.8, 1H), 6.41 (dd, *J* = 7.8,

2.2 Hz, 1H), 3.79 (dt, J = 7.8, 4.8 Hz, 1H), 3.64 (dd, J = 6.6, 1.8 Hz, 1H), 3.04 (ddd, J = 14.8, 4.4, 1.8 Hz, 1H), 2.84 (ddd, J = 14.8, 8.2, 1.8 Hz, 1H), 1.39 (s, 9H), 1.25 (s, 9H), 1.18 (d, J = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 151.5, 148.6, 143.8, 134.9, 130.9, 128.1, 123.2, 117.2, 116.3, 114.8, 113.8, 110.5, 110.3, 106.9, 75.2, 69.9, 34.1, 34.0, 31.0, 30.5, 28.8, 17.1.MS (ESI): Calculated for C₂₆H₃₇N₂O₂ ([M+H]⁺): 409.2850, found: 409.2851.

(2*R*,3*S*)-1-(5-(*tert*-butyl)-3-((4-(*tert*-butyl)phenyl)amino)-1*H*-indol-2-yl)butane-2,3-diol (6a).Yellow solid, 96 mg, yield 58%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 93.1 - 94.8 °C. $[\alpha]_D^{25}$ +22.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.29 - 7.24 (m, 2H), 7.19 - 7.12 (m, 3H), 6.64 - 6.57 (m, 2H), 3.81 - 3.76 (m, 1H), 3.63 (d, *J* = 1.7 Hz, 1H), 3.03 (ddd, *J* = 14.7, 4.2, 1.6 Hz, 1H), 2.86 - 2.80 (m, 1H), 1.31 (s, 9H), 1.28 (s, 9H), 1.18 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 146.6, 141.0, 139.4, 132.9, 131.6, 125.4, 125.2, 118.6, 115.4, 113.4, 112.9, 110.0, 75.1, 70.0, 34.0, 33.3, 31.1, 30.7, 30.3, 28.8, 17.1.MS (ESI): Calculated for C₂₆H₃₇N₂O₂ ([M+H]⁺): 409.2850, found: 409.2850.

(2*R*,3*S*)-1-(6-(methylthio)-3-((3-(methylthio)phenyl)amino)-1*H*-indol-2-yl)butane-2,3-diol (7a). Yellow solid, 107 mg, yield 63%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 107.7 - 109.1 °C. $[\alpha]_D^{25}$ +12.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.35 (d, *J* = 1.8 Hz, 1H), 7.18 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.04 - 6.94 (m, 2H), 6.54 (dd, *J* = 4.4, 2.2 Hz, 2H), 6.41 (d, *J* = 8.2 Hz, 1H), 3.81 - 3.74 (m, 1H), 3.64 - 3.62 (m, 1H), 3.04 (ddd, *J* = 14.8, 4.2, 1.6 Hz, 1H), 2.86 - 2.75 (m, 1H), 2.51 (s, 3H), 2.36 (s, 3H), 1.19 (d, *J* = 6.4, 3H).¹³C NMR (101 MHz, CD₃OD) δ 150.1, 139.7, 130.0, 133.9, 130.4, 129.7, 124.9, 122.1, 120.7, 118.3, 117.2, 115.6, 111.8, 111.0, 75.8, 70.9, 29.4, 18.0, 17.6, 15.2.MS (ESI): Calculated for C₂₀H₂₅N₂O₂S₂ ([M+H]⁺): 389.1352, found: 389.1355.

(2*R*,3*S*)-1-(5-(methylthio)-3-((4-(methylthio)phenyl)amino)-1*H*-indol-2-yl)butane-2,3-diol (8a). Yellow solid, 93 mg, yield 64%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 106.6 - 107.9 °C. [α]_D²⁵ +13.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.29 (d, *J* = 8.4 Hz, 1H), 7.23 (d, *J* = 1.8 Hz, 1H), 7.17 – 7.13 (m, 2H), 7.10 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.59 (d, *J* = 8.6 Hz, 2H), 3.77 (ddd, *J* = 8.4, 5.4, 4.2 Hz, 1H), 3.63 (d, *J* = 5.6 Hz, 1H), 3.04 (dd, *J* = 14.8, 4.2 Hz, 1H), 2.83 – 2.78 (m, 1H), 2.40 (s, 3H), 2.38 (s, 3H), 1.19 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 148.0, 133.5, 133.1, 131.2, 126.7, 126.2, 126.1, 123.6, 122.6, 118.2, 114.3, 113.5, 111.2, 75.0, 70.0, 28.6, 18.0, 17.5, 17.2.MS (ESI): Calculated for C₂₀H₂₅N₂O₂S₂ ([M+H]⁺): 389.1352, found: 389.1353.

(2*R*,3*S*)-1-(6-fluoro-3-((3-fluorophenyl)amino)-1*H*-indol-2-yl)butane-2,3-diol (9a).Yellow solid, 71 mg, yield 49%, petroleum ether/ethyl acetate (*V/V*)=1:1, $[\alpha]_D^{25}$ +17.0 (*c* 0.1, CH₃OH); m.p. 90.1 - 92.4 °C.¹H NMR (400 MHz, CD₃OD) δ 7.20 - 7.13 (m, 1H), 7.06 - 7.02 (m,, 2H), 6.78 - 6.71 (m, 1H), 6.44 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.32 - 6.29 (m, 1H), 6.25 - 6.22 (m, 1H), 3.79 - 3.74 (m, 1H), 3.66 - 3.62 (m, 1H), 3.05 - 3.03 (m, 1H), 2.77 (ddd, *J* = 14.8, 8.6, 2.4 Hz, 1H), 1.20 (d, *J* = 6.4Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 165.0, 163.4, 160.4, 158.8, 151.2, 151.1, 134.7, 134.6, 132.8, 132.8, 129.7, 125.4, 122.0, 118.1, 118.0, 114.2, 108.9, 108.8, 106.7, 106.6, 102.7, 102.6, 99.4, 99.2, 96.9, 96.7, 75.0, 70.1, 28.6, 17.2.MS (ESI): Calculated for C₁₈H₁₉N₂O₂F₂ ([M+H]⁺): 333.1409, found: 333.1410.

(2*R*,3*S*)-1-(6-chloro-3-((3-chlorophenyl)amino)-1*H*-indol-2-yl)butane-2,3-diol (10a).Yellow solid, 95 mg, yield 66%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 94.2 – 96.3 °C. $[\alpha]_D^{25}$ +31.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.29 (d, *J* = 8.0 Hz, 1H), 7.06 – 6.98 (m, 2H), 6.93 (d, *J* = 7.6 Hz, 1H), 6.61 – 6.43 (m, 3H), 3.80 – 3.78 (m, 1H), 3.68 – 3.63 (m, 1H), 3.05 (dd, *J* = 14.8, 4.2 Hz, 1H), 2.76 (dd, *J* = 14.6, 8.8 Hz, 1H), 1.20 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 151.8, 136.2, 135.7, 134.3, 129.5, 123.7, 121.2, 119.5, 116.0, 112.4, 111.3, 109.5, 74.8, 70.1, 28.3, 17.2.MS (ESI): Calculated for C₁₈H₁₉N₂O₂Cl₂ ([M+H]⁺): 365.0818, found: 365.0820.

(2*R*,3*S*)-1-(5-chloro-3-((4-chlorophenyl)amino)-1*H*-indol-2-yl)butane-2,3-diol (11a). Yellow solid, 75 mg, yield 58%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 97.5 - 98.5 °C. $[\alpha]_D^{25}$ +20.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, DMSO – *d*6) δ 10.98 (s, 1H), 7.36 (d, *J* = 8.6 Hz, 1H), 7.30 (s, 1H), 7.10 – 7.05 (m, 3H), 7.02 (dd, *J* = 8.6, 2.2 Hz, 1H), 6.57 – 6.51 (m, 2H), 4.65 (d, *J* = 5.8 Hz, 2H), 3.72 – 3.43 (m, 2H), 2.94 (dd, *J* = 14.6, 3.8 Hz, 1H), 2.60 (dd, *J* = 14.6, 8.8 Hz, 1H), 1.06 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, DMSO – *d*6) δ 148.3, 136.2, 133.2, 129.0, 126.5, 123.5, 120.6, 120.0, 116.5, 114.6, 113.7, 113.3, 74.8, 70.1, 29.7, 19.5.MS (ESI): Calculated for C₁₈H₁₉N₂O₂Cl₂ ([M+H]⁺): 365.0818, found: 365.0815.

(2*R*,3*S*)-1-(6-bromo-3-((3-bromophenyl)amino)-1*H*-indol-2-yl)butane-2,3-diol (12a). Yellow solid, 126 mg, yield 67%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 100.1 - 102.3 °C. $[\alpha]_D^{25}$ +19.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.35 (d, *J* = 8.0 Hz, 1H), 7.15 – 7.10 (m, 1H), 6.99 – 6.93 (m, 2H), 6.74 – 6.70 (m, 1H), 6.63 (d, *J* = 2.2 Hz, 1H), 6.48 (dd, *J* = 8.2, 2.2 Hz, 1H), 3.79 – 3.77 (m, 1H), 3.66 – 3.64 (m, 1H), 3.04 (ddd, *J* = 14.6, 4.0, 2.8 Hz, 1H), 2.80 – 2.71 (m, 1H), 1.19 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 151.9, 136.1, 129.9, 123.6, 122.9, 122.5, 121.6, 119.2, 118.9, 115.4, 113.6, 113.4, 111.7, 110.1, 74.8, 70.2, 28.3, 17.2.MS (ESI): Calculated for C₁₈H₁₉N₂O₂Br₂ ([M+H]⁺): 452.9808, found: 452.9810.

(2*R*,3*S*)-1-(5-bromo-3-((4-bromophenyl)amino)-1*H*-indol-2-yl)butane-2,3-diol (13a)..Yellow solid, 113 mg, yield 64%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 108.7 - 109.3 °C. $[\alpha]_D^{25}$ +15.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.32 (d, *J* = 1.8 Hz, 1H), 7.26 (d, *J* = 8.6 Hz, 1H), 7.19 – 7.16 (m, 2H), 7.16 – 7.12 (m, 1H), 6.56 – 6.47 (m, 2H), 3.76 (ddd, *J* = 8.8, 5.4, 4.0 Hz, 1H), 3.67 – 3.58 (m, 1H), 3.04 (dd, *J* = 14.8, 4.0 Hz, 1H), 2.79 (dd, *J* = 14.8, 8.8 Hz, 1H), 1.20 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 148.0, 134.3, 133.4, 131.3, 127.1, 123.2, 119.7, 114.5, 113.8, 112.4, 111.6, 107.9, 74.9, 70.1, 47.7, 28.6, 17.2.MS (ESI): Calculated for C₁₈H₁₉N₂O₂Br₂ ([M+H]⁺): 452.9808, found: 452.9809.

(2*R*,3*S*)-1-(1-(naphthalen-2-ylamino)-3*H*-benzo[e]indol-2-yl)butane-2,3-diol (14a).Yellow solid, 107 mg, yield 60%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 99.5 - 100.3 °C. [α]_D²⁵+34.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 8.41 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.82 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.62 (dd, *J* = 8.6, 4.6 Hz, 2H), 7.60 – 7.50 (m, 2H), 7.29 (d, *J* = 8.2 Hz, 1H), 7.22 (td, *J* = 7.6, 1.6 Hz, 2H), 7.19 – 7.11 (m, 2H), 7.08 (ddd, *J* = 8.0, 6.8, 1.4 Hz, 1H), 6.69 (d, *J* = 2.4 Hz, 1H), 3.83 (dt, *J* = 8.8, 4.6 Hz, 1H), 3.71 – 3.61 (m, 1H), 3.14 (dd, *J* = 14.8, 4.2 Hz, 1H), 2.89 (dd, *J* = 14.8, 8.6 Hz, 1H), 1.17 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 146.9, 135.5, 131.1, 131.0, 129.5, 128.5, 128.0, 127.7, 127.7, 127.2, 125.5, 125.4, 124.6, 123.4, 122.2, 121.5, 121.1, 118.9, 117.2, 116.8, 112.9, 105.4, 75.3, 70.1, 47.7, 28.4, 17.1.MS (ESI): Calculated for C₂₆H₂₅N₂O₂ ([M+H]⁺): 397.1911, found: 397.1910.

(2*R*,3*S*)-1-(3-([1,1'-biphenyl]-4-ylamino)-5-phenyl-1*H*-indol-2-yl)butane-2,3-diol (15a).Yellow solid, 106 mg, yield 63%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 112.7 - 113.1 °C. $[\alpha]_D^{25}$ +17.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CDCl₃) δ 7.57 - 7.52 (m, 3H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.40 - 7.32 (m, 8H), 7.20 (q, *J* = 7.0 Hz, 2H), 6.71 (d, *J* = 8.2 Hz, 2H), 3.70 - 3.60 (m, 2H), 2.96 (dd, *J* = 14.8, 3.4 Hz, 1H), 2.82 (dd, *J* = 14.8, 8.6 Hz, 1H), 1.15 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 151.5, 146.2, 145.0, 137.7, 136.9, 136.4, 134.1, 132.3, 132.2, 131.5, 131.0, 129.9, 129.7, 124.8, 120.1, 118.5, 117.3, 115.0, 78.7, 73.8, 31.9, 21.3.MS (ESI): Calculated for C₃₀H₂₉N₂O₂ ([M+H]⁺): 449.2224, found: 449.2228.

methyl2-((2*R*,3*S*)-2,3-dihydroxybutyl)-3-((3-(methoxycarbonyl)phenyl)amino)-1*H*-indole-6carboxylate (16a).Yellow solid, 100 mg, yield 54%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 95.2 - 96.8 °C. $[\alpha]_D^{25}$ +27.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, DMSO – *d*6, D₂O) δ 7.61 (d, *J* = 8.0 Hz, 1H),

7.37 (d, J = 7.4 Hz, 1H), 7.17 – 7.08 (m, 3H), 7.01 (s, 1H), 6.70 – 6.68 (m, 1H), 3.75 (s, 3H), 3.62 (d, J = 4.4 Hz, 1H), 3.49 (s, 3H), 3.46 – 3.40 (m, 1H), 2.93 (dd, J = 14.6, 3.8 Hz, 1H), 2.61 (dd, J = 14.6, 9.0 Hz, 1H), 1.03 (d, J = 6.4 Hz, 3H).¹³C NMR (101 MHz, DMSO – *d*6) δ 168.8, 167.3, 150.3, 138.2, 135.9, 130.5, 129.4, 122.3, 121.9, 119.8, 117.7, 117.2, 116.0, 113.3, 79.7, 74.7, 70.2, 52.3, 29.7, 19.5.MS (ESI): Calculated for C₂₂H₂₅N₂O₆ ([M+H]⁺): 413.1707, found: 413.1705.

methyl2-((2*R*,3*S*)-2,3-dihydroxybutyl)-3-((4-(methoxycarbonyl)phenyl)amino)-1*H*-indole-5carboxylate (17a). Yellow solid, 91 mg, yield 51%, petroleum ether/ethyl acetate (*V/V*)=1:2, m.p. 106.4 - 108.3 °C. [α]_D²⁵ +17.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 8.00 (d, *J* = 1.6 Hz, 1H), 7.82 – 7.76 (m, 3H), 7.42 (d, *J* = 8.6 Hz, 1H), 6.64 (d, *J* = 8.6 Hz, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 3.78 (ddd, *J* = 9.0, 5.4, 4.0 Hz, 1H), 3.68 – 3.63 (m, 1H), 3.07 (dd, *J* = 14.8, 3.8 Hz, 1H), 2.81 (dd, *J* = 14.8, 8.8 Hz, 1H), 1.20 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 168.7, 167.9, 153.4, 137.5, 134.7, 131.1, 124.8, 122.1, 120.4, 120.1, 117.4, 114.4, 111.8, 110.6, 74.8, 70.1, 50.9, 50.6, 28.6, 17.3.MS (ESI): Calculated for C₂₂H₂₅N₂O₆ ([M+H]⁺): 413.1707, found: 413.1702.

1-(4-((5-acetyl-2-((2*R***,3***S***)-2,3-dihydroxybutyl)-1***H***-indol-3-yl)amino)phenyl)ethan-1-one (18a). Yellow solid, 87 mg, yield 66%, petroleum ether/ethyl acetate (***V/V***)=1:2, m.p. 102.5 - 103.3 °C. [\alpha]_D^{25} +23.0 (***c* **0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.98 (d,** *J* **= 1.8 Hz, 1H), 7.81 (dd,** *J* **= 8.8, 1.8 Hz, 3H), 7.44 (d,** *J* **= 8.6 Hz, 1H), 6.67 (d,** *J* **= 8.6 Hz, 2H), 3.78 (ddd,** *J* **= 9.0, 5.4, 3.8 Hz, 1H), 3.66 – 3.63 (m, 1H), 3.07 (dd,** *J* **= 14.8, 3.8 Hz, 1H), 2.81 (dd,** *J* **= 14.8, 8.8 Hz, 1H), 2.57 (s, 3H), 2.48 (s, 3H), 1.20 (d,** *J* **= 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 199.7, 197.9, 153.7, 137.7, 134.9, 130.7, 128.6, 126.0, 124.7, 121.4, 119.6, 114.6, 111.9, 110.9, 74.8, 70.1, 28.6, 25.3, 24.6, 17.3.MS (ESI): Calculated for C₂₂H₂₅N₂O₄ ([M+H]⁺): 381.1809, found: 381.1809.**

(2*R*,3*S*)-1-(6-bromo-3-((3-bromo-4-methylphenyl)amino)-5-methyl-1*H*-indol-2-yl)butane-2,3-diol (19a).Yellow solid, 147 mg, yield 78%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 98.9 - 101.5 °C. $[\alpha]_D^{25}$ +12.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CD₃OD) δ 7.23 (d, *J* = 8.2 Hz, 1H), 6.98 (dd, *J* = 13.9, 8.2 Hz, 2H), 6.67 (d, *J* = 2.4 Hz, 1H), 6.42 (dd, *J* = 8.2, 2.4 Hz, 1H), 3.79 (dt, *J* = 8.9, 4.5 Hz, 1H), 3.68 – 3.63 (m, 1H), 3.03 (dd, *J* = 14.7, 4.1 Hz, 1H), 2.74 (dd, *J* = 14.7, 8.7 Hz, 1H), 2.41 (s, 3H), 2.24 (s, 3H), 1.19 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 149.8, 135.9, 134.5, 130.4, 127.7, 124.6, 124.4, 124.0, 123.4, 116.2, 113.7, 112.9, 112.4, 109.8, 74.8, 70.1, 28.4, 21.1, 20.4, 17.1.MS (ESI): Calculated for C₂₀H₂₃N₂O₂Br₂ ([M+H]⁺): 481.0121, found: 481.0124.

(2*R*,3*S*)-1-(3-((3,5-dimethylphenyl)amino)-5,7-dimethyl-1*H*-indol-2-yl)butane-2,3-diol (20a). Yellow solid, 115 mg, yield 85%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 106.5 - 108.2 °C. $[\alpha]_D^{25}$ +15.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 6.94 (s, 1H), 6.67 (s, 1H), 6.38 (s, 1H), 6.19 (s, 2H), 5.04 (s, 1H), 3.71 (ddd, *J* = 10.8, 7.4, 4.2 Hz, 2H), 2.84 (dd, *J* = 15.2, 2.8 Hz, 1H), 2.74 (dd, *J* = 15.2, 8.2 Hz, 1H), 2.42 (d, *J* = 3.0 Hz, 6H), 2.17 (s, 6H), 1.14 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 149.4, 139.0, 135.1, 132.5, 131.6, 129.4, 123.0, 122.6, 120.0, 115.2, 111.2, 108.7, 77.1, 75.0, 70.2, 27.4, 21.6, 21.5, 18.7, 17.7.MS (ESI): Calculated for C₂₂H₂₄N₂O₂ ([M+H]⁺): 353.2224, found: 353.2227.

(*S*)-3-(7-methyl-3-(*o*-tolylamino)-1*H*-indol-2-yl)propane-1,2-diol (1b). Yellow solid, 84 mg, yield 67%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 105.2 - 106.7 °C. $[\alpha]_D^{25}$ -9.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CD₃OD) δ 7.05 - 7.00 (m, 2H), 6.91 - 6.76 (m, 3H), 6.55 - 6.53 (m, 1H), 6.33 (dd, *J* = 8.0, 1.2 Hz, 1H), 4.03 - 3.94 (m, 1H), 3.52 (dd, *J* = 11.2, 4.4 Hz, 1H), 3.43 (dd, *J* = 11.4, 6.0 Hz, 1H), 2.96 (dd, *J* = 14.4, 5.8 Hz, 1H), 2.87 (dd, *J* = 14.6, 7.2 Hz, 1H), 2.50 (s, 3H), 2.33 (s, 3H).¹³C NMR (101 MHz, CD₃OD) δ 146.5, 134.0, 130.5, 129.6, 126.2, 125.3, 121.5, 121.2, 120.0, 118.5, 116.6, 115.8, 115.5, 111.7, 71.7, 65.3, 29.3, 16.7, 15.4.MS (ESI): Calculated for C₁₉H₂₃N₂O₂ ([M+H]⁺): 311.1754, found: 311.1758.

(*S*)-3-(6-methyl-3-(*m*-tolylamino)-1*H*-indol-2-yl)propane-1,2-diol (2b).Yellow solid, 94 mg, yield 73%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 100.0 - 100.9 °C. $[\alpha]_D^{25}$ -14.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CD₃OD) δ 7.15 (d, *J* = 8.2 Hz, 1H), 6.95 – 6.93 (m, 2H), 6.68 (d, *J* = 7.2 Hz, 1H), 6.43 (d, *J* = 7.6 Hz, 1H), 6.37 (d, *J* = 2.6 Hz, 1H), 6.35 – 6.29 (m, 1H), 3.98 – 3.96 (m, 1H), 3.53 (dd, *J* = 11.4, 4.2 Hz, 1H), 3.45 (dd, *J* = 11.4, 6.4 Hz, 1H), 2.92 (dd, *J* = 14.4, 6.0 Hz, 1H), 2.83 (dd, *J* = 14.6, 7.4 Hz, 1H), 2.40 (s, 3H), 2.19 (s, 3H).¹³C NMR (101 MHz, CD₃OD) δ 150.5, 138.2, 134.9, 132.4, 129.1, 128.9, 128.4, 124.9, 120.6, 119.9, 117.1, 113.1, 109.9, 108.3, 71.6, 65.5, 47.7, 29.4, 29.1, 20.4, 17.4.MS (ESI): Calculated for C₁₉H₂₃N₂O₂ ([M+H]⁺): 311.1754, found: 311.1754.

(*S*)-3-(6-methyl-3-(*p*-tolylamino)-1*H*-indol-2-yl)propane-1,2-diol (3b).Yellow solid, 78 mg, yield 59%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 97.6 - 98.8 °C. $[\alpha]_D^{25}$ -13.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.22 - 7.16 (m, 1H), 7.02 (s, 1H), 6.89 (d, *J* = 7.4 Hz, 3H), 6.61 - 6.46 (m, 2H), 3.96 (p, *J* = 6.2 Hz, 1H), 3.55 - 3.40 (m, 2H), 2.99 - 2.74 (m, 2H), 2.34 (s, 3H), 2.21 (s, 3H).¹³C NMR (101 MHz, CD₃OD) δ 146.7, 133.1, 131.3, 129.7, 128.9, 127.3, 125.8, 125.6, 122.1, 117.2, 114.9, 113.1, 110.3, 71.6, 65.4, 47.6, 29.4, 20.3, 19.2.MS (ESI): Calculated for C₁₉H₂₃N₂O₂ ([M+H]⁺): 311.1754, found: 311.1752.

(*S*)-3-(6-(*tert*-butyl)-3-((3-(*tert*-butyl)phenyl)amino)-1*H*-indol-2-yl)propane-1,2-diol (4b). Yellow solid, 113 mg, yield 74%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 97.5 - 99.8 °C. $[\alpha]_D^{25}$ -11.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.35 (d, *J* = 1.6 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 7.05 (dt, *J* = 8.6, 1.4 Hz, 1H), 6.99 (t, *J* = 7.8 Hz, 1H), 6.81 - 6.79 (m, 1H), 6.68 (ddd, *J* = 7.8, 1.8, 1.0 Hz, 1H), 6.39 (ddd, *J* = 8.0, 2.2, 1.2 Hz, 1H), 3.99 - 3.97 (m, 1H), 3.54 (dd, *J* = 11.4, 4.4 Hz, 1H), 3.46 (dd, *J* = 11.4, 6.2 Hz, 1H), 2.96 (dd, *J* = 14.6, 5.8 Hz, 1H), 2.88 (dd, *J* = 14.6, 7.2 Hz, 1H), 1.39 (s, 9H), 1.26 (s, 9H).¹³C NMR (101 MHz, CD₃OD) δ 151.5, 148.6, 143.9, 135.0, 130.3, 128.1, 123.2, 117.3, 116.4, 114.8, 113.8, 110.5, 110.1, 106.9, 71.7, 65.4, 47.7, 34.1, 34.0, 31.0, 30.5, 29.4.MS (ESI): Calculated for C₂₅H₃₅N₂O₂ ([M+H]⁺): 395.2693, found: 395.2689.

(*S*)-3-(5-(*tert*-butyl)-3-((4-(*tert*-butyl)phenyl)amino)-1*H*-indol-2-yl)propane-1,2-diol (5b). Yellow solid, 83mg, yield 57%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 97.5 - 98.5 °C. [α]_D²⁵ -14.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.37 – 7.31 (m, 2H), 7.27 – 7.21 (m, 3H), 6.71 – 6.63 (m, 2H), 4.12 – 4.00 (m, 1H), 3.61 (dd, *J* = 11.4, 4.2 Hz, 1H), 3.53 (dd, *J* = 11.4, 6.2 Hz, 1H), 3.03 (dd, *J* = 14.6, 5.8 Hz, 1H), 2.97 – 2.87 (m, 1H), 1.39 (s, 9H), 1.36 (s, 9H).¹³C NMR (101 MHz, CD₃OD) δ 146.6, 141.1, 139.4, 133.0, 131.1, 126.3, 125.5, 125.3, 118.8, 115.5, 113.5, 112.9, 110.1, 71.7, 65.5, 47.7, 34.0, 33.4, 31.2, 30.8, 29.5.MS (ESI): Calculated for C₁₉H₂₃N₂O₂ ([M+H]⁺): 395.2693, found: 395.2694.

(*S*)-3-(6-fluoro-3-((3-fluorophenyl)amino)-1*H*-indol-2-yl)propane-1,2-diol (6b). Yellow solid, 76 mg, yield 52%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 95.5 - 96.7 °C. $[\alpha]_D^{25}$ -20.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.21 – 7.13 (m, 1H), 7.08 – 6.96 (m, 2H), 6.77 – 6.74 (m, 1H), 6.43 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.32 – 6.30 (m, 1H), 6.26 – 6.18 (m, 1H), 4.01 – 3.92 (m, 1H), 3.57 – 3.42 (m, 2H), 3.00 – 2.78 (m, 2H).¹³C NMR (101 MHz, CD₃OD) δ 165.4, 163.0, 160.8, 158.4, 151.2, 151.1, 132.1, 129.8, 129.7, 121.9, 118.1, 118.0, 114.2, 108.7, 107.0, 106.8, 106.6, 103.8, 103.6, 102.6, 102.4, 99.3, 99.0, 96.9, 96.7, 71.4, 65.5, 29.3.MS (ESI): Calculated for C₁₇H₁₇N₂O₂F₂ ([M+H]⁺): 319.1253, found: 319.1255.

(S)-3-(6-chloro-3-((3-chlorophenyl)amino)-1*H*-indol-2-yl)propane-1,2-diol (7b). Yellow solid, 80 mg, yield 51%, petroleum ether/ethyl acetate (V/V)=1:1, m.p. 104.4 - 105.4 °C. [α]_D²⁵ -19.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CD₃OD) δ 7.39 - 7.25 (m, 1H), 7.02 (t, *J* = 8.2, 2H), 6.94 (t, *J* = 8.2 Hz, 1H), 6.61 - 6.43

(m, 3H), 4.04 - 3.92 (m, 1H), 3.59 - 3.51 (m, 1H), 3.51 - 3.43 (m, 1H), 2.95 (dd, J = 14.6, 5.6 Hz, 1H), 2.83 (dd, J = 14.6, 7.6 Hz, 1H).¹³C NMR (101 MHz, CD₃OD) δ 151.8, 136.2, 135.0, 134.4, 134.3, 129.6, 123.9, 123.8, 121.3, 119.6, 118.3, 116.0, 112.3, 111.2, 109.6, 71.3, 65.6, 29.1.MS (ESI): Calculated for C₁₇H₁₇N₂O₂Cl₂ ([M+H]⁺): 351.0662, found: 351.0667.

(*S*)-3-(6-bromo-3-((3-bromophenyl)amino)-1*H*-indol-2-yl)propane-1,2-diol (8b). Yellow solid, 96 mg, yield 60%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 103.3 - 104.7 °C. $[\alpha]_D^{25}$ -23.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.35 (d, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 6.97 - 6.95 (m, 2H), 6.71 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.62 (t, *J* = 2.2 Hz, 1H), 6.47 (dd, *J* = 8.4, 2.2 Hz, 1H), 4.03 - 3.93 (m, 1H), 3.58 - 3.43 (m, 2H), 2.99 - 2.76 (m, 2H).¹³C NMR (101 MHz, CD₃OD) δ 151.9, 135.5, 129.8, 123.6, 122.9, 122.5, 121.7, 119.1, 118.9, 115.3, 113.6, 111.6, 111.1, 110.1, 71.2, 65.5, 29.1.MS (ESI): Calculated for C₁₇H₁₇N₂O₂Br₂ ([M+H]⁺): 438.9651, found: 438.9648.

(S)-3-(3-(phenylamino)-1H-indol-2-yl)propane-1,2-diol (9b).Yellow solid, 81 mg, yield 72%, petroleum ether/ethyl acetate (V/V)=1:1, m.p. 107.5 - 108.5 °C. [α]_D²⁵ -16.0 (*c* 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.29 (d, J = 8.0 Hz, 1H), 7.06 – 6.98 (m, 2H), 6.93 (d, J = 7.6 Hz, 1H), 6.61 – 6.43 (m, 3H), 3.80 – 3.78 (m, 1H), 3.68 – 3.63 (m, 1H), 3.05 (dd, J = 14.8, 4.2 Hz, 1H), 2.76 (dd, J = 14.6, 8.8 Hz, 1H), 1.20 (d, J = 6.4 Hz, 3H).¹³C NMR (101 MHz, CD₃OD) δ 151.8, 136.2, 135.7, 134.3, 129.5, 123.7, 121.2, 119.5, 116.0, 112.4, 111.3, 109.5, 74.8, 70.1, 47.6.MS (ESI): Calculated for C₁₇H₁₉N₂O₂ ([M+H]⁺): 238.1441, found: 238.1444.

(*S*)-3-(3-((3,5-dimethylphenyl)amino)-4,6-dimethyl-1*H*-indol-2-yl)propane-1,2-diol (10b). Yellow solid, 108 mg, yield 83%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 92.7 - 94.3 °C. $[\alpha]_D^{25}$ -36.0 (*c* 0.1, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 6.81 (s, 1H), 6.40 (s, 1H), 6.13 (s, 1H), 6.03 (s, 2H), 3.83 - 3.81 (m, 1H),

3.39 (dd, J= 11.4, 4.2 Hz, 1H), 3.31 (dd, J = 11.4, 6.4 Hz, 1H), 2.75 (dd, J = 14.6, 5.8 Hz, 1H), 2.66 (dd, J = 14.6, 7.4 Hz, 1H), 2.23 (d, J = 7.8 Hz, 6H), 2.01 (s, 6H).¹³C NMR (151 MHz, CD₃OD) δ 150.4, 138.0, 135.3, 131.5, 130.1, 128.6, 122.8, 121.7, 118.1, 115.1, 110.5, 108.2, 71.6, 65.5, 47.6, 29.1, 20.3, 20.2, 17.3.MS (ESI): Calculated for C₂₁H₂₇N₂O₂ ([M+H]⁺): 339.2067, found: 339.2065.

methyl(*R*)-2-(2,3-dihydroxypropyl)-3-((4-(methoxycarbonyl)phenyl)amino)-1*H*-indole-5-carboxylate (11b).Yellow solid, 92 mg, yield 60%, petroleum ether/ethyl acetate (*V/V*)=1:2, m.p. 90.6 - 92.4 °C. [α]_D²⁵ - +31.0 (*c* 0.1, CH₃OH);¹H NMR (600 MHz, CD₃OD) δ 11.34 (s, 1H), 8.03 (s, 1H), 7.82 (d, *J* = 1.6 Hz, 1H), 7.68 (dd, *J* = 8.4, 1.4 Hz, 3H), 7.44 (d, *J* = 8.6 Hz, 1H), 6.59 (d, *J* = 8.4 Hz, 2H), 3.80 (dd, *J* = 8.2, 5.2 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 3.29 (dd, *J* = 7.4, 5.6 Hz, 2H), 2.84 (dd, *J* = 14.6, 4.8 Hz, 1H), 2.65 (dd, *J* = 14.6, 8.2 Hz, 1H).¹³C NMR (151 MHz, CD₃OD) δ 168.5, 167.6, 154.3, 138.2, 136.5, 132.3, 125.5, 122.9, 121.2, 120.7, 118.1, 114.9, 113.2, 112.6, 72.0, 66.9, 52.9, 52.5, 31.2.MS (ESI): Calculated for C₂₁H₂₃N₂O₆ ([M+H]⁺): 399.1551, found: 399.1550.

(*R*)-1-(4-((5-acetyl-2-(2,3-dihydroxypropyl)-1*H*-indol-3-yl)amino)phenyl)ethan-1-one(12b). Yellow solid, 91 mg, yield 55%, petroleum ether/ethyl acetate (*V/V*)=1:2, m.p. 93.6 - 94.8 °C. $[\alpha]_D^{25}$ +28.0 (*c* 0.1, CH₃OH);¹H NMR (600 MHz, CD₃OD) δ 7.85 (d, *J* = 1.7 Hz, 1H), 7.70 - 7.66 (m, 3H), 7.31 (d, *J* = 8.6 Hz, 1H), 6.54 (d, *J* = 8.5 Hz, 2H), 3.89 - 3.84 (m, 1H), 3.40 (dd, *J* = 11.2, 4.5 Hz, 1H), 3.35 (dd, *J* = 11.3, 6.2 Hz, 1H), 2.84 (dd, *J* = 14.7, 5.2 Hz, 1H), 2.73 (dd, *J* = 14.7, 7.8 Hz, 1H), 2.44 (s, 3H), 2.36 (s, 3H).¹³C NMR (151 MHz, CD₃OD) δ 199.7, 197.8, 153.7, 137.7, 134.3, 130.7, 128.7, 126.0, 124.7, 121.4, 119.5, 114.7, 111.8, 110.8, 71.2, 65.5, 47.6, 29.3, 25.2, 24.6.MS (ESI): Calculated for C₂₁H₂₃N₂O₄ ([M+H]⁺): 367.1652, found: 367.1651.

(*R*)-3-(6-bromo-3-((3-bromo-4-methylphenyl)amino)-5-methyl-1*H*-indol-2-yl)propane-1,2-diol (13b).Yellow solid, 140 mg, yield 72%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 97.5 - 99.7 °C. $[\alpha]_D^{25}$ +40.0 (*c* 0.1, CH₃OH);¹H NMR (600 MHz, CD₃OD) δ 7.10 (d, *J* = 8.2 Hz, 1H), 6.87 (d, *J* = 8.2 Hz, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.54 (d, *J* = 2.4 Hz, 1H), 6.27 (dd, *J* = 8.4, 2.4 Hz, 1H), 3.89 – 3.83 (m, 1H), 3.40 (dd, *J* = 11.4, 4.4 Hz, 1H), 3.33 (dd, *J* = 11.4, 6.4 Hz, 1H), 2.79 (dd, *J* = 14.6, 5.6 Hz, 1H), 2.68 (dd, *J* = 14.6, 7.6 Hz, 1H), 2.28 (s, 3H), 2.11 (s, 3H).¹³C NMR (151 MHz, CD₃OD) δ 149.8, 135.3, 134.4, 130.4, 127.8, 124.5, 124.4, 124.0, 123.5, 116.1, 113.7, 112.9, 112.3, 109.8, 71.3, 65.5, 29.2, 21.0, 20.3.MS (ESI): Calculated for C₁₉H₂₁N₂O₂Br₂ ([M+H]⁺): 466.9964, found: 466.9967.

(*R*)-3-(3-((3,5-dimethylphenyl)amino)-5,7-dimethyl-1*H*-indol-2-yl)propane-1,2-diol (14b). Yellow solid, 95 mg, yield 74%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 108.5 - 109.3 °C. $[\alpha]_D^{25}$ +17.0 (*c* 0.1, CH₃OH);¹H NMR (400 MHz, CD₃OD) δ 6.95 (s, 1H), 6.53 (s, 1H), 6.26 (s, 1H), 6.16 (s, 2H), 3.96 (qd, *J* = 6.4, 4.1 Hz, 1H), 3.53 (dd, *J* = 11.3, 4.1 Hz, 1H), 3.44 (dd, *J* = 11.3, 6.3 Hz, 1H), 2.89 (dd, *J* = 14.5, 5.9 Hz, 1H), 2.80 (dd, *J* = 14.5, 7.2 Hz, 1H), 2.37 (d, *J* = 6.0 Hz, 6H), 2.14 (s, 6H).¹³C NMR (101 MHz, CD₃OD) δ 150.5, 138.0, 135.4, 131.5, 130.1, 128.7, 122.8, 121.7, 118.2, 115.1, 110.5, 108.2, 71.6, 65.5, 29.1, 20.3, 17.4.MS (ESI): Calculated for C₂₁H₂₇N₂O₂ ([M+H]⁺): 339.2067, found: 339.2066.

(2*R*,3*S*)-4-(3-((3,5-dimethylphenyl)amino)-4,6-dimethyl-1*H*-indol-2-yl)butane-1,2,3-triol(15b). Yellow solid, 117 mg, yield 82%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 122.6 - 123.4 °C. $[\alpha]_D^{25}$ -9.0 (*c* 0.1, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 6.92 (s, 1H), 6.50 (s, 1H), 6.24 (s, 1H), 6.15 (s, 2H), 3.86 (dd, *J* = 9.8, 5.0 Hz, 1H), 3.73 - 3.66 (m, 1H), 3.60 - 3.52 (m, 1H), 3.50 - 3.41 (m, 1H), 3.01 (dd, *J* = 14.8, 4.0 Hz, 1H), 2.80 (dd, *J* = 14.8, 8.2 Hz, 1H), 2.34 (s, 6H), 2.11 (s, 6H).¹³C NMR (151 MHz, CD₃OD) δ 151.8, 139.5, 139.4, 136.7, 133.2, 131.5, 130.0, 124.2, 123.1, 119.7, 119.7, 116.6, 112.1, 112.0, 109.6, 109.6, 75.9, 73.5, 64.6, 64.5, 30.2, 21.7, 21.6, 21.6, 18.8, 18.7.MS (ESI): Calculated for C₂₂H₂₉N₂O₃ ([M+H]⁺): 369.2173, found: 369.2175.

(2*R*,3*R*)-4-(3-((3,5-dimethylphenyl)amino)-4,6-dimethyl-1*H*-indol-2-yl)butane-1,2,3-triol (16b). Yellow solid, 119 mg, yield 76%, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 107.5 - 108.9 °C. [α]_D²⁵ -2.0 (*c* 0.1, CH₃OH);¹H NMR (600 MHz, CD₃OD) δ 6.80 (s, 1H), 6.39 (s, 1H), 6.12 (s, 1H), 6.03 (s, 2H), 3.84 – 3.76 (m, 1H), 3.45 (t, *J* = 6.0 Hz, 2H), 3.35 (ddd, *J* = 6.4, 5.4, 3.0 Hz, 1H), 2.84 – 2.74 (m, 2H), 2.22 (s, 6H), 1.99 (s, 6H).¹³C NMR (151 MHz, CD₃OD) δ 150.4, 138.1, 135.3, 131.6, 130.2, 128.6, 122.8, 121.7, 118.2, 115.1, 110.6, 108.2, 73.2, 70.8, 63.4, 29.3, 20.3, 20.3, 17.4.MS (ESI): Calculated for C₂₂H₂₉N₂O₃ ([M+H]⁺): 369.2173, found: 369.2170.

(2*R*,3*R*,4*S*,5*R*,6*R*)-2-(((2*S*,3*R*)-1-(3-((3,5-dimethylphenyl)amino)-4,6-dimethyl-1*H*-indol-2-yl)-3,4dihydroxybutan-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2*H*-pyran-3,4,5-triol. (17b).Yellow solid, 82 mg, yield 73%, DCM/MeOH (*V*/*V*) = 5:1, m.p. 130.6 - 131.2 °C. [α]_D²⁵ +10.0 (*c* 0.1, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 6.97 (s, 1H), 6.52 (s, 1H), 6.27 (s, 1H), 6.19 (s, 2H), 4.44 (d, *J* = 7.8 Hz, 1H), 4.03 (d, *J* = 5.6 Hz, 1H), 3.89 (d, *J* = 3.4 Hz, 1H), 3.78 (dd, *J* = 6.2, 2.0 Hz, 2H), 3.69 – 3.64 (m, 2H), 3.64 – 3.57 (m, 2H), 3.55 (t, *J* = 6.2 Hz, 1H), 3.51 (dd, *J* = 9.8, 3.4 Hz, 1H), 3.08 (d, *J* = 4.8 Hz, 2H), 2.36 (s, 6H), 2.13 (s, 6H).¹³C NMR (151 MHz, CD₃OD) δ 150.2, 138.1, 135.3, 130.8, 130.1, 128.5, 122.5, 121.6, 118.4, 115.4, 110.8, 108.3, 104.4, 81.0, 75.3, 73.4, 72.6, 71.6, 68.9, 62.7, 61.1, 26.7, 20.3, 20.3, 17.3.MS (ESI): Calculated for C₂₈H₃₉N₂O₈ ([M+H]⁺): 531.2701, found: 531.2700.

(2*S*,3*R*,4*S*,5*S*,6*R*)-2-(((2*S*,3*R*)-1-(3-((3,5-dimethylphenyl)amino)-4,6-dimethyl-1*H*-indol-2-yl)-3,4dihydroxybutan-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2*H*-pyran-3,4,5-triol (18b).Yellow solid, 90 mg, yield 81%, DCM/MeOH (*V*/*V*) = 5:1, m.p. 139.5 - 140.1 °C. $[\alpha]_D^{25}$ +62.0 (*c* 0.1, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 6.83 (s, 1H), 6.39 (s, 1H), 6.13 (s, 1H), 6.03 (s, 2H), 4.95 (d, *J* = 3.8 Hz, 1H), 3.87- 3.83 (m 1H), 3.73 (dd, *J* = 11.6, 2.4 Hz, 1H), 3.68 (ddd, *J* = 10.2, 5.6, 2.4 Hz, 1H), 3.63 (t, *J* = 9.4 Hz, 1H), 3.58 (dd, *J* = 11.6, 5.6 Hz, 1H), 3.53 (dt, *J* = 6.2, 3.2 Hz, 1H), 3.50 – 3.44 (m, 2H), 3.43 – 3.40 (m, 1H), 3.23 (d, *J* = 10.2 Hz, 1H), 2.92 – 2.81 (m, 2H), 2.24 (d, *J* = 9.8 Hz, 6H), 2.00 (s, 6H).¹³C NMR (151 MHz, CD₃OD) δ 150.4, 138.1, 135.4, 131.1, 130.0, 128.6, 122.5, 121.6, 118.2, 115.3, 110.5, 108.3, 97.9, 78.3, 73.7, 72.9, 72.8, 72.1, 70.3, 63.0, 61.2, 23.7, 20.3, 20.3, 17.3.MS (ESI): Calculated for C₂₈H₃₉N₂O₈ ([M+H]⁺): 531.2701, found: 531.2703.

(1*S*)-1-((4*S*,5*S*)-2,2-dimethyl-5-((phenylamino)methyl)-1,3-dioxolan-4-yl)propane-1,2-diol (1c). Yellow solid, petroleum ether/ethyl acetate (*V/V*)=1:1, m.p. 112.6 - 113.4 °C.¹H NMR (600 MHz, CD₃OD) δ 7.01 (dd, *J* = 8.6, 7.2 Hz, 2H), 6.59 (d, *J* = 8.0 Hz, 2H), 6.55 (d, *J* = 7.4 Hz, 1H), 4.35 - 4.27 (m, 2H), 3.63 - 3.58 (m, 1H), 3.38 - 3.32 (m, 2H), 3.19 (dd, *J* = 12.4, 7.0 Hz, 1H), 1.39 (s, 3H), 1.27 (s, 3H), 1.17 (d, *J* = 6.2 Hz, 3H).¹³C NMR (151 MHz, CD₃OD) δ 148.5, 128.7, 128.7, 117.2, 113.1, 107.7, 76.3, 75.8, 73.0, 68.2, 44.4, 24.0, 22.8, 19.0.MS (ESI): Calculated for C₁₅H₂₄NO₄ ([M+H]⁺): 282.1700, found: 282.1702.MS (ESI): Calculated for C₁₅H₂₄NO₄ ([M+H]⁺): 282.1701.

(*3R*)-1,3,4,6-tetrahydro-2*H*-2,6-methanobenzo[*c*][1,5]oxazocin-3-ol(2c). Yellow solid, yield 31%. petroleum ether/ethyl acetate (*V/V*) = 3:1, m.p. 121.4 - 123.1°C.¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.11 (m, 2H), 6.72 (t, *J* = 7.4 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 4.70 (p, *J* = 1.4 Hz, 1H), 3.82 – 3.75 (m, 1H), 3.72 (dd, *J* = 11.2, 5.8 Hz, 1H), 3.64 (d, *J* = 3.4 Hz, 1H), 2.92 (t, *J* = 10.6 Hz, 1H), 2.12 (ddd, *J* = 13.4, 3.4, 2.4 Hz, 1H), 1.89 (ddd, *J* = 13.2, 4.6, 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 130.7, 129.7, 119.9, 117.7, 113.7, 68.9, 67.5, 62.8, 48.8, 27.8.MS (ESI): Calculated for C₁₁H₁₄NO₂ ([M+H]⁺): 192.1019, found: 192.1019.

((3*R*)-1,2,3,5-tetrahydro-2,5-methanobenzo[*e*][1,4]oxazepin-3-yl)methanol(2c'). Yellow solid, yield 28%. petroleum ether/ethyl acetate (*V/V*) = 3:1, m.p. 118.5 - 119.1°C.¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.13 (m, 2H), 6.70 – 6.68 (m, 1H), 6.56 (dd, *J* = 8.4, 1.0 Hz, 1H), 4.75 (p, *J* = 1.6 Hz, 1H), 3.68 – 3.65 (m, 1H), 3.60 – 3.49 (m, 3H), 2.58 – 2.56 (m, 1H), 1.60 – 1.57 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 130.8, 129.9, 118.4, 117.0, 113.0, 70.1, 69.0, 63.8, 47.8, 29.8, 23.9.MS (ESI): Calculated for C₁₁H₁₄NO₂ ([M+H]⁺): 192.1019, found: 192.1018.

(*3R*)-8-methyl-1,3,4,6-tetrahydro-2*H*-2,6-methanobenzo[*c*][1,5]oxazocin-3-ol (3c). Yellow solid, yield 29%. petroleum ether/ethyl acetate (*V/V*) = 3:1, m.p. 131.9 - 132.8°C.¹H NMR (400 MHz, CDCl₃) δ 6.98 (dd, *J* = 8.1, 2.0 Hz, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.57 (d, *J* = 8.2 Hz, 1H), 4.66 (t, *J* = 2.4 Hz, 1H), 3.79 - 3.68 (m, 2H), 3.62 (p, *J* = 2.6 Hz, 1H), 2.91 (t, *J*= 10.2 Hz, 1H), 2.24 (s, 3H), 2.11 (dt, *J* = 13.2, 2.8 Hz, 1H), 1.88 (ddd, *J* = 13.2, 4.6, 1.8 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 143.0, 130.9, 130.5, 127.1, 120.0, 114.0, 68.8, 67.6, 67.5, 62.9, 48.8, 28.0, 20.4.MS (ESI): Calculated for C₁₂H₁₆NO₂ ([M+H]⁺): 206.1176, found: 206.1175.

((3*R*)-7-methyl-1,2,3,5-tetrahydro-2,5-methanobenzo[*e*][1,4]oxazepin-3-yl)methanol (3c'). Yellow solid, yield 34%. petroleum ether/ethyl acetate (*V/V*) = 3:1, m.p. 127.2 - 128.8°C.¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, *J* = 6.6 Hz, 2H), 6.50 - 6.47 (m, 1H), 4.71 - 4.70 (m, 1H), 3.66 - 3.62 (m, 1H), 3.57 - 3.49 (m, 3H), 2.59 - 2.55 (m, 1H), 2.24 (s, 3H), 1.61 - 1.54 (m, 1H).¹³C NMR (101 MHz, CDCl₃) δ 142.3, 131.0,

130.6, 126.2, 118.3, 113.0, 70.3, 69.1, 69.0, 63.8, 47.9, 24.1, 20.4.MS (ESI): Calculated for C₁₂H₁₆NO₂ ([M+H]⁺): 206.1176, found: 206.1177.

(*3R*)-8-methoxy-1,3,4,6-tetrahydro-2*H*-2,6-methanobenzo[*c*][1,5]oxazocin-3-ol(4c).Yellow solid, yield 34%. petroleum ether/ethyl acetate (*V/V*) = 3:1, m.p. 115.4 - 116.7°C.¹H NMR (400 MHz, CDCl₃) δ 6.79 (dd, J = 8.8, 3.0 Hz, 1H), 6.71 (d, J = 2.8 Hz, 1H), 6.61 (d, J = 8.7 Hz, 1H), 4.65 (s, 1H), 3.74 (d, J = 6.3 Hz, 6H), 3.59 (s, 1H), 2.91 (q, J = 9.0, 7.4 Hz, 1H), 2.12 – 2.10 (m, 1H), 1.89 – 1.86 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 139.2, 120.8, 116.9, 115.4, 114.7, 68.6, 67.7, 63.0, 55.8, 48.7, 28.0. MS (ESI): Calculated for C₁₂H₁₆NO₃ ([M+H]⁺): 222.1125, found: 222.1126.

((3*R*)-7-methoxy-1,2,3,5-tetrahydro-2,5-methanobenzo[*e*][1,4]oxazepin-3-yl)methanol(4c').Yellow solid, yield 36%. petroleum ether/ethyl acetate (*V/V*) = 3:1, m.p. 119.3 - 121.2°C.¹H NMR (400 MHz, CDCl₃) δ 6.79 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.73 (d, *J* = 2.9 Hz, 1H), 6.51 (d, *J* = 8.6 Hz, 1H), 4.70 (s, 1H), 3.74 (d, *J* = 1.0 Hz, 3H), 3.60 (d, *J* = 8.2 Hz, 1H), 3.57 - 3.46 (m, 3H), 2.58 - 2.55 (m, 1H), 1.61 - 1.53 (m, 1H).¹³C NMR (101 MHz, CDCl₃) δ 151.6, 138.8, 119.0, 117.1, 114.9, 114.3, 70.3, 69.2, 63.9, 55.9, 47.9, 24.0.MS (ESI): Calculated for C₁₂H₁₆NO₃ ([M+H]⁺): 222.1125, found: 222.1128.

(3*R*)-8-chloro-1,3,4,6-tetrahydro-2*H*-2,6-methanobenzo[*c*][1,5]oxazocin-3-ol (5c).Yellow solid, yield 26%. petroleum ether/ethyl acetate (*V/V*) = 3:1, m.p. 125.2 - 126.1°C.¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, *J* = 7.6 Hz, 2H), 6.60 - 6.56 (m, 1H), 4.64 (s, 1H), 4.48 (s, 1H), 3.80 - 3.38 (m, 1H), 3.73 (dd, *J* = 11.0, 6.0 Hz, 1H), 3.65 (s, 1H), 2.90 (t, *J* = 10.8 Hz, 1H), 2.14 - 2.10 (m, 1H), 1.85 (ddd, *J* = 13.1, 4.5, 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 130.2, 129.6, 122.2, 121.2, 114.9, 68.9, 67.1, 67.1, 62.8, 48.8, 27.6.MS (ESI): Calculated for C₁₁H₁₃NClO₂ ([M+H]⁺): 226.0629, found: 226.0629.

((*3R*)-7-chloro-1,2,3,5-tetrahydro-2,5-methanobenzo[*e*][1,4]oxazepin-3-yl)methanol(5c').Yellow solid, yield 26%. petroleum ether/ethyl acetate (*V/V*) = 3:1, m.p. 132.7 - 133.5 °C.¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 2.6 Hz, 1H), 7.09 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.49 (d, *J* = 8.6 Hz, 1H), 4.68 (s, 1H), 4.42 (s, 1H), 3.74 - 3.63 (m, 2H), 3.58 (d, *J* = 13.0 Hz, 1H), 3.53 - 3.45 (m, 2H), 2.59 - 2.56 (m, 1H), 2.45 (s, 1H), 1.53 - 1.52 (m, 1H).¹³C NMR (101 MHz, CDCl₃) δ 143.2, 130.3, 129.8, 128.0, 121.4, 119.7, 114.2, 69.9, 68.5, 63.8, 47.7, 23.6.MS (ESI): Calculated for C₁₁H₁₃NClO₂ ([M+H]⁺): 226.0629, found: 226.0628.

(3*R*)-8-bromo-1,3,4,6-tetrahydro-2*H*-2,6-methanobenzo[*c*][1,5]oxazocin-3-ol(6c).Yellow solid, yield 24%. petroleum ether/ethyl acetate (*V/V*) = 3:1, m.p. 110.5 - 112.1°C.¹H NMR (400 MHz, CDCl₃) δ 7.25 - 7.19 (m, 2H), 6.53 (d, *J* = 8.2 Hz, 1H), 4.64 (s, 1H), 4.51 (s, 1H), 3.79 - 3.76 (m, 2H), 3.65 (s, 1H), 2.90 (t, *J* = 10.6 Hz, 1H), 2.16 - 2.08 (m, 1H), 1.87 - 1.84 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 133.0, 132.4, 121.7, 115.3, 109.1, 68.9, 67.0, 62.8, 48.7, 27.5. MS (ESI): Calculated for C₁₁H₁₃NBrO₂ ([M+H]⁺): 270.0124, found: 270.0126.

((3*R*)-7-bromo-1,2,3,5-tetrahydro-2,5-methanobenzo[*e*][1,4]oxazepin-3-yl)methanol(6c'). Yellow solid, yield 27%. petroleum ether/ethyl acetate (*V/V*) = 3:1, m.p. 120.3 - 121.5°C¹H NMR (400 MHz, CDCl₃) δ 7.26 - 7.19 (m, 2H), 6.44 (d, *J* = 8.6 Hz, 1H), 4.73 - 4.64 (m, 1H), 4.44 (d, *J* = 4.4 Hz, 1H), 3.66 (d, *J* = 5.8 Hz, 1H), 3.57 (d, *J* = 13.0 Hz, 1H), 3.53 - 3.45 (m, 2H), 3.39 - 3.36 (m, 1H), 2.59 - 2.55 (m, 1H), 1.54 - 1.51 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 133.2, 132.6, 120.2, 114.6, 108.3, 69.8, 68.5, 63.8, 47.7, 23.5.MS (ESI): Calculated for C₁₁H₁₃NBrO₂ ([M+H]⁺): 270.0124, found: 270.0125.

(2*S*,3*R*,4*R*,5*R*)-2-methyl-6-(phenylamino)tetrahydro-2*H*-pyran-3,4,5-triol (A).Yellow solid, petroleum ether/ethyl acetate (*V/V*)=1:3, m.p. 96.7 - 97.2 °C.¹H NMR (600 MHz, MeOD) δ 7.03 (dd, *J* = 8.6, 7.2 Hz, 2H), 6.63 (d, *J* = 8.0 Hz, 2H), 6.60 (t, *J* = 7.4 Hz, 1H), 4.73 (s, 1H), 3.81 (d, *J* = 3.4 Hz, 1H), 3.42 (dd, *J* = 5.4, 3.8 Hz, 1H), 3.25 (dd, *J* = 7.6, 4.8 Hz, 2H), 1.17 (d, *J* = 5.6 Hz, 3H).¹³C NMR (151 MHz, MeOD) δ 145.7, 128.6, 118.1, 113.7, 82.0, 74.5, 72.8, 72.6, 71.7, 16.6.

3-(3-(phenylamino)-1*H***-indol-2-yl)propan-1-ol (7c)**: Yellow solid, petroleum ether/ethyl acetate (V/V)=1:1, ¹H NMR (600 MHz, CDCl₃) δ 8.24 (s, 1H), 7.33 (dd, J = 20.6, 8.0 Hz, 2H), 7.14 (q, J = 8.2 Hz, 3H), 7.04 (t, J = 7.6 Hz, 1H), 6.72 (t, J = 7.4 Hz, 1H), 6.64 (d, J = 7.8 Hz, 2H), 5.22 (s, 1H), 3.67 (t, J = 6.0 Hz, 2H), 2.88 (t, J = 7.2 Hz, 2H), 1.89 (t, J = 6.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 148.3, 134.6, 134.3, 129.1, 126.0, 121.6, 119.5, 118.1, 117.8, 114.4, 113.4, 110.8, 61.8, 31.2, 21.7.MS (ESI): Calculated for C₁₇H₁₉N₂O ([M+H]⁺): 267.1492, found: 267.1498.

Figure. S2¹³C{¹H} NMR of compound **1a**

Figure. S4¹³C{¹H} NMR of compound 2a

Figure.S8¹³C{¹H} NMR of compound 4a

Figure. S16¹³C^{{1}H} NMR of compound 8a

Figure. S22¹³C{¹H} NMR of compound **11a**

S36

Figure. S36¹³C{¹H} NMR of compound **18a**

Figure. S38¹³C{¹H} NMR of compound **19a**

Figure. S40¹³C{¹H} NMR of compound **20a**

Figure. S42¹³C{¹H} NMR of compound **1b**

Figure. S60¹³C $\{^{1}H\}$ NMR of compound **10b**

Figure. S62 ¹³C{¹H} NMR of compound 11b

Figure. S6813C{1H} NMR of compound 14b

Figure. S70¹³C $\{^{1}H\}$ NMR of compound 15b

Figure. S72¹³C{¹H} NMR of compound 16b

Figure. S74¹³C{¹H} NMR of compound **17b**

Figure. S76¹³C $\{^{1}H\}$ NMR of compound **18b**

Figure. S8413C{1H} NMR of compound 3c

Figure. S86¹³C{¹H} NMR of compound **3c'**

Figure. S90¹³C{¹H} NMR of compound **4c'**

Figure. S92¹³C{¹H} NMR of compound **5**c

Figure. S96¹³C{¹H} NMR of compound 6c

Figure. S102¹³C{¹H} NMR of compound 7c

4. 2D NMR analysis spectra

Figure S107 Key HMBC (C \rightarrow H) correlations

5. High resolution mass spectra

E, **F**, **G**,or **1a**: MS(ESI): Calculated for C₁₈H₂₁N₂O₂([M+H]⁺):297.1598, found:297.1597.

Figure S108 High resolution mass spectrum of compound laorintermediate I, J.

6. Crystal Information:

1: To determine the absolute configureuration of (2*S*,3*R*)-1-(3-(phenylamino)-1*H*-indol-2-yl)butane-2,3diol (1a): Firstly, 1a was recrystallized from dichloromethane/methabol. The solvents were slowly evaporated directly, and the single crystal was obtained after three days. The CCDC number is 2301597.

Bond precision:	C-C = 0.0071 A	Wavelength=0.71073	
Cell:	a=5.4476(4)	b=9.3390(8)	c=15.3977(12)
	alpha=75.371(3)	beta=87.564(2)	gamma=85.468(3)
Temperature:	100 K		
	Calculated	Reporte	ed
Volume	755.39(10)	755.39(10)	
Space group	P 1	P 1	
Hall group	P 1	P 1	
Moiety formula	C18 H20 N2 O2	C18 H20	0 N2 O2
Sum formula	C18 H20 N2 O2	C18 H20	0 N2 O2
Mr	296.36	296.36	
Dx,g cm-3	1.303	1.303	
Z	2	2	
Mu (mm-1)	0.086	0.086	
F000	316.0	316.0	
F000'	316.13		
h,k,lmax	6,11,19	6,11,19	
Nref	6188[3094]	4859	
Tmin, Tmax	0.992,0.996	0.534,0.745	
Tmin'	0.987		
Correction meth	od= # Reported T L	imits: Tmin=0.534	Tmax=0.745
AbsCorr = MULTI	-SCAN		
Data completene	ess= 1.57/0.79	Theta(max) = 26.	422
R(reflections)= 0.0546(3848)			wR2(reflections) =
S = 1.061	Npar= 417		0.12331 40331

Figure S109Crystal information of 1a

То ((3R)-7-methyl-1,2,3,5-tetrahydro-2,5-2: determine the absolute configureuration of methanobenzo[*e*][1,4]oxazepin-3-yl)methanol: recrystallized Firstly, (3c') was from dichloromethane/methabol. The solvents were slowly evaporated directly, and the single crystal was obtained after three days. The CCDC number is 2303074.

Bond precision:	C-C = 0.0066 A	Wavelength=0.71073	
Cell:	a=6.163(2)	b=10.528(4)	c=32.488(12)
	alpha=90	beta=90	gamma=90
Temperature:	273 K		<u>j</u>
	Calculated	Reporte	d
Volume	2108.0(13)	2108.0(13)
Space group	P 21 21 21	P 21 21	21
Hall group	P 2ac 2ab	P 2ac 2	ab
Moiety formula	C12 H13 N 02	C12 H13	N 02
Sum formula	C12 H13 N O2	C12 H13	N 02
Mr.	203 23	203 23	N 02
Dx a am-7	1 201	1 203.23	
Dx, g Cill-5	0	1.201	
4 Mar (mm 1)	8	0 000	
Mu (mm-1)	0.088	0.088	
F000	864.0	864.0	
F.000,	864.40		
h, K, Imax	8,13,42	8,13,42	
Nref	4933[2858]	4863	
Tmin, Tmax	0.997,0.998	0.664,0	.746
Tmin'	0.997		
Correction metho AbsCorr = MULTI-	od= # Reported T Li SCAN	mits: Tmin=0.664	Tmax=0.746
Data completenes	s= 1.70/0.99	Theta $(max) = 27$.	717
R(reflections) =	0.0600(2936)		wR2(reflections)=
6 - 1 001	Noax- 2	72	0.1568(4863)
5 = 1.091	Npar= z	/3	
≻		NOMOVE FORCED	Prob = 50
Q			1emp = 2/3
23)		0	
201	0	04 019 20 020	
8	and and	-SP-	C22 C23
I' Yor	Charles P	-FO	D-D
C12		C18	C24
	a the	"OP	- SCIE
" And	a post	03	
	⁶⁴ 8 9 9 67 1		
8 0 1 20	O C5 02		C15
ö	C6 D		° R°
-	01		C13
12			0
eb			
S I			
NO			
I.H.			
L I			
7 -73 - 41593	0m P 21 21 21	B = 0.06	RES- 0 _80 V
[z -10 mo_01000	_0/// 1 21 21 21	11 - 0.00	NE3- 0 -00 X

