Supporting Information

Synthesis of 3-arylamino-2-polyhydroxyalkyl-substituted indoles from unprotected saccharides and anilines

JilaiWu, ${ }^{\text {a }}$ Likai Zhou, ${ }^{\text {ab }}$ Song Xie, ${ }^{\text {a }}$ Chao Wei, ${ }^{a}$ Xiaoliu Li, ${ }^{a}$ Hua Chen*, a
${ }^{\text {a key }}$ Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding Hebei, 071002, P. R. China; Email: hua-todd@163.com
${ }^{\mathrm{b}}$ College of Chemistry and Chemical Engineering, Xingtai University, Hebei, Xingtai, 054001, China

Contents

1. General Considerations:

Solvents were all analytical grade and other reagents were purchased from energy chemical and Bide Pharmatech Ltd. All reactions need to be carried out under nitrogen atmosphere. ${ }^{1} \mathrm{H}$ NMR spectra were measured on Bruker AVANCE 600 MHz and 400 MHz spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 100 MHz spectrometers with complete proton decoupling. Chemical shifts were reported in ppm from tetramethylsilane in the case of MeOH or DMSO as an internal standard. Melting points were measured on glass slides on an SGW X-4 Melting Point Apparatus. Optical rotations were determined on an SGW-1 automatic polarimeter. Mass Spectra (MS) and High resolution mass spectrometry (HRMS) is conducted on FTICR-MS (Ionspec 7.0T) mass spectrometer with electric spray ionization (ESI) manufactured by Ionspec Company in the United States.Thin-layer chromatography (TLC) was performed on precoated plates (Qingdao GF254) with detection by UV light, Puke (china) silica gel (200-300 mesh) was used for column chromatography.Structural assignments were made with additional information from gCOSY, gHSQC, and gHMBC experiments. X-Ray diffraction data were gathered on a Bruker D8 VENTURE diffractometer equipped with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ at 273 K .

2. Experimental Section:

SchemeS1Synthesis of the indoles using unprotected L-rhamnose.
General experimental procedure: L-rhamnose ($66 \mathrm{mg}, 0.4 \mathrm{mmol}$), aniline (2.5 equiv.) and $\mathrm{Sc}(\mathrm{OTf})_{3}(0.05$ equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of $80^{\circ} \mathrm{C}$ under air atmosphere for 12 h . Upon completion, the mixture was cooled to room temperature. The solvent was evaporated in vacuo. The crude product was purified by column chromatography (petroleum ether : ethyl acetate $V / V=1: 1$) to give $\mathbf{1 a}$ as a pale white solid with a yield of 78%. Under similar conditions, different aromatic amines were used as starting materials for the reaction, and the corresponding products $\mathbf{2 a - 2 0 a}$ were obtained, respectively (Scheme S1).
(a)

(b)

(15b-16b)
cheme S2 Synthesis of the indoles using unprotected five-carbons or six-carbons sugars.
General experimental procedure: d-lyxose ($60 \mathrm{mg}, 0.4 \mathrm{mmol}$), aromatic amines (2.5 equiv.) and $\operatorname{Sc}(\mathrm{OTf})_{3}(0.05$ equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of $80^{\circ} \mathrm{C}$ under air atmosphere for 12 h . Upon completion, the mixture was cooled to room temperature. The solvent was evaporated in vacuo. The crude product was purified by column chromatography (petroleum ether : ethyl acetate $V / V=1: 1$) to give $\mathbf{1 b - 8 b}$ as pale yellow solids. Under similar conditions, $\mathrm{D} / \mathrm{L}-\mathrm{ribose}(60 \mathrm{mg}, 0.4 \mathrm{mmol})$, D -arabinose $(60 \mathrm{mg}, 0.4 \mathrm{mmol})$, and $\mathrm{D}-\mathrm{xylose}(60 \mathrm{mg}, 0.4$ mmol) with different aromatic amines were used as starting materials for the reaction, and the corresponding products 9b-14b were obtained, respectively (Scheme S2-a).

D-mannose ($72 \mathrm{mg}, 0.4 \mathrm{mmol}$), aromatic amines (2.5 equiv.) and $\mathrm{Sc}(\mathrm{OTf})_{3}$ (0.05 equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of $80^{\circ} \mathrm{C}$ under air atmosphere for 12 h . Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in vacuo. The crude product was purified by column chromatography (petroleum ether : ethyl acetate $V / V=1: 1$) to give $\mathbf{1 5 b}$ as a pale yellow solid. Under similar conditions, d -glucose($72 \mathrm{mg}, 0.4 \mathrm{mmol}$), d-galactose $(72 \mathrm{mg}, 0.4 \mathrm{mmol})$ or d-fructose $(72 \mathrm{mg}, 0.4 \mathrm{mmol})$ with different aromatic amines were used as starting materials for the reaction, and the corresponding products $\mathbf{1 5 b}$ and $\mathbf{1 6 b}$ were obtained, respectively (Scheme S2-b).

Scheme S3Synthesis of the indoles using unprotected disaccharides.
General experimental procedure: Lactose ($68 \mathrm{mg}, 0.2 \mathrm{mmol}$), 3,5-dimethylaniline (2.5 equiv.) and $\mathrm{Sc}(\mathrm{OTf})_{3}$ (0.05 equiv.) were added into a 10 mL flask, 2.5 mL acetonitrile and water ($V: V=4: 1$) as the mixed solvent. Then the solution was stirred at the temperature of $80^{\circ} \mathrm{C}$ under air atmosphere for 12 h . Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in vacuo. The crude product was purified by column chromatography (dichloromethane : methanol $V / V=5: 1$) to give $\mathbf{1 7 b}$ as a pale yellow solid. Under similar conditions, maltose ($68 \mathrm{mg}, 0.2 \mathrm{mmol}$) with 3,5 -dimethylaniline were used as starting materials for the reaction, and the corresponding 18b product was obtained(SchemeS3).

Scheme S4 Extension experiments.
General experimental procedure:Product 13a $(50 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathrm{Ph}-\mathrm{B}(\mathrm{OH})_{2}$ (2.4 equiv.), $\mathrm{CsCO}_{3}(1.5$ equiv.) and DPPF PbCl_{2} (0.1 equiv.) were added into a 20 mL flask, 2.2 mL 1,4-dioxane : $\mathrm{H}_{2} \mathrm{O}(\mathrm{V}: \mathrm{V}=5: 1)$ as the mixed solvent. Then the solution was stirred at the temperature of $90^{\circ} \mathrm{C}$ under N_{2} atmosphere for 3 h . Upon completion, the mixture was cooled to room temperature, 20 mL methanol was added to dissolve the solid residue, and then the solvent was evaporated in vacuo. The crude product was purified by column
chromatography (petroleum ether : ethyl acetate $V / V=1: 1$) to give 15a as a pale yellow solid (SchemeS4-a). General experimental procedure: L-rhamnose ($1 \mathrm{~g}, 6.1 \mathrm{mmol}$), aniline (2.5 equiv.) and $\mathrm{Sc}(\mathrm{OTf})_{3}$ (0.05 equiv.) were added into a 20 mL flask, 6.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of $80^{\circ} \mathrm{C}$ under air atmosphere for 12 h . Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in vacuo. The crude product was purified by column chromatography (petroleum ether : ethyl acetate $V / V=1: 1$) to give $\mathbf{1 a}$ as a pale white solid with a yield of 54\% (SchemeS4-b).

Scheme S5 Controlled experiment.
General experimental procedure: 2,3-O-Isopropylidene L-rhamnose($88 \mathrm{mg}, 0.4 \mathrm{mmol}$), aniline (4.0 equiv.) and $\mathrm{Sc}(\mathrm{OTf})_{3}$ (0.2 equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of $80^{\circ} \mathrm{C}$ under air atmosphere for 10 minutes, subsequently, 2.0 equiv $\mathrm{NaBH}(\mathrm{OAc})_{3}$ was added into the reaction for another 20 minutes. Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether : ethyl acetate $V / V=1: 1$) to give $\mathbf{1 c}$ as a pale yellow solid (Scheme S5-a).

General experimental procedure:2-Deoxy-D-ribose($55 \mathrm{mg}, 0.4 \mathrm{mmol}$), aniline (4.0 equiv.) and $\operatorname{Sc}(\mathrm{OTf})_{3}(0.2$ equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of $80{ }^{\circ} \mathrm{C}$ under air atmosphere for 3 h . Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in vacuo. The crude product was purified by column chromatography (petroleum ether : ethyl acetate $V / V=3: 1$) to give $\mathbf{2 c}$ and $\mathbf{2 c}$ ' as pale yellow solids. Under similar conditions, 2-deoxy-D-ribose and different aromatic amines were used as starting materials for the reaction, and the corresponding products $\mathbf{3 c}, \mathbf{3 c} \mathbf{-} \mathbf{6 c}, \mathbf{6 c}$ were obtained, respectively (Scheme $\mathrm{S} 5-\mathrm{b}$).

General experimental procedure: Tetrahydro-2H-pyran-2,3-diol ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$), aniline (2.5 equiv.) and $\mathrm{Sc}(\mathrm{OTf})_{3}$ (0.05 equiv.) were added into a 10 mL flask, 2.0 mL acetonitrile as the solvent. Then the solution was stirred at the temperature of $80^{\circ} \mathrm{C}$ under air atmosphere for 12 h . Upon completion, the mixture was cooled to room temperature, and the solvent was evaporated in vacuo. The crude product was purified by column chromatography (petroleum ether : ethyl acetate $V / V=1: 1$) to give 7c (Scheme S5-c).

(2S,3R)-1-(3-(phenylamino)-1H-indol-2-yl)butane-2,3-diol (1a). Yellow solid, 90 mg , yield 78\%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $102.5-103.3{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+10.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right),{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63-6.53(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{dt}, J=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.8,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80(\mathrm{dd}, J=14.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 149.0,134.8,131.9$, $128.5,125.6,120.5,118.2,117.5,116.6,114.8,113.0,110.5,75.1,70.0,28.7,17.1$. MS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 297.1598, found: 297.1597.

(2R,3S)-1-(7-methyl-3-(o-tolylamino)-1H-indol-2-yl)butane-2,3-diol(2a). Yellow solid, 91 mg , yield 72%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $100.5-101.3{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+9.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.06(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{dd}, J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=14.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=$ $14.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 146.5$, $134.0,131.1,129.5,126.2,125.3,121.5,121.1,119.9,118.4,116.6,115.8,115.4,111.7,75.3,70.0,28.8$, 17.3, 16.6, 15.3.MS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 325.1911$, found: 325.1918 .

(2R,3S)-1-(6-methyl-3-(m-tolylamino)-1H-indol-2-yl)butane-2,3-diol(3a).Yellow solid, 95 mg , yield 62%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $90.5-92.3{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+18.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=7.8,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-$ $6.32(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=14.8,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta$ $150.5,138.2,134.9,133.0,128.9,128.4,120.5,119.8,117.3,117.2,113.6,113.2,109.9,108.3,75.1,70.0$, 47.6, 28.4, 20.4, 17.5, 17.0.MS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 325.1911$, found: 325.1907.

(2R,3S)-1-(5-methyl-3-(p-tolylamino)-1H-indol-2-yl)butane-2,3-diol(4a). Yellow solid, 84 mg , yield 71%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $97.4-98.6{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+16.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right),{ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.57-6.51(\mathrm{~m}$, 2 H), 3.77 (ddd, $J=8.2,5.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.03$ (dd, $J=14.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (dd, $J=$ $14.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 146.7$, $133.2,131.9,128.9,127.2,125.9,125.7,122.0,117.2,114.8,113.2,110.3,75.1,70.0,48.3,48.1,47.9,47.6$, 47.4, 47.2, 47.0, 28.8, 20.3, 19.2, 17.1.MS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 325.1911$, found: 325.1913.

(2R,3S)-1-(6-(tert-butyl)-3-((3-(tert-butyl)phenyl)amino)-1H-indol-2-yl)butane-2,3-diol(5a).Yellow solid, 124 mg , yield 72%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $93.7-94.3{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+15.0(c 0.1$, $\mathrm{CH}_{3} \mathrm{OH}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.36(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{q}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=7.8$,
$2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dt}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=14.8,4.4,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84(\mathrm{ddd}, J=14.8,8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 151.5,148.6,143.8,134.9,130.9,128.1,123.2,117.2,116.3,114.8,113.8,110.5,110.3$, $106.9,75.2,69.9,34.1,34.0,31.0,30.5,28.8,17.1 . \mathrm{MS}(\mathrm{ESI}):$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 409.2850, found: 409.2851 .

(2R,3S)-1-(5-(tert-butyl)-3-((4-(tert-butyl)phenyl)amino)-1H-indol-2-yl)butane-2,3-diol (6a).Yellow solid, 96 mg , yield 58%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $93.1-94.8^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+22.0(c 0.1$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.64-6.57(\mathrm{~m}, 2 \mathrm{H})$, $3.81-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{ddd}, J=14.7,4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.31$ $(\mathrm{s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 146.6,141.0,139.4,132.9$, $131.6,125.4,125.2,118.6,115.4,113.4,112.9,110.0,75.1,70.0,34.0,33.3,31.1,30.7,30.3,28.8,17.1 . \mathrm{MS}$ (ESI): Calculated for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 409.2850$, found: 409.2850.

(2R,3S)-1-(6-(methylthio)-3-((3-(methylthio)phenyl)amino)-1H-indol-2-yl)butane-2,3-diol (7a).Yellow solid, 107 mg , yield 63%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $107.7-109.1^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+12.0(c 0.1$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.35(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.94$ $(\mathrm{m}, 2 \mathrm{H}), 6.54(\mathrm{dd}, J=4.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H})$, $3.04(\mathrm{ddd}, J=14.8,4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) ~ \delta 150.1,139.7,130.0,133.9,130.4,129.7,124.9,122.1,120.7,118.3,117.2,115.6$, $111.8,111.0,75.8,70.9,29.4,18.0,17.6,15.2 . \mathrm{MS}(\mathrm{ESI})$: Calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 389.1352$, found: 389.1355 .

(2R,3S)-1-(5-(methylthio)-3-((4-(methylthio)phenyl)amino)-1H-indol-2-yl)butane-2,3-diol (8a).Yellow solid, 93 mg , yield 64%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $106.6-107.9^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+13.0(c 0.1$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}$, 2 H), 7.10 (dd, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.59 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.77 (ddd, $J=8.4,5.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (d, J $=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=14.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 148.0,133.5,133.1,131.2,126.7,126.2,126.1,123.6,122.6$, 118.2, 114.3, 113.5, 111.2, 75.0, 70.0, 28.6, 18.0, 17.5, 17.2.MS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ ([M+H]+): 389.1352, found: 389.1353.

(2R,3S)-1-(6-fluoro-3-((3-fluorophenyl)amino)-1 \mathbf{H}-indol-2-yl)butane-2,3-diol (9a).Yellow solid, 71 mg , yield 49%, petroleum ether/ethyl acetate $(V / V)=1: 1,[\alpha]_{\mathrm{D}}{ }^{25}+17.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$; m.p. $90.1-92.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=$ 8.4, 2.2 Hz, 1H), $6.32-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.25-6.22(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.05-$ $3.03(\mathrm{~m}, 1 \mathrm{H}), 2.77$ (ddd, $J=14.8,8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 165.0, 163.4, 160.4, 158.8, 151.2, 151.1, 134.7, 134.6, 132.8, 132.8, 129.7, 125.4, 122.0, 118.1, 118.0, 114.2, 108.9, 108.8, 106.7, 106.6, 102.7, 102.6, 99.4, 99.2, 96.9, 96.7, 75.0, 70.1, 28.6, 17.2.MS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 333.1409$, found: 333.1410.

(2R,3S)-1-(6-chloro-3-((3-chlorophenyl)amino)-1H-indol-2-yl)butane-2,3-diol (10a).Yellow solid, 95 mg , yield 66%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $94.2-96.3{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+31.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ $-6.43(\mathrm{~m}, 3 \mathrm{H}), 3.80-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=14.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=14.6$, $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 151.8,136.2,135.7,134.3,129.5$, 123.7, 121.2, 119.5, 116.0, 112.4, 111.3, 109.5, 74.8, 70.1, 28.3, 17.2.MS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 365.0818$, found: 365.0820.

(2R,3S)-1-(5-chloro-3-((4-chlorophenyl)amino)-1H-indol-2-yl)butane-2,3-diol (11a).Yellow solid, 75 mg , yield 58%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $97.5-98.5^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+20.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}-d 6) \delta 10.98(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}$, $3 \mathrm{H}), 7.02(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.94$ $(\mathrm{dd}, J=14.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=14.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO - d6) $\delta 148.3,136.2,133.2,129.0,126.5,123.5,120.6,120.0,116.5,114.6,113.7,113.3,74.8,70.1$, 29.7, 19.5.MS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 365.0818$, found: 365.0815.

(2R,3S)-1-(6-bromo-3-((3-bromophenyl)amino)-1H-indol-2-yl)butane-2,3-diol (12a).Yellow solid, 126 mg , yield 67%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $100.1-102.3^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+19.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.74-$ $6.70(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.64(\mathrm{~m}$, $1 \mathrm{H}), 3.04$ (ddd, $J=14.6,4.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 151.9,136.1,129.9,123.6,122.9,122.5,121.6,119.2,118.9,115.4,113.6,113.4,111.7,110.1$, 74.8, 70.2, 28.3, 17.2.MS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 452.9808$, found: 452.9810 .

(2R,3S)-1-(5-bromo-3-((4-bromophenyl)amino)-1H-indol-2-yl)butane-2,3-diol (13a)..Yellow solid, 113 mg , yield 64%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $108.7-109.3^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+15.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.32(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.16$ $-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.56-6.47(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{ddd}, J=8.8,5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=$ $14.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=14.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $148.0,134.3,133.4,131.3,127.1,123.2,119.7,114.5,113.8,112.4,111.6,107.9,74.9,70.1,47.7,28.6$, 17.2.MS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 452.9808$, found: 452.9809.

(2R,3S)-1-(1-(naphthalen-2-ylamino)-3H-benzo[e]indol-2-yl)butane-2,3-diol (14a).Yellow solid, 107 mg , yield 60%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $99.5-100.3{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+34.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.41(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=$ $8.6,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}$, $2 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.0,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.61$ (m, 1H), $3.14(\mathrm{dd}, J=14.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=14.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 146.9,135.5,131.1,131.0,129.5,128.5,128.0,127.7,127.7,127.2,125.5,125.4$, $124.6,123.4,122.2,121.5,121.1,118.9,117.2,116.8,112.9,105.4,75.3,70.1,47.7,28.4,17.1 . \mathrm{MS}$ (ESI): Calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 397.1911, found: 397.1910.

(2R,3S)-1-(3-([1,1'-biphenyl]-4-ylamino)-5-phenyl-1H-indol-2-yl)butane-2,3-diol (15a).Yellow solid, 106 mg , yield 63%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $112.7-113.1^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+17.0(c 0.1$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 8 \mathrm{H})$, $7.20(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{dd}, J=14.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ $(\mathrm{dd}, J=14.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5,146.2,145.0,137.7$, $136.9,136.4,134.1,132.3,132.2,131.5,131.0,129.9,129.7,124.8,120.1,118.5,117.3,115.0,78.7,73.8$, 31.9, 21.3.MS (ESI): Calculated for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 449.2224$, found: 449.2228.

methyl2-((2R,3S)-2,3-dihydroxybutyl)-3-((3-(methoxycarbonyl)phenyl)amino)-1H-indole-6-
carboxylate (16a).Yellow solid, 100 mg , yield 54%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. 95.2 $96.8{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+27.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d 6, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.37(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.70-6.68(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=14.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=14.6,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO - d6) $\delta 168.8,167.3,150.3,138.2,135.9,130.5,129.4$, $122.3,121.9,119.8,117.7,117.2,116.0,113.3,79.7,74.7,70.2,52.3,29.7,19.5 . \mathrm{MS}$ (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 413.1707$, found: 413.1705 .

methyl2-((2R,3S)-2,3-dihydroxybutyl)-3-((4-(methoxycarbonyl)phenyl)amino)-1H-indole-5-
carboxylate (17a). Yellow solid, 91 mg , yield 51%, petroleum ether/ethyl acetate $(V / V)=1: 2$, m.p. $106.4-$ $108.3{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+17.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.00(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.76$ $(\mathrm{m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{ddd}, J=9.0,5.4$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=14.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=14.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.7,167.9,153.4,137.5,134.7,131.1,124.8,122.1,120.4$, 120.1, 117.4, 114.4, 111.8, 110.6, 74.8, 70.1, 50.9, 50.6, 28.6, 17.3.MS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 413.1707$, found: 413.1702 .

1-(4-((5-acetyl-2-((2R,3S)-2,3-dihydroxybutyl)-1H-indol-3-yl)amino)phenyl)ethan-1-one (18a).Yellow solid, 87 mg , yield 66%, petroleum ether/ethyl acetate $(V / V)=1: 2$, m.p. $102.5-103.3{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+23.0(c 0.1$, $\mathrm{CH}_{3} \mathrm{OH}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.98(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.8,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{ddd}, J=9.0,5.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J$ $=14.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=14.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 199.7,197.9,153.7,137.7,134.9,130.7,128.6,126.0,124.7,121.4,119.6$, 114.6, 111.9, 110.9, 74.8, 70.1, 28.6, 25.3, 24.6, 17.3.MS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 381.1809 , found: 381.1809 .

(2R,3S)-1-(6-bromo-3-((3-bromo-4-methylphenyl)amino)-5-methyl-1 H -indol-2-yl)butane-2,3-diol
(19a).Yellow solid, 147 mg , yield 78%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $98.9-101.5{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}$ $+12.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right){ }^{1}{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=13.9,8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.67(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dt}, J=8.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.63(\mathrm{~m}$, $1 \mathrm{H}), 3.03$ (dd, $J=14.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=14.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 149.8,135.9,134.5,130.4,127.7,124.6,124.4,124.0,123.4$, 116.2, 113.7, 112.9, 112.4, 109.8, 74.8, 70.1, 28.4, 21.1, 20.4, 17.1.MS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 481.0121$, found: 481.0124 .

(2R,3S)-1-(3-((3,5-dimethylphenyl)amino)-5,7-dimethyl-1H-indol-2-yl)butane-2,3-diol (20a).Yellow solid, 115 mg , yield 85%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $106.5-108.2^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+15.0(c 0.1$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 2 \mathrm{H})$, $5.04(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{ddd}, J=10.8,7.4,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=15.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.2,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4$, $139.0,135.1,132.5,131.6,129.4,123.0,122.6,120.0,115.2,111.2,108.7,77.1,75.0,70.2,27.4,21.6,21.5$, 18.7, 17.7.MS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 353.2224$, found: 353.2227.

(S)-3-(7-methyl-3-(o-tolylamino)-1 \boldsymbol{H}-indol-2-yl)propane-1,2-diol (1b).Yellow solid, 84 mg , yield $\mathbf{6 7 \%}$, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $105.2-106.7{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-9.0\left(c \quad 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.55-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.03-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=11.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=14.4$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 146.5$, $134.0,130.5,129.6,126.2,125.3,121.5,121.2,120.0,118.5,116.6,115.8,115.5,111.7,71.7,65.3,29.3$, 16.7, 15.4.MS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 311.1754$, found: 311.1758 .

(S)-3-(6-methyl-3-(m-tolylamino)-1H-indol-2-yl)propane-1,2-diol (2b).Yellow solid, 94 mg , yield 73%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. 100.0-100.9 $\left.{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-14.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)\right)^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.37(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.29(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (dd, $J=11.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.19$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 150.5,138.2,134.9,132.4,129.1,128.9,128.4,124.9,120.6,119.9$, 117.1, 113.1, 109.9, 108.3, 71.6, 65.5, 47.7, 29.4, 29.1, 20.4, 17.4.MS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 311.1754$, found: 311.1754 .

(S)-3-(6-methyl-3-(p-tolylamino)-1H-indol-2-yl)propane-1,2-diol (3b).Yellow solid, 78 mg , yield 59%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $97.6-98.8{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-13.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.61-6.46(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{p}, J$ $=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 146.7,133.1,131.3,129.7,128.9,127.3,125.8,125.6,122.1,117.2,114.9,113.1,110.3,71.6$, 65.4, 47.6, 29.4, 20.3, 19.2.MS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 311.1754$, found: 311.1752 .

(S)-3-(6-(tert-butyl)-3-((3-(tert-butyl)phenyl)amino)-1H-indol-2-yl)propane-1,2-diol (4b).Yellow solid, 113 mg , yield 74%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $97.5-99.8^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-11.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dt}, J=8.6,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{ddd}, J=7.8,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{ddd}, J=8.0$, $2.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=11.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=11.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ $(\mathrm{dd}, J=14.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=14.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz ,
$\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 151.5,148.6,143.9,135.0,130.3,128.1,123.2,117.3,116.4,114.8,113.8,110.5,110.1,106.9$, $71.7,65.4,47.7,34.1,34.0,31.0,30.5$, 29.4.MS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 395.2693$, found: 395.2689.

(S)-3-(5-(tert-butyl)-3-((4-(tert-butyl)phenyl)amino)-1H-indol-2-yl)propane-1,2-diol (5b).Yellow solid, 83 mg , yield 57%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $97.5-98.5^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-14.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.71-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.00$ (m, 1H), $3.61(\mathrm{dd}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ $-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 146.6,141.1,139.4,133.0,131.1$, $126.3,125.5,125.3,118.8,115.5,113.5,112.9,110.1,71.7,65.5,47.7,34.0,33.4,31.2,30.8,29.5 . \mathrm{MS}$ (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 395.2693, found: 395.2694.

(S)-3-(6-fluoro-3-((3-fluorophenyl)amino)-1H-indol-2-yl)propane-1,2-diol (6b).Yellow solid, 76 mg , yield 52%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $95.5-96.7{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-20.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 7.21-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.08-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=8.2$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.26-6.18(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.78$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 165.4,163.0,160.8,158.4,151.2,151.1,132.1,129.8,129.7,121.9$, $118.1,118.0,114.2,108.7,107.0,106.8,106.6,103.8,103.6,102.6,102.4,99.3,99.0,96.9,96.7,71.4,65.5$, 29.3.MS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 319.1253$, found: 319.1255 .

(S)-3-(6-chloro-3-((3-chlorophenyl)amino)-1H-indol-2-yl)propane-1,2-diol (7b).Yellow solid, 80 mg , yield 51%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $104.4-105.4{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-19.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.39-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.2,2 \mathrm{H}), 6.94(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.43$
$(\mathrm{m}, 3 \mathrm{H}), 4.04-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ $(\mathrm{dd}, J=14.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 151.8,136.2,135.0,134.4,134.3,129.6,123.9$, 123.8, 121.3, 119.6, 118.3, 116.0, 112.3, 111.2, 109.6, 71.3, 65.6, 29.1.MS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 351.0662$, found: 351.0667 .

(S)-3-(6-bromo-3-((3-bromophenyl)amino)-1H-indol-2-yl)propane-1,2-diol (8b).Yellow solid, 96 mg , yield 60%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $103.3-104.7{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-23.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{dd}$, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.43$ (m, 2H), $2.99-2.76(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 151.9,135.5,129.8,123.6,122.9,122.5,121.7$, $119.1,118.9,115.3,113.6,111.6,111.1,110.1,71.2,65.5,29.1 . \mathrm{MS}$ (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 438.9651$, found: 438.9648.

(S)-3-(3-(phenylamino)-1H-indol-2-yl)propane-1,2-diol (9b).Yellow solid, 81 mg , yield 72%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $107.5-108.5{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-16.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.43(\mathrm{~m}, 3 \mathrm{H}), 3.80$ $-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=14.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=14.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 151.8,136.2,135.7,134.3,129.5,123.7,121.2,119.5$, 116.0, 112.4, 111.3, 109.5, 74.8, 70.1, 47.6.MS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 238.1441$, found: 238.1444.

(S)-3-(3-((3,5-dimethylphenyl)amino)-4,6-dimethyl-1H-indol-2-yl)propane-1,2-diol (10b).Yellow solid, 108 mg , yield 83%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $92.7-94.3^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-36.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 2 \mathrm{H}), 3.83-3.81(\mathrm{~m}, 1 \mathrm{H})$,
$3.39(\mathrm{dd}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=11.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=14.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=$ 14.6, 7.4 Hz, 1H), $2.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 150.4,138.0,135.3$, $131.5,130.1,128.6,122.8,121.7,118.1,115.1,110.5,108.2,71.6,65.5,47.6,29.1,20.3,20.2,17.3 . \mathrm{MS}$ (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 339.2067$, found: 339.2065.

methyl(R)-2-(2,3-dihydroxypropyl)-3-((4-(methoxycarbonyl)phenyl)amino)-1H-indole-5-carboxylate (11b). Yellow solid, 92 mg , yield 60%, petroleum ether/ethyl acetate $(V / V)=1: 2$, m.p. $90.6-92.4^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-$ $+31.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right){ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 11.34(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=8.2,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=7.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=14.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=$ $14.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.5,167.6,154.3,138.2,136.5,132.3,125.5,122.9$, 121.2, 120.7, 118.1, 114.9, 113.2, 112.6, 72.0, 66.9, 52.9, 52.5, 31.2.MS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 399.1551$, found: 399.1550 .

(R)-1-(4-((5-acetyl-2-(2,3-dihydroxypropyl)-1H-indol-3-yl)amino)phenyl)ethan-1-one(12b).Yellow solid, 91 mg , yield 55%, petroleum ether/ethyl acetate $(V / V)=1: 2$, m.p. $93.6-94.8{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+28.0(c 0.1$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.85(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=11.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=11.3,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=14.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 199.7,197.8,153.7,137.7,134.3,130.7,128.7,126.0,124.7,121.4,119.5,114.7$, $111.8,110.8,71.2,65.5,47.6,29.3,25.2,24.6 . M S$ (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 367.1652$, found: 367.1651 .

(R)-3-(6-bromo-3-((3-bromo-4-methylphenyl)amino)-5-methyl-1 \boldsymbol{H}-indol-2-yl)propane-1,2-diol

(13b).Yellow solid, 140 mg , yield 72%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $97.5-99.7^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}$ $+40.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right){ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.83 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.40$ (dd, $J=11.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (dd, $J=11.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (dd, $J=14.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (dd, $J=14.6$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 149.8$, 135.3, 134.4, 130.4, 127.8, 124.5, 124.4, 124.0, 123.5, 116.1, 113.7, 112.9, 112.3, 109.8, 71.3, 65.5, 29.2, 21.0, 20.3.MS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 466.9964 , found: 466.9967.

(R)-3-(3-((3,5-dimethylphenyl)amino)-5,7-dimethyl-1H-indol-2-yl)propane-1,2-diol (14b).Yellow solid, 95 mg , yield 74%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $108.5-109.3^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+17.0(c 0.1$, $\mathrm{CH}_{3} \mathrm{OH}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{qd}, J=$ $6.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=11.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=14.5,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $150.5,138.0,135.4,131.5,130.1,128.7,122.8,121.7,118.2,115.1,110.5,108.2,71.6,65.5,29.1,20.3$, 17.4.MS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 339.2067$, found: 339.2066.

(2R,3S)-4-(3-((3,5-dimethylphenyl)amino)-4,6-dimethyl-1H-indol-2-yl)butane-1,2,3-triol(15b).Yellow solid, 117 mg , yield 82%, petroleum ether/ethyl acetate (V / V) $=1: 1$, m.p. 122.6-123.4 ${ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{25}-9.0$ (c 0.1, $\mathrm{CH}_{3} \mathrm{OH}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{dd}, J=$ $9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=14.8,4.0 \mathrm{~Hz}$, 1 H), 2.80 (dd, $J=14.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 151.8,139.5$, $139.4,136.7,133.2,131.5,130.0,124.2,123.1,119.7,119.7,116.6,112.1,112.0,109.6,109.6,75.9,73.5$, 64.6, 64.5, 30.2, 21.7, 21.6, 21.6, 18.8, 18.7.MS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 369.2173$, found: 369.2175 .

(2R,3R)-4-(3-((3,5-dimethylphenyl)amino)-4,6-dimethyl-1H-indol-2-yl)butane-1,2,3-triol (16b).Yellow solid, 119 mg , yield 76%, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. $107.5-108.9{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-2.0(c 0.1$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 2 \mathrm{H}), 3.84-3.76$ $(\mathrm{m}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{ddd}, J=6.4,5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 1.99$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 150.4,138.1,135.3,131.6,130.2,128.6,122.8,121.7,118.2,115.1$, $110.6,108.2,73.2,70.8,63.4,29.3,20.3,20.3,17.4 . \mathrm{MS}(E S I):$ Calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 369.2173 , found: 369.2170 .

(2R,3R,4S,5R,6R)-2-(((2S,3R)-1-(3-((3,5-dimethylphenyl)amino)-4,6-dimethyl-1H-indol-2-yl)-3,4-dihydroxybutan-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol. (17b).Yellow solid, 82 mg , yield 73%, $\mathrm{DCM} / \mathrm{MeOH}(V / V)=5: 1$, m.p. 130.6-131.2 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+10.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=6.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.57(\mathrm{~m}$, $2 \mathrm{H}), 3.55(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=9.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 2.13(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 150.2,138.1,135.3,130.8,130.1,128.5,122.5,121.6,118.4,115.4$, $110.8,108.3,104.4,81.0,75.3,73.4,72.6,71.6,68.9,62.7,61.1,26.7,20.3,20.3,17.3 . \mathrm{MS}$ (ESI): Calculated for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 531.2701, found: 531.2700.

(2S,3R,4S,5S,6R)-2-(((2S,3R)-1-(3-((3,5-dimethylphenyl)amino)-4,6-dimethyl-1H-indol-2-yl)-3,4-dihydroxybutan-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (18b).Yellow solid, 90 mg , yield 81%, $\mathrm{DCM} / \mathrm{MeOH}(V / V)=5: 1, \mathrm{~m} . \mathrm{p} .139 .5-140.1^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+62.0\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.83(\mathrm{~m}$ $1 \mathrm{H}), 3.73(\mathrm{dd}, J=11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{ddd}, J=10.2,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}$, $J=11.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dt}, J=6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $150.4,138.1,135.4,131.1,130.0,128.6,122.5,121.6,118.2,115.3,110.5,108.3,97.9,78.3,73.7,72.9$, 72.8, 72.1, 70.3, 63.0, 61.2, 23.7, 20.3, 20.3, 17.3.MS (ESI): Calculated for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 531.2701$, found: 531.2703.

(1S)-1-((4S,5S)-2,2-dimethyl-5-((phenylamino)methyl)-1,3-dioxolan-4-yl)propane-1,2-diol (1c). Yellow solid, petroleum ether/ethyl acetate $(V / V)=1: 1$, m.p. 112.6-113.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.01$ (dd, $J=8.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.58$ $(\mathrm{m}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{dd}, J=12.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 148.5,128.7,128.7,117.2,113.1,107.7,76.3,75.8,73.0,68.2,44.4$, 24.0, 22.8, 19.0.MS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 282.1700$, found: 282.1702.MS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$282.1700, found: 282.1701 .

(3R)-1,3,4,6-tetrahydro-2H-2,6-methanobenzo $[\boldsymbol{c}][1,5]$ oxazocin-3-ol(2c). Yellow solid, yield 31\%. petroleum ether/ethyl acetate $(V / V)=3: 1$, m.p. $121.4-123.1^{\circ}{ }^{\circ} .^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.11$ $(\mathrm{m}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{p}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.72$ $(\mathrm{dd}, J=11.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{ddd}, J=13.4,3.4,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89(\mathrm{ddd}, J=13.2,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.4,130.7,129.7,119.9$, 117.7, 113.7, 68.9, 67.5, 62.8, 48.8, 27.8.MS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 192.1019$, found: 192.1019.

((3R)-1,2,3,5-tetrahydro-2,5-methanobenzo $[e][1,4]$ oxazepin-3-yl)methanol(2c'). Yellow solid, yield 28%. petroleum ether/ethyl acetate $(V / V)=3: 1$, m.p. $118.5-119.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{p}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.65(\mathrm{~m}$, $1 \mathrm{H}), 3.60-3.49(\mathrm{~m}, 3 \mathrm{H}), 2.58-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7$, $130.8,129.9,118.4,117.0,113.0,70.1,69.0,63.8,47.8,29.8,23.9 . M S$ (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 192.1019$, found: 192.1018 .

(3R)-8-methyl-1,3,4,6-tetrahydro-2H-2,6-methanobenzo $[c][1,5]$ oxazocin-3-ol (3c). Yellow solid, yield 29%. petroleum ether/ethyl acetate $(V / V)=3: 1$, m.p. $131.9-132.8^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(\mathrm{dd}$, $J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.68$ $(\mathrm{m}, 2 \mathrm{H}), 3.62(\mathrm{p}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{dt}, J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (ddd, $J=13.2,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,130.9,130.5,127.1,120.0,114.0$, 68.8, 67.6, 67.5, 62.9, 48.8, 28.0, 20.4.MS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 206.1176$, found: 206.1175.

((3R)-7-methyl-1,2,3,5-tetrahydro-2,5-methanobenzo[e][1,4]oxazepin-3-yl)methanol (3c'). Yellow solid, yield 34%. petroleum ether/ethyl acetate $(V / V)=3: 1$, m.p. $127.2-128.8^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.50-6.47(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.49(\mathrm{~m}$, $3 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3,131.0$,
$130.6,126.2,118.3,113.0,70.3,69.1,69.0,63.8,47.9,24.1,20.4 . \mathrm{MS}$ (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right):$206.1176, found: 206.1177.

(3R)-8-methoxy-1,3,4,6-tetrahydro-2H-2,6-methanobenzo $[c][1,5]$ oxazocin-3-ol(4c).Yellow solid, yield 34%. petroleum ether/ethyl acetate $(V / V)=3: 1$, m.p. $115.4-116.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{dd}$, $J=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H})$, $3.59(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{q}, J=9.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.2,139.2,120.8,116.9,115.4,114.7,68.6,67.7,63.0,55.8,48.7,28.0 . \mathrm{MS}(\mathrm{ESI}):$ Calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 222.1125$, found: 222.1126 .

((3R)-7-methoxy-1,2,3,5-tetrahydro-2,5-methanobenzo $[e][1,4]$ oxazepin-3-yl)methanol(4c').Yellow solid, yield 36%. petroleum ether/ethyl acetate $(V / V)=3: 1$, m.p. $119.3-121.2^{\circ}{ }^{\circ} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.79(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.46(\mathrm{~m}, 3 \mathrm{H}), 2.58-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 151.6,138.8,119.0,117.1,114.9,114.3,70.3,69.2,63.9,55.9,47.9,24.0 . \mathrm{MS}$ (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 222.1125$, found: 222.1128 .

(3R)-8-chloro-1,3,4,6-tetrahydro-2H-2,6-methanobenzo[c][1,5]oxazocin-3-ol (5c).Yellow solid, yield 26%. petroleum ether/ethyl acetate $(V / V)=3: 1$, m.p. $125.2-126.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.60-6.56(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=11.0,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 2.90(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, J=13.1,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{CNMR}^{(101 ~ M H z}, \mathrm{CDCl}_{3}$) $\delta 144.0,130.2,129.6,122.2,121.2,114.9,68.9,67.1,67.1,62.8,48.8,27.6 . \mathrm{MS}$ (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NClO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 226.0629$, found: 226.0629.

((3R)-7-chloro-1,2,3,5-tetrahydro-2,5-methanobenzo[e] [1,4]oxazepin-3-yl)methanol(5c').Yellow solid, yield 26%. petroleum ether/ethyl acetate $(V / V)=3: 1$, m.p. $132.7-133.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.12(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H})$, $3.74-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 1.53$ - $1.52(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,130.3,129.8,128.0,121.4,119.7,114.2,69.9,68.5$, 63.8, 47.7, 23.6.MS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NClO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 226.0629$, found: 226.0628.

(3R)-8-bromo-1,3,4,6-tetrahydro-2H-2,6-methanobenzo $[\boldsymbol{c}][1,5]$ oxazocin-3-ol(6c).Yellow solid, yield 24%. petroleum ether/ethyl acetate $(V / V)=3: 1$, m.p. $110.5-112.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-$ $7.19(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 3.79-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 2.90(\mathrm{t}$, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.5,133.0$, 132.4, 121.7, 115.3, 109.1, 68.9, 67.0, 62.8, 48.7, 27.5. MS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NBrO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 270.0124, found: 270.0126 .

($(3 R)$-7-bromo-1,2,3,5-tetrahydro-2,5-methanobenzo $[e][1,4]$ oxazepin-3-yl)methanol($6 c^{\prime}$).Yellow solid, yield 27%. petroleum ether/ethyl acetate $(V / V)=3: 1$, m.p. $120.3-121.5^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.54-$ $1.51(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.6,133.2,132.6,120.2,114.6,108.3,69.8,68.5,63.8,47.7$, 23.5.MS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NBrO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 270.0124$, found: 270.0125 .

(2S,3R,4R,5R)-2-methyl-6-(phenylamino)tetrahydro-2H-pyran-3,4,5-triol (A).Yellow solid, petroleum ether/ethyl acetate $(V / V)=1: 3$, m.p. $96.7-97.2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.03$ (dd, $J=8.6,7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=$ $5.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ $145.7,128.6,118.1,113.7,82.0,74.5,72.8,72.6,71.7,16.6$.

3-(3-(phenylamino)-1H-indol-2-yl)propan-1-ol (7c):Yellow solid, petroleum ether/ethyl acetate $(V / V)=1: 1$, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=20.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{q}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.04(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.88$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.3,134.6,134.3,129.1,126.0$, 121.6, 119.5, 118.1, 117.8, 114.4, 113.4, 110.8, 61.8, 31.2, 21.7.MS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 267.1492$, found: 267.1498 .

3. NMR spectra of the compounds

Figure. S1 ${ }^{1} \mathrm{H}$ NMR of compound1a

Figure. $\mathrm{S} 2{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 1a

Figure. S3 $^{1} \mathrm{H}$ NMR of compound $\mathbf{2 a}$

Figure. $\mathrm{S} 4{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 2a

Figure. $\mathrm{S}^{1}{ }^{1} \mathrm{H}$ NMR of compound3a

Figure. $S 6{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 3a

Figure. $\mathrm{S}^{1}{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 a}$

Figure. $\mathrm{S} 8{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{4 a}$

Figure.S9 ${ }^{1} \mathrm{H}$ NMR of compound5a

Figure. $\mathrm{S} 10^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{5 a}$

Figure. S11 ${ }^{1} \mathrm{H}$ NMR of compound 6 a

Figure. S $12{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{6 a}$

Figure. $\mathrm{S}_{13}{ }^{1} \mathrm{H}$ NMR of compound7a

Figure. $\mathrm{S} 14^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $7 \mathbf{7 a}$

Figure. $\mathrm{S} 15^{1} \mathrm{H}$ NMR of compound8a

Figure. S $16{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{8 a}$

Figure. $\mathrm{S} 17^{1} \mathrm{H}$ NMR of compound 9 a

Figure. S $188^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $9 \mathbf{9 a}$

Figure. $\mathrm{S}^{19}{ }^{1} \mathrm{H}$ NMR of compound 10 a

Figure. S $20{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 0 a}$

Figure. S21 ${ }^{1} \mathrm{H}$ NMR of compound11a

Figure. S $22{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 11a

Figure. S $23{ }^{1} \mathrm{H}$ NMR of compound 12a

Figure. S $24{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 12a

Figure. S25 ${ }^{1} \mathrm{H}$ NMR of compound13a

Figure. S $26{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 13a

Figure. $\mathrm{S} 27^{1} \mathrm{H}$ NMR of compound $\mathbf{1 4 a}$

Figure. $\mathrm{S} 28{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 4 a}$

Figure. $\mathrm{S} 29{ }^{1} \mathrm{H}$ NMR of compound $15 a$

Figure. $\mathrm{S} 30^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 5 a}$

Figure. S31 ${ }^{1} \mathrm{H}$ NMR of compound $16 \mathbf{a}$

Figure. S32 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 16a

Figure. S33 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 7 a}$

Figure. $\mathrm{S} 34{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 7 a}$

Figure. S35 ${ }^{1} \mathrm{H}$ NMR of compound $18 \mathbf{a}$

Figure. $\mathrm{S} 36{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 8 a}$

Figure. $\mathrm{S} 37^{1} \mathrm{H}$ NMR of compound 19 a

Figure. $\mathrm{S} 38{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 19a

Figure. $\mathrm{S} 39^{1} \mathrm{H}$ NMR of compound $\mathbf{2 0 a}$

Figure. $\mathrm{S} 40^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 20a

Figure. S41 ${ }^{1} \mathrm{H}$ NMR of compound 1 b

Figure. S $42{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 b}$

Figure. S43 ${ }^{1} \mathrm{H}$ NMR of compound 2 b

Figure. S $44^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 2b

Figure. $\mathrm{S} 45^{1} \mathrm{H}$ NMR of compound 3 b

Figure. S46 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{3 b}$

Figure. $\mathrm{S} 47^{1} \mathrm{H}$ NMR of compound $\mathbf{4 b}$

Figure. $\mathrm{S} 48^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{4 b}$

Figure. S49 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 b}$

Figure. $\mathrm{S} 50{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{5 b}$

Figure. S51 ${ }^{1} \mathrm{H}$ NMR of compound 6 b

Figure. $\mathrm{S}_{52}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{6 b}$

Figure. $\mathrm{S}^{5} 3^{1} \mathrm{H}$ NMR of compound 7 b

Figure. $\mathrm{S} 54{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 7b

Figure. $\mathrm{S} 55^{1} \mathrm{H}$ NMR of compound $\mathbf{8 b}$

Figure. S $^{13}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{8 b}$

Figure. $S 57^{1} \mathrm{H}$ NMR of compound $\mathbf{9 b}$

Figure. $\mathrm{S} 58{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 9 b

Figure. $S 59^{1} \mathrm{H}$ NMR of compound $\mathbf{1 0 b}$

Figure. $\mathrm{S} 60^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 0 b}$

Figure. S61 ${ }^{1} \mathrm{H}$ NMR of compound11b

Figure. $\mathrm{S} 62{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 1 b}$

Figure. S63 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 2 b}$

Figure. $\mathrm{S} 64{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 12b

Figure. S65 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 3 b}$

Figure. $\mathrm{S} 66^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 13b

Figure. $\mathrm{S} 67^{1} \mathrm{H}$ NMR of compound14b

Figure. $\mathrm{S} 68{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 4 b}$

Figure. S69 ${ }^{1} \mathrm{H}$ NMR of compound15b

Figure. $\mathrm{S} 70^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 5 b}$

Figure. $\mathrm{S} 71^{1} \mathrm{H}$ NMR of compound $\mathbf{1 6 b}$

Figure. S72 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 6 b}$

Figure. $\mathrm{S}^{1} 3^{1} \mathrm{H}$ NMR of compound $\mathbf{1 7 b}$

Figure. $\mathrm{S} 74^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 7 b}$

Figure. $\mathrm{S}^{\mathbf{1}} 5^{1} \mathrm{H}$ NMR of compound $\mathbf{1 8 b}$

Figure. $\mathrm{S} 76{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 8 b}$

Figure. $\mathrm{S} 77^{1} \mathrm{H}$ NMR of compound $\mathbf{1 c}$

Figure. $\mathrm{S} 78{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 c}$

Figure. $\mathrm{S} 79^{1} \mathrm{H}$ NMR of compound 2 c

Figure. $\mathrm{S} 80^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 2c

Figure. S81 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2} \mathbf{c}^{\prime}$

Figure. $\mathrm{S} 82{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{2 c}{ }^{\prime}$

Figure. $\mathrm{S} 83^{1} \mathrm{H}$ NMR of compound $\mathbf{3 c}$

Figure. $\mathrm{S} 84{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{3 c}$

Figure. $\mathrm{S} 85^{1} \mathrm{H}$ NMR of compound $\mathbf{3 c}{ }^{\prime}$

Figure. $\mathrm{S} 86{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{3 c}$,

Figure. $\mathrm{S}^{1} 7^{1} \mathrm{H}$ NMR of compound $\mathbf{4 c}$

Figure. $\mathrm{S} 88{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{4 c}$

Figure. S89'H NMR of compound $\mathbf{4 c}{ }^{\text {' }}$

Figure. $\mathrm{S} 90^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{4 c}$,

Figure. S91 ${ }^{1} \mathrm{H}$ NMR of compound 5 c

Figure. S92 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{5 c}$

Figure. S $^{1}{ }^{1} \mathrm{H}$ NMR of compound5c ${ }^{\text {' }}$

Figure. $\mathrm{S} 94^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{5 c}$,

Figure. $\mathrm{S} 95^{1} \mathrm{H}$ NMR of compound $\mathbf{6 c}$

Figure. S $96{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{6 c}$

Figure. S971'H NMR of compound $6 \mathbf{c}^{\prime}$

Figure. S98 ${ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{6 c}{ }^{\prime}$

Figure. $\mathrm{S} 99^{1} \mathrm{H}$ NMR of compoundA

Figure. $\mathrm{S} 100{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound \mathbf{A}

Figure. S101 ${ }^{1} \mathrm{H}$ NMR of compound7c

Figure. $\mathrm{S} 102{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 7c

4. 2D NMR analysis spectra

Figure. S103 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY 2D-NMR of compound 13a

Figure. S104 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY 2D-NMR of compound 13a

Figure. $\mathrm{S}^{105}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC 2D-NMR of compound 13a

Figure. S $106{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC 2D-NMR of compound 13a

Figure S107 Key HMBC ($\mathrm{C} \rightarrow \mathrm{H}$) correlations

5. High resolution mass spectra

E, F, G,or 1a: $\mathrm{MS}(E S I):$ Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 297.1598$, found:297.1597.

F

G

1a

Figure S108 High resolution mass spectrum of compound $\mathbf{1}$ aorintermediate \mathbf{I}, \mathbf{J}.

6. Crystal Information:

1: To determine the absolute configureuration of ($2 \boldsymbol{S}, \mathbf{3 R}$)-1-(3-(phenylamino)-1H-indol-2-yl)butane-2,3diol (1a): Firstly, 1a was recrystallized from dichloromethane/methabol. The solvents were slowly evaporated directly, and the single crystal was obtained after three days. The CCDC number is 2301597.

Figure S109Crystal information of 1a

2: To determine the absolute configureuration of ((3R)-7-methyl-1,2,3,5-tetrahydro-2,5methanobenzo $[e][1,4]$ oxazepin-3-yl)methanol: Firstly, (3c') was recrystallized from dichloromethane/methabol. The solvents were slowly evaporated directly, and the single crystal was obtained after three days. The CCDC number is 2303074.

Figure S110Crystal information of $\mathbf{3 c}{ }^{\prime}$

