Supporting Information

Electrochemical oxidative cross-coupling of tetrahydroquinolines and

azoles

Dan Yang^{a‡}, Yu-Fang Tan^{a‡}, Ya-Nan Zhao^b, Jin-Feng Lv^a, Zhi Guan^{a*} and Yan-Hong He^{a*}

^a Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and

Chemical Engineering, Southwest University, Chongqing 400715, China

^b Analytical and Testing Center, Southwest University, Chongqing, 400715, China [‡] These authors contributed equally to this work

Contents

1. General methods
2. Experimental procedures
2.1. General procedure for the preparation of tetrahydroquinolines 1S1
2.2. General procedure for the preparation of benzotriazoles 2
2.3. General procedure for the electrochemical synthesis of dihydroquinoline-azole derivatives
3
2.4. By-products
3. Optimization of reaction conditions
3.1. Reaction condition optimization for synthesizing dihydroquinoline-azole derivativesS7
3.2. Reaction condition optimization for synthesizing of quinoline-azole derivatives
4. Mechanistic investigation
4.1. Cyclic voltammetry experiments
4.2. Radical trapping experiments
5. Characterization data of the products
6. References
7. NMR Spectra of Products

1. General methods

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Reactions were monitored by thin-layer chromatography (TLC) with Haiyang GF 254 silica gel plates (Qingdao Haiyang chemical industry Co Ltd, Qingdao, China) using UV light and vanillic aldehyde or phosphomolybdic acid as visualizing agents. Flash column chromatography was performed using 200-300 mesh silica gel at increased pressure. ¹H NMR spectra, ¹⁹F NMR spectra and ¹³C NMR spectra were respectively recorded on 600 MHz, 565 MHz, 400 MHz, 151 MHz and 101 MHz NMR spectrometers. Chemical shifts (δ) were expressed in ppm with TMS as the internal standard, and coupling constants (J) were reported in Hz. High-resolution mass spectra were obtained by using ESI ionization sources (quadrupole time-of-flight mass spectrometer, Bruker Impact II, Bremen, Germany). Cyclic voltammograms were obtained on a CHI 700E potentiostat (CH Instruments, Inc.).

Abbreviations: THF = tetrahydrofuran, HFIP = 1,1,1,3,3,3-hexafluoropropan-2-ol, MeOH = methanol, DMA = N,N-dimethylaniline, DMF = N,N-dimethylformamide, CYH = cyclohexane, DMSO = dimethyl sulfoxide, EA = ethyl acetate, DCE = dichloroethane, DCM = dichloromethane, MeCN = acetonitrile, TEMPO = 2,2,6,6-tetramethylpiperidinooxy, ACT = 4-ACETAMIDO-TEMPO, FC = ferrocene, TAPA = triphenylamine, ABN = 9-azabicyclo[3.3.1]nonane N-oxyl, DABCO = triethylenediamine

2. Experimental procedures

2.1. General procedure for the preparation of tetrahydroquinolines 1¹

In a 50 mL round-bottomed flask, quinoline (5 mmol), Hantzsch ester (2.5 equiv), $B(OH)_3$ (15 mol%) and dichloroethane (20 mL) were charged. The reaction mixture was stirred at 60 °C (in a preheated oil bath). After completion of the reaction (detected by TLC), the reaction mixture was cooled to RT, extracted with EtOAc and washed with H₂O. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated in vacuo. The residue was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to give desired product **1**.

2.2. General procedure for the preparation of benzotriazoles 2²

1,2-Phenylenediamine derivative (3.26 mmol) was dissolved in a mixture of 0.45 mL of glacial acetic acid and 1.2 mL of water and cooled to 4 °C. A solution of sodium nitrite (0.26 g, 3.76 mmol) in 1 mL of water was added. The reaction temperature rose to 50 °C for 30 min, and

then was allowed to reach RT. and stirred at this temperature for 12 h. The mixture was cooled to 0 °C for 1 h. Produced precipitate was collected by suction filtration, and washed with water, and dried to provide substituted benzotriazoles **2**.

2.3. General procedure for the electrochemical synthesis of dihydroquinolineazole derivatives 3

Substrate 1 (0.3 mmol, 1 equiv.), substrate 2 (0.6 mmol, 2 equiv.), NaI (0.6 mmol, 2 equiv.), TEMPO (0.3 mmol, 1 equiv.), K_2CO_3 (1.05 mmol, 3.5 equiv.) and CH₃CN (6 mL) were added to a three-necked flask (10 mL) equipped with a magnetic stirring bar. Two platinum plates (1 cm x 1 cm x 0.2 mm each) were used as anode and cathode respectively (the electrodes were immersed 1 cm in the reaction solution). The reaction mixture was stirred and electrolyzed at a constant current of 9 mA at RT. After reaction completion (monitored by TLC), solvent (CH₃CN) was removed, the crude reaction mixture was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to obtain the target product **3**. (Note: Some products **3** may undergo decomposition in deuterated chloroform).

Figure S1 Electrochemical setup used.

The experimental setup consisted of two platinum sheet electrodes (1 cm x 1 cm x 0.2 mm each), a three-necked flask (10 mL), an adjustable DC regulated power supply (MS-150V 100 mA), a magnetic stirrer, The reaction system is not sealed.

2.4. By-products

In some cases (but not all) depicted in Figure 1, both products **3** and **4** were obtained, with **3** being the major product and **4** the minor product. Taking the model reaction as an example: under the standard conditions depicted in Scheme 1, the reaction was conducted for 8 h, and after silica gel column chromatography separation, dihydroquinazoline-imidazole derivative **3a** (90% yield) and further oxidized product quinazoline-imidazole derivative **4a** (4% yield) were obtained.

Under the standard reaction conditions depicted in Scheme 2, after 32 h of reaction, no dihydroquinazoline-imidazole derivative **3a** was observed, and the reaction generated quinazoline derivative **4a** (60% yield), with the main by-products being quinazoline 7 (5% yield) and dihydroquinazolin-4-one **8** (21% yield).

Some products **3** may undergo decomposition in deuterated chloroform. Taking product **3a** as an example, possible path way is shown as following:

We conducted ¹H-NMR analysis of product **3a** at different time intervals in deuterated chloroform and observed that the extent of decomposition increased with prolonged exposure.

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3a:

8.7573 8.744 8.7444 8.74136 8.80998 7.6414 7.6414 7.6285 7.6414 7.4471 7.4471 7.4471 7.4471 7.4471 7.4471 7.4471 7.4471 7.4473 7.4471 7.4471 7.4343 7.4620 7.14537 7.7310 7.2976 7.2976 7.1937 7.1937 3.5386 3.5243 3.5100 3.1017 3.0875 - 3.0875

After one day:

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3a:

quinoline (8)³: $R_f = 0.25$ (Petroleum ether/EtOAc, 5:1). Colorless liquid. ¹H NMR (600 MHz,

Chloroform-d) δ 8.88 (dd, *J* = 4.3, 1.7 Hz, 1H), 8.13 – 8.09 (m, 1H), 8.05 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.73 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.65 – 7.67 (m, 1H), 7.46 – 7.49 (m, 1H), 7.30 (dd, *J* = 8.3, 4.2 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 150.3, 148.2, 135.9, 129.4, 129.3, 128.2, 127.7, 126.4, 121.0.

3,4-dihydroquinolin-2(1H)-one (9)³ : R_f = 0.25 (Petroleum ether/EtOAc, 5:1). White solid. ¹H NMR (600 MHz, Chloroform-d) δ 9.60 (s, 1H), 7.19 – 7.11 (m, 2H), 7.01 – 6.95 (m, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 2.96 (t, *J* = 7.6 Hz, 2H), 2.64 (dd, *J* = 8.6, 6.7 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-d) δ 137.4, 127.8, 127.5, 123.6, 123.0, 115.7, 30.7, 25.3.

3. Optimization of reaction conditions

3.1. Reaction condition optimization for synthesizing dihydroquinoline-azole derivatives

NH + 1a	N N N H H Za N N N N N N N N N N N N N N N N N N	$- \bigvee_{N \in \mathbb{N} \atop N \in \mathbb{N}} + \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$	$ \begin{array}{c} $
Entry	Solvent	3a Yield (%) ^b	4a Yield (%) ^b
1	THF	N.D.	Trace
2	Acetone	N.D.	N.D.
3	MeOH	N.D.	Trace
4	DMSO	N.D.	26
5	DMA	Trace	17
6	EA	N.D.	13
7	DCE	N.D.	N.D.
8	СҮН	N.D.	N.D.
9	DMF	18	25
10	CH ₃ CN	60	Trace

 Table S1. Solvent screening ^a

^a Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2.0 *equiv*), NaI (0.6 mmol, 2.0 *equiv*), TEMPO (0.3 mmol, 1.0 *equiv*) and K₂CO₃ (0.6 mmol, 2.0 *equiv*) in a solvent (6 mL) under a constant current of 9 mA (Pt anode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm) in an undivided cell at RT for 8 h. ^b Isolated yield.

Table S2. Screening of mixed solvents^a

+ NH H	N N N H 2a	Pt(+) Pt(-), 9 mA Nal (2.0 eq) TEMPO (1.0 eq) K ₂ CO ₃ (2.0 eq) solvent (6 mL), RT	$ \begin{array}{c} $
Entry	Solvent		Yield (%) ^b
1	CH ₃ CN		60
2	$CH_3CN:DMF = 5:1$		7
3	$CH_3CN:DMF = 1:1$		36
4	$CH_3CN:DMF = 1:5$		14
5	$CH_3CN:HFIP = 5:1$		N.D.
6	$CH_3CN:HFIP = 2:1$		N.D.
7	CH ₃ C	N:HFIP = 1:1	N.D.
8	$CH_3CN:HFIP = 1:5$		N.D.

^a Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2.0 *equiv*), NaI (0.6 mmol, 2.0 *equiv*), TEMPO (0.3 mmol, 1.0 *equiv*) and K₂CO₃ (0.6 mmol, 2.0 *equiv*) in a solvent (6 mL) under a constant current of 9 mA (Pt anode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm) in an undivided cell at RT for 8 h. ^b Isolated yield.

Table S3. Electrolyte screening

N +	$ \begin{array}{c} $	
1a	2a CH ₃ CN (6 mL), RT	3a
Entry	Electrolyte	Yield (%) ^b
1		Oveload
2	NaI	60
3	KI	7
4	NH ₄ I	Trace
5	ⁿ Bu ₄ NI	9
6	$^{n}\mathrm{Bu}_{4}\mathrm{NBr}$	17
7	ⁿ Bu ₄ NOAc	10
8	ⁿ Bu ₄ NPF ₆	Trace
9	ⁿ Bu ₄ NClO ₄	9
10	"Bu ₄ NBF ₄	Trace
11	$NaBF_4$	Trace
12	"Bu ₄ NCF ₃ SO ₃	Trace
13	LiClO ₄	12
14	LiOAc	N.D.

^a Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2.0 *equiv*), electrolyte (0.6 mmol, 2.0 *equiv*), TEMPO (0.3 mmol, 1.0 *equiv*) and K₂CO₃ (0.6 mmol, 2.0 *equiv*) in CH₃CN (6 mL) under a constant current of 9 mA (Pt anode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm) in an undivided cell at RT for 8 h. ^b Isolated yield.

Table S4. Mediator screening^a

H +	N N H 2a	Pt(+) Pt(-), 9 mA Nal (2.0 eq) mediator (1.0 eq) K ₂ CO ₃ (2.0 eq) CH ₃ CN (6 mL), RT	$ \begin{array}{c} $
Entry	М	ediator	Yield (%) ^b
1			Trace
2	ТЕМРО		60
3	ACT		27
4	FC		8
5	TAPA		15
6	NaBr		Trace
7	$^{n}\mathrm{Bu}_{4}\mathrm{NBr}$		26
8	ABN		15
9	DABCO		Trace

^a Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2.0 *equiv*), NaI (0.6 mmol, 2.0 *equiv*), mediator (0.3 mmol, 1.0 *equiv*) and K₂CO₃ (0.6 mmol, 2.0 *equiv*) in CH₃CN (6 mL) under a constant current of 9 mA (Pt anode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm) in an undivided cell at RT for 8 h. ^b Isolated yield.

Table S5. Additive screening^a

N +	N N N H N H N H N N N N N N N N N N N N	
1a	2a CH ₃ CN (6 mL), RT	3a
Entry	Additive	Yield (%) ^b
1		23
2	K ₂ CO ₃	60
3	Na ₂ CO ₃	9
4	Cs_2CO_3	22
5	KHCO ₃	17
6	K ₃ PO ₄	8
7	КОН	44
8	NaOH	26
9	'BuOK	24
10	KF	40
11	CsF	47
12	DBU	19
13	DABCO	Trace
14	2,6-Dimethylpyridine	10

^a Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2.0 *equiv*), NaI (0.6 mmol, 2.0 *equiv*), TEMPO (0.3 mmol, 1.0 *equiv*) and additive (0.6 mmol, 2.0 *equiv*) in CH₃CN (6 mL) under a constant current of 9 mA (Pt anode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm) in an undivided cell at RT for 8 h. ^b Isolated yield.

+ NH 1a	N N H 2a	Pt(+) Pt(-), 9 mA Nal TEMPO (1.0 eq) K ₂ CO ₃ (2.0 eq) CH ₃ CN (6 mL), RT	$ \begin{array}{c} $
Entry	Amoun	t of NaI (<i>equiv</i>)	Yield (%) ^b
1	1.0		22
2		1.5	24
3		2.0	60
4		2.5	55

Table S6. Screening of the amount of NaI^a

^a Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2.0 *equiv*), NaI (x mmol), TEMPO (0.3 mmol, 1.0 *equiv*) and K₂CO₃ (0.6 mmol, 2.0 *equiv*) in CH₃CN (6 mL) under a constant current of 9 mA (Pt anode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm) in an undivided cell at RT for 8 h. ^b Isolated yield.

+ NH 1a	N N H 2a	Pt(+) Pt(-), 9 mA Nal (2.0 eq) TEMPO (1.0 eq) K ₂ CO ₃ CH ₃ CN (6 mL), RT	$ \begin{array}{c} $
Entry	Amount of	of K ₂ CO ₃ (equiv)	Yield (%) ^b
1	0		23
2		1	25
3		2	60
4		3	63
5		3.5	90
6		4.0	75

Table S7. Screening of the amount of K₂CO₃^a

^a Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2.0 *equiv*), NaI (0.6 mmol, 2.0 *equiv*), TEMPO (0.3 mmol, 1.0 *equiv*) and K₂CO₃ (x mmol) in CH₃CN (6 mL) under a constant current of 9 mA (Pt anode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm) in an undivided cell at RT for 8 h. ^b Isolated yield.

Table S8. Screening of the amount of TEMPO^a

+ N H 1a	$\begin{array}{c} \begin{array}{c} & Pt(+) Pt(-), 9 \text{ mA} \\ Nal (2.0 \text{ eq}) \\ \hline \\ \hline \\ NH \\ H \\ \end{array} \\ \begin{array}{c} \\ \hline \\ TEMPO \\ K_2CO_3 (3.5 \text{ eq}) \\ CH_3CN (6 \text{ mL}), \text{ RT} \end{array} \end{array}$	$\frac{1}{N} = \frac{1}{N}$
Entry	Amount of TEMPO (equiv)	Yield (%) ^b
1	0	Trace
2	0.25	28
3	0.5	65
4	0.75	71
5	1.0	90
6	15	78

^a Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2.0 *equiv*), NaI (0.6 mmol, 2.0 *equiv*), TEMPO (x mmol) and $K_2CO_3(1.05 \text{ mmol}, 3.5 equiv)$ in CH₃CN (6 mL) under a constant current of 9 mA (Pt anode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm; Pt cathode cell at RT for 8 h. ^b Isolated yield.

Table S9. Current screening ^a

+ N H 1a	N N N H 2a	Pt(+) Pt(-), x mA Nal (2.0 eq) TEMPO (1.0 eq) K ₂ CO ₃ (3.5 eq) CH ₃ CN (6 mL), RT	N = N
Entry	Current (mA)	Time (h)	Yield (%) ^b
1	3	13	29
2	6	9.5	57
3	9	8	90
4	12	6	85
5	14	5.5	85

^a Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2.0 *equiv*), NaI (0.6 mmol, 2.0 *equiv*), TEMPO (0.3 mmol, 1.0 *equiv*) and K₂CO₃ (1.05 mmol, 3.5 *equiv*) in CH₃CN (6 mL) under a constant current (Pt anode: 1 cm x 1cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm) in an undivided cell at RT. ^b Isolated yield.

Table S10. Electrode material screening ^a

N +	N.N. N.H.	Nal (2.0 eq) TEMPO (1.0 eq) K ₂ CO ₃ (3.5 eq) CH ₃ CN (6 mL), RT	
1a	2a		3a
Entry	Electrode	e material	Yield (%) ^b
1	C(+) Pt(-)		70

2	C(+) C(-)	Carbon electrode corrosion
3	Pt(+) Pt(-)	90
4	Pt(+) ∥ C(-)	Carbon electrode corrosion

^a Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2.0 *equiv*), NaI (0.6 mmol, 2.0 *equiv*), TEMPO (0.3 mmol, 1.0 *equiv*) and K₂CO₃ (1.05 mmol, 3.5 *equiv*) in CH₃CN (6 mL) under a constant current of 9 mA (x anode, x cathode) in an undivided cell at RT for 8 h. ^b Isolated yield.

3.2. Reaction condition optimization for synthesizing of quinoline-azole derivatives

Table S11. Solvent screening ^a

N +	N N H	Pt(+) Pt(-), 7 mA Nal (2.0 eq) TEMPO (1.0 eq) K ₂ CO ₃ (3.5 eq)	
1a	2a	solvent (6 mL), RT	4a
Entry		Solvent	Yield (%) ^b
1		DMF	28
2		CH ₃ CN	51
3	($CH_3CN:DMF = 5:1$	Trace
4	($CH_3CN:DMF = 1:1$	42
5	($CH_3CN:DMF = 1:5$	60
6	($CH_3CN:DMF = 1:2$	55

a' Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2 *equiv*), NaI (0.6 mmol, 2 *equiv*), TEMPO (0.3 mmol, 1 *equiv*) and $K_2CO_3(1.05 \text{ mmol}, 3.5 equiv)$ in solvent (6 mL) under a constant current of 7 mA (Pt anode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm) in an undivided cell at RT for 32 h. ^b Isolated yield.

Table S12. Current screening a

N +	$\begin{array}{c} \overbrace{\begin{subarray}{c} N\\ N\\ H\\ \begin{subarray}{c} N\\ H\\ \begin{subarray}{c} Pt(+) Pt(-), x mA\\ Nal (2.0 eq)\\ \hline TEMPO (1.0 eq)\\ K_2CO_3 (3.5 eq)\\ \end{array}$		N=N
1a	2a CH ₃ CN:DMF = 1:5 (6 r	nL), RT 4a	
Entry	Current (mA)	Time (h)	Yield (%) ^b
1	7	32	60
2	9	28	53
3	11	22	48
4	13	18	45

^{a'} Reaction conditions: A mixture of **1a** (0.3 mmol, 1 *equiv*), **2a** (0.6 mmol, 2 *equiv*), NaI (0.6 mmol, 2 *equiv*), TEMPO (0.3 mmol, 1 *equiv*) and K₂CO₃ (1.05 mmol, 3.5 *equiv*) in CH₃CN:DMF = 1:5 (6 mL) under a constant current of x mA (Pt anode: 1 cm x 1 cm x 0.2 mm; Pt cathode: 1 cm x 1 cm x 0.2 mm) in an undivided cell at RT. ^b Isolated yield.

4. Mechanistic investigation

4.1. Cyclic voltammetry experiments

The electrochemical measurement was performed by a computer-controlled electrochemical analyzer. Cyclic voltammetry performed in a three-electrode cell was carried out in a three-electrode battery (volume 15 mL; CH₃CN as solvent, "Bu₄NClO₄ 0.05 M as supporting electrolyte, 2 mM concentration of test compound), and glassy carbon (diameter 3 mm) as working electrode, platinum wire as auxiliary electrode, Ag/AgCl (3 M KCl) as reference electrode. The scanning speed was 100 mV·s⁻¹. For tetrahydroquinoline (**1a**), benzotriazole (**2a**), NaI, and TEMPO, the oxidation potential range studied was 0.0 V to +3.0 V, relative to Ag/AgCl (3 M KCl). The oxidation potential of 1,2,3,4-tetrahydroquinoline (**1a**), 1*H*-benzo[*d*] [1,2,3] triazole (**2a**), NaI and TEMPO was determined as: 1,2,3,4-tetrahydroquinoline (**1a**) (E_{ox} = + 0.58 V vs. Ag/AgCl in CH₃CN); NaI (E_{ox} = + 0.23 V vs Ag/AgCl in CH₃CN); TEMPO (E_{ox} = + 0.53 V vs Ag/AgCl in CH₃CN). Benzotriazole (**2a**) had no oxidation potential peak in the tested range.

Figure S2. Cyclic voltammetry of NaI, TEMPO, 1a and 2a in CH₃CN and blank.

4.2. Radical trapping experiments

Under standard conditions, BHT (4.0 *equiv* to **1a**) was added to the model reaction system at the beginning of the reaction. After 4 h, a small amount of reaction mixture was taken out for high-resolution mass spectrometry (HRMS) measurement. From TLC, only trace amount of product **3a** was observed.

Scheme S1. Radical trapping experiments.

Figure S3. Mass spectrometry (HRMS) data of the radical trapping experiments (with BHT).

Figure S4. Mass spectrometry (HRMS) data of the radical trapping experiments (with BHT).

5. Characterization data of the products

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-3,4-dihydroquinoline (3a): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 63.9 mg, 90% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.73 (d,** *J* **= 8.3 Hz, 1H), 8.09 (d,** *J* **= 8.3 Hz, 1H), 7.61 (t,** *J* **= 7.7 Hz, 1H), 7.46 (t,** *J* **= 7.6 Hz, 1H), 7.42 (d,** *J* **= 7.7 Hz, 1H), 7.29 (dt,** *J* **= 8.0, 4.3 Hz, 1H), 7.18 (d,** *J* **= 4.6 Hz, 2H), 3.50 (t,** *J* **= 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 156.4, 146.8, 142.6, 131.3, 129.2, 127.7, 127.2, 127.1, 126.9, 126.7, 125.5, 119.8, 116.0, 24.1, 23.4. HRMS (ESI): m/z: calcd for C₁₅H₁₂N₄Na (M+Na)⁺ 271.0954; found 271.0956**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-3-methyl-3,4-dihydroquinoline (3b): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 24.1 mg, 32% yield. White solid. ¹H NMR (400 MHz, Chloroform-***d***) \delta 8.78 (d, J = 8.3 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.48 (dd, J = 17.0, 7.7 Hz, 2H), 7.37 – 7.29 (m, 1H), 7.22 (d, J = 11.4 Hz, 2H), 4.21 (p, J = 7.0 Hz, 1H), 3.37 (dd, J = 16.1, 7.0 Hz, 1H), 2.82 (d, J = 16.2 Hz, 1H), 1.27 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-***d***) \delta 160.5, 146.8, 141.8, 131.5, 129.3, 128.7, 127.7, 127.4, 126.5, 125.6, 125.5, 119.9, 116.2, 32.0, 28.3, 16.3. HRMS (ESI): m/z: calcd for C₁₆H₁₄N₄Na (M+Na)⁺ 285.1111; found 285.1111**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-6-bromo-4-methyl-3,4-dihydroquinoline (3c)**: $R_f = 0.25$ (Petroleum ether/EtOAc, 5:1). 67.0 mg, 70% yield. White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.72 (d, J = 8.3 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 7.46 – 7.39 (m, 2H), 7.33 (d, J = 8.2 Hz, 1H), 3.53 (dd, J = 17.2, 7.1 Hz, 1H), 3.39 (dd, J = 17.2, 7.7 Hz, 1H), 3.24 (q, J = 7.2 Hz, 1H), 1.37 (d, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 156.2, 146.9, 141.0, 134.4, 131.2, 130.7, 129.3, 129.2, 128.4, 125.7, 120.6, 119.9, 115.9, 30.7, 29.4, 19.8. HRMS (ESI): m/z: calcd for C₁₆H₁₃BrN₄Na (M+Na)⁺ 363.0216; found 363.0216

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-6-methyl-3,4-dihydroquinoline (3d): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 66.0 mg, 89% yield. White solid. ¹H NMR (400 MHz, Chloroform-***d***) \delta 8.76 (d, J = 8.3 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 7.63 (dd, J = 8.3, 7.0, 1.1 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.12 (dd, J = 7.9, 2.0 Hz,** 1H), 7.03 (d, J = 2.0 Hz, 1H), 3.52 (t, J = 8.5 Hz, 2H), 3.06 (t, J = 8.5 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.7, 146.8, 140.2, 137.1, 131.4, 129.1, 128.4, 128.2, 126.7, 126.6, 125.4, 119.7, 116.0, 24.2, 23.5, 21.2. HRMS (ESI): m/z: calcd for C₁₆H₁₄N₄Na (M+Na)⁺ 285.1111; found 285.1111

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-8-methyl-3,4-dihydroquinoline (3e): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 70.0 mg, 93% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.70 (d, J = 8.3 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 7.4 Hz, 1H), 7.09 (t, J = 7.4 Hz, 1H), 7.04 (d, J = 7.2 Hz, 1H), 3.49 (t, J = 8.4 Hz, 2H), 3.05 (t, J = 8.4 Hz, 2H), 2.56 (s, 3H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 155.2, 146.8, 140.9, 134.7, 131.2, 129.3, 126.8, 126.7, 125.9, 125.5, 125.3, 119.9, 115.7, 24.6, 23.2, 18.3. HRMS (ESI): m/z: calcd for C₁₆H₁₄N₄Na (M+Na)⁺ 285.1111; found 285.1110**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-6-methoxy-3,4-dihydroquinoline (3f): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 44.8 mg, 56% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.79 – 8.69 (m, 1H), 8.16 – 8.05 (m, 1H), 7.62 (dd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.47 (dd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.38 (d, J = 8.5 Hz, 1H), 6.84 (dd, J = 8.5, 2.8 Hz, 1H), 6.80 – 6.72 (m, 1H), 3.84 (s, 3H), 3.51 (t, J = 8.6 Hz, 2H), 3.08 (t, J = 8.4 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 158.6, 154.4, 146.7, 136.1, 131.2, 129.0, 128.3, 127.8, 125.4, 119.7, 115.9, 113.5, 112.3, 55.5, 24.7, 23.2. HRMS (ESI): m/z: calcd for C₁₆H₁₄N₄ONa (M+Na)⁺ 301.1060; found 301.1059**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-7-methoxy-3,4-dihydroquinoline (3g): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 73.6 mg, 92% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.76 (d, J = 8.3 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.54 – 7.44 (m, 1H), 7.12 (d, J = 8.2 Hz, 1H), 7.03 (d, J = 2.7 Hz, 1H), 6.78 (dd, J = 8.1, 2.6 Hz, 1H), 3.87 (s, 3H), 3.53 (t, J = 8.4 Hz, 2H), 3.04 (t, J = 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 159.3, 157.0, 146.8, 143.5, 131.3, 129.2, 128.1, 125.5, 119.8, 118.9, 116.0, 113.0, 112.0, 55.5, 23.8, 23.4. HRMS (ESI): m/z: calcd for C₁₆H₁₄N₄ONa (M+Na)⁺ 301.1060; found 301.1059**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-8-methoxy-3,4-dihydroquinoline (3h): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 73.6 mg, 92% yield. White solid. ¹H NMR (600 MHz, DMSO***d***₆) \delta 8.93 – 8.86 (m, 1H), 8.42 – 8.34 (m, 1H), 7.92 (dd,** *J* **= 8.3, 7.0, 1.1 Hz, 1H), 7.75 (dd,** *J* **= 8.2, 7.0, 1.1 Hz, 1H), 7.57 – 7.52 (m, 1H), 7.05 (d,** *J* **= 7.3 Hz, 2H), 3.96 (s, 3H), 3.62 (t,** *J* **= 8.5 Hz, 2H), 3.24 (t,** *J* **= 8.5 Hz, 2H). ¹³C NMR (151 MHz, DMSO-***d***₆) \delta 158.7, 155.2, 146.5, 136.0, 131.1, 129.9, 129.2, 128.0, 126.2, 120.0, 116.1, 113.9, 112.8, 55.8, 24.2, 23.2. HRMS (ESI): m/z: calcd for C₁₆H₁₄N₄ONa (M+Na)⁺ 301.1060; found 301.1059**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-6-fluoro-3,4-dihydroquinoline (3i): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 68.0 mg, 92% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.72 (dd, J = 8.3, 1.2 Hz, 1H), 8.12 (dd, J = 8.4, 1.2 Hz, 1H), 7.64 (dd, J = 8.3, 7.0, 1.1 Hz, 1H), 7.49 (dd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.41 (dd, J = 8.6, 5.4 Hz, 1H), 7.00 (dt, J = 8.8, 4.4 Hz, 1H), 6.94 (dd, J = 8.6, 2.8 Hz, 1H), 3.53 (t, J = 8.5 Hz, 2H), 3.09 (t, J = 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 161.4 (d, J = 247.2 Hz), 155.8, 146.8, 138.8, 131.2, 129.2, 128.1 (d, J = 8.6 Hz), 125.59, 119.9, 115.8, 114.7 (d, J = 23.1 Hz), 114.3, 114.2 (d, J = 22.2 Hz), 24.4, 22.9. ¹⁹F NMR (565 MHz, Chloroform-d) \delta -114.85. HRMS (ESI): m/z: calcd for C₁₅H₁₁FN₄Na (M+Na)⁺ 289.0860; found 289.0859**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-6-chloro-3,4-dihydroquinoline (3j): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 76.0 mg, 94% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.69 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 8.3 Hz, 1H), 7.62 (t, J = 7.7 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.35 (d, J = 8.3 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.18 (s, 1H), 3.55 – 3.46 (m, 2H), 3.06 (t, J = 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 156.6, 146.8, 141.1, 132.2, 131.2, 129.3, 128.5, 127.8, 127.7, 125.6, 119.9, 115.9, 24.1, 23.0. HRMS (ESI): m/z: calcd for C₁₅H₁₁ClN₄Na (M+Na)⁺ 305.0564; found 305.0563**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-7-chloro-3,4-dihydroquinoline (3k): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 62.3 mg, 77% yield. White solid. ¹H NMR (400 MHz, Chloroform-***d***) \delta 8.73 (d,** *J* **= 8.3 Hz, 1H), 8.13 (d,** *J* **= 8.3 Hz, 1H), 7.66 (t,** *J* **= 7.7 Hz, 1H), 7.59 - 7.43 (m, 2H), 7.21 - 7.14 (m, 2H), 3.56 (t,** *J* **= 8.4 Hz, 2H), 3.08 (t,** *J* **= 8.4 Hz, 2H). ¹³C** NMR (151 MHz, Chloroform-*d*) δ 157.5, 146.8, 143.8, 133.0, 131.2, 129.5, 128.6, 126.9, 126.6, 125.7, 125.2, 119.9, 115.9, 23.6, 23.3. HRMS (ESI): m/z: calcd for C₁₅H₁₁ClN₄Na (M+Na)⁺ 305.0564; found 305.0564

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-5-bromo-3,4-dihydroquinoline (3l): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 50.0 mg, 54% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.72 (d, J = 8.3 Hz, 0.80H), 8.13 (d, J = 8.3 Hz, 0.80H), 7.65 (t, J = 7.7 Hz, H), 7.50 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.19 (t, J = 7.9 Hz, 1H), 3.57 (t, J = 8.6 Hz, 2H), 3.19 (t, J = 8.6 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 156.9, 146.8, 144.0, 131.2, 131.0, 129.4, 128.5, 126.9, 126.1, 125.7, 123.7, 119.9, 115.9, 24.2, 23.2. HRMS (ESI): m/z: calcd for C₁₅H₁₁BrN₄Na (M+Na)⁺ 349.0059; found 349.0055**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-6-bromo-3,4-dihydroquinoline (3m): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 87.1 mg, 91% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.68 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 8.3 Hz, 1H), 7.63 (q, J = 8.5, 7.7 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.41 (dd, J = 8.3, 2.3 Hz, 1H), 7.33 (d, J = 2.5 Hz, 1H), 7.28 (d, J = 8.2 Hz, 1H), 3.50 (t, J = 8.5 Hz, 2H), 3.06 (t, J = 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 156.6, 146.8, 141.6, 131.2, 130.7, 130.6, 129.3, 128.9, 128.1, 125.6, 120.2, 119.9, 115.9, 23.9, 23.0. HRMS (ESI): m/z: calcd for C₁₅H₁₁BrN₄Na (M+Na)⁺ 349.0059; found 349.0053**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-7-bromo-3,4-dihydroquinoline (3n): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 80.0 mg, 86% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.66 (d, J = 8.3 Hz, 1H), 8.08 (d, J = 8.5 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.57 (d, J = 2.2 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.29 (dd, J = 8.0, 2.1 Hz, 1H), 7.05 (d, J = 7.9 Hz, 1H), 3.50 (t, J = 8.5 Hz, 2H), 3.01 (t, J = 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 157.4, 146.8, 143.9, 131.1, 129.7, 129.5, 129.4, 128.9, 125.7, 125.7, 120.6, 119.9, 115.9, 23.6, 23.2. HRMS (ESI): m/z: calcd for C₁₅H₁₁BrN₄Na (M+Na)⁺ 349.0059; found 349.0046**

Methyl-2-(1*H*-benzo[*d*][1,2,3]triazol-1-yl)-3,4-dihydroquinoline-6-carboxylate (30): $R_f = 0.25$ (Petroleum ether/EtOAc, 5:1). 40.0 mg, 46% yield. White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.75 (d, *J* = 8.3 Hz, 1H), 8.13 (d, *J* = 8.3 Hz, 1H), 8.00 (dd, *J* = 8.1, 1.9 Hz, 1H), 7.92 (d, *J* = 2.1 Hz, 1H), 7.71 – 7.64 (m, 1H), 7.53 – 7.46 (m, 2H), 3.94 (s, 3H), 3.59 (t, *J* = 8.4 Hz, 2H), 3.15 (t, *J* = 8.5 Hz, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 166.7, 166.3, 159.7, 146.7, 146.6, 131.1, 130.4, 129.2, 128.3, 128.1, 126.8, 126.5, 120.2, 116.3, 52.5, 23.4, 23.2. HRMS (ESI): m/z: calcd for C₁₇H₁₄N₄O₂Na (M+Na)⁺ 329.1009; found 329.1008

2-(4-methyl-1*H***-benzo[***d***][1,2,3]triazol-1-yl)-3,4-dihydroquinoline (3p): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 60.0 mg, 85% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.55 (d,** *J* **= 8.3 Hz, 1H), 7.51 (t,** *J* **= 7.7 Hz, 1H), 7.44 (d,** *J* **= 7.7 Hz, 1H),**

7.30 (td, J = 7.7, 7.1, 2.4 Hz, 1H), 7.26 – 7.22 (m, 1H), 7.22 – 7.15 (m, 2H), 3.52 (t, J = 8.4 Hz, 2H), 3.08 (t, J = 8.5 Hz, 2H), 2.84 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 156.5, 146.6, 142.7, 131.2, 130.7, 129.2, 127.7, 127.6, 127.0, 126.9, 126.7, 125.6, 113.2, 24.2, 23.4, 16.6. HRMS (ESI): m/z: calcd for C₁₆H₁₄N₄Na (M+Na)⁺ 285.1111; found 2285.1110

2-(5,6-dimethyl-1*H***-benzo[***d***][1,2,3]triazol-1-yl)-3,4-dihydroquinoline (3q): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 60.0 mg, 75% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.48 (s, 1H), 7.83 (s, 1H), 7.46 (d, J = 7.7 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.23 – 7.16 (m, 2H), 3.50 (t, J = 8.4 Hz, 2H), 3.07 (t, J = 8.5 Hz, 2H), 2.49 (s, 3H), 2.43 (s, 3H). ¹³C NMR (151 MHz, DMSO-***d***₆) \delta 157.3, 145.7, 142.7, 140.2, 135.8, 130.0, 128.2, 127.9, 127.7, 127.4, 126.8, 119.1, 115.5, 23.7, 23.3, 21.1, 20.3. HRMS (ESI): m/z: calcd for C₁₇H₁₆N₄Na (M+Na)⁺ 299.1267; found 299.1269**

2-(5-methoxy-1*H***-benzo[***d***][1,2,3]triazol-1-yl)-3,4-dihydroquinoline (3r): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 35.0 mg, 44% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.20 (d, J = 2.4 Hz, 1H), 7.96 (d, J = 9.0 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.32 (dd, J = 7.2, 2.1 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.11 (dd, J = 9.0, 2.4, 0.9 Hz, 1H), 3.98 (d, J = 0.9 Hz, 3H), 3.56 – 3.50 (m, 2H), 3.10 (t, J = 8.4 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 161.2, 156.8, 142.6, 142.0, 132.7, 127.7, 127.6, 127.1, 126.9, 126.6, 120.4, 117.2, 96.8, 55.8, 24.2, 23.4. HRMS (ESI): m/z: calcd for C₁₆H₁₄N₄ONa (M+Na)⁺ 3301.1060; found 301.1060**

2-(5-fluoro-1*H***-benzo[***d***][1,2,3]triazol-1-yl)-3,4-dihydroquinoline (3s): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 39.0 mg, 53% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.45 (dd, J = 8.6, 2.4 Hz, 1H), 8.07 (dd, J = 9.0, 4.7 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.33 (td, J = 8.0, 6.6, 3.6 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.24 – 7.20 (m, 2H), 3.52 (t, J = 8.5 Hz, 2H), 3.11 (t, J = 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 163.2 (d, J = 249.3 Hz), 156.3, 143.5, 139.4, 142.3, 127.8, 127.7, 127.3, 126.8 (d, J = 2.3 Hz), 121.2, 121.1, 115.2 (d, J = 26.8 Hz), 102.2 (d, J = 29.3 Hz), 24.1, 23.3. ¹⁹F NMR (565 MHz, Chloroform-d) \delta -109.49. HRMS (ESI): m/z: calcd for C₁₅H₁₁FN₄Na (M+Na)⁺ 289.0860; found 289.0859**

2-(5-chloro-1*H***-benzo[***d***][1,2,3]triazol-1-yl)-3,4-dihydroquinoline (3t): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 38.3 mg, 47% yield. White solid. ¹H NMR (400 MHz, Chloroform-***d***) \delta 8.80 (s, 1H), 8.04 (d,** *J* **= 9.1 Hz, 1H), 7.48 (t,** *J* **= 7.3 Hz, 2H), 7.37 – 7.30 (m, 1H), 7.23 (d,** *J* **= 4.3 Hz, 2H), 3.53 (t,** *J* **= 8.5 Hz, 2H), 3.12 (t,** *J* **= 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 156.2, 145.3, 142.3, 135.6, 131.8, 127.8, 127.7, 127.4, 126.9, 126.8, 126.6, 120.6, 115.9, 24.1, 23.3. HRMS (ESI): m/z: calcd for C₁₅H₁₁ClN₄Na (M+Na)⁺ 305.0564; found 305.0566**

2-(5-bromo-1*H*-benzo[*d*][1,2,3]triazol-1-yl)-3,4-dihydroquinoline (3u): $R_f = 0.25$

(Petroleum ether/EtOAc, 5:1). 32.0 mg, 35% yield. White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.96 (d, *J* = 1.8 Hz, 1H), 7.97 (d, *J* = 8.7 Hz, 1H), 7.60 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.33 (dd, *J* = 8.0, 4.3 Hz, 1H), 7.23 (d, *J* = 4.5 Hz, 2H), 3.52 (t, *J* = 8.5 Hz, 2H), 3.11 (t, *J* = 8.5 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.1, 145.6, 142.3, 132.1, 129.2, 127.8, 127.7, 127.4, 126.9, 126.8, 123.7, 120.8, 118.9, 24.1, 23.3. HRMS (ESI): m/z: calcd for C₁₅H₁₁BrN₄Na (M+Na)⁺ 349.0059; found 349.0057

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-5-(trifluoromethyl)-3,4-dihydroquinoline (3v): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 28.4 mg, 30% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 9.12 (s, 1H), 8.25 (d, J = 8.6 Hz, 1H), 7.74 (dd, J = 8.7, 1.7 Hz, 1H), 7.49 (d, J = 7.7 Hz, 1H), 7.38 – 7.32 (m, 1H), 7.26 – 7.24 (m, 2H), 3.56 (t, J = 8.5 Hz, 2H), 3.14 (t, J = 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 156.1, 147.9, 142.1, 131.2 (q, J = 32.5 Hz), 130.7, 127.9, 127.8, 127.7, 127.0, 126.8, 123.9 (q, J = 271.8 Hz), 122.4 (q, J = 3.6 Hz), 120.7, 114.3 (q, J = 4.7 Hz), 24.1, 23.4. ¹⁹F NMR (565 MHz, Chloroform-d) \delta -61.62. HRMS (ESI): m/z: calcd for C₁₆H₁₁F₃N₄Na (M+Na)⁺ 339.0828; found 339.0831**

2-(1*H***-1,2,3-triazol-1-yl)-3,4-dihydroquinoline (3w)**: $R_f = 0.25$ (Petroleum ether/EtOAc, 5:1). 19.1 mg, 32% yield. White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.62 (d, J = 1.2 Hz, 1H), 7.82 (d, J = 1.3 Hz, 1H), 7.35 (d, J = 7.7 Hz, 1H), 7.30 (dd, J = 7.8, 6.1, 2.8 Hz, 1H), 7.24 – 7.20 (m, 2H), 3.41 (t, J = 8.5 Hz, 2H), 3.06 (t, J = 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 154.2, 141.9, 139.7, 137.1, 134.2, 127.8, 126.9, 120.7, 112.8, 24.0, 22.8. HRMS (ESI): m/z: calcd for C₁₁H₁₀N₄Na (M+Na)⁺ 221.0798; found 221.0797

3-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-2***H***-benzo[***b***][1,4]oxazine (3x): R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 60.0 mg, 83% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.65 (d,** *J* **= 8.3 Hz, 1H), 8.14 (d,** *J* **= 8.3 Hz, 1H), 7.68 (t,** *J* **= 7.7 Hz, 1H), 7.52 (t,** *J* **= 7.7 Hz, 1H), 7.43 (dd,** *J* **= 7.8, 1.6 Hz, 1H), 7.19 (td,** *J* **= 7.7, 1.6 Hz, 1H), 7.06 (td,** *J* **= 7.6, 1.4 Hz, 1H), 6.99 (dd,** *J* **= 8.0, 1.5 Hz, 1H), 5.58 (s, 2H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 149.1, 146.4, 146.0, 131.5, 130.9, 129.7, 128.8, 127.3, 126.0, 122.7, 120.1, 116.0, 115.3, 61.1. HRMS (ESI): m/z: calcd for C₁₄H₁₀N₄ONa (M+Na)⁺ 273.0747; found 273.0747**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)quinoline (4a)⁴: R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 42.6 mg, 60% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) δ 8.97 (d,** *J* **= 8.3 Hz, 1H), 8.50 (d,** *J* **= 8.8 Hz, 1H), 8.38 (d,** *J* **= 8.8 Hz, 1H), 8.18 – 8.14 (m, 2H), 7.90 (d,** *J* **= 8.1 Hz, 1H), 7.80 (m,** *J* **= 8.4, 6.8, 1.5 Hz, 1H), 7.69 (t,** *J* **= 7.7 Hz, 1H), 7.59 (t,** *J* **= 7.5 Hz, 1H), 7.51 (t,** *J* **= 7.6 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-***d***) δ 150.4, 146.9, 146.5, 139.1, 131.6, 130.5, 128.9, 128.8, 127.7, 127.0, 126.6, 125.1, 119.8, 115.4, 113.4.**

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-6-methylquinoline (4b)⁴: R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 36.0 mg, 49% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.96 (d, J = 8.3 Hz, 1H), 8.45 (dd, J = 8.7, 2.3 Hz, 1H), 8.29 (d, J = 8.7 Hz, 1H), 8.16 (d, J = 8.3 Hz,**

1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.7 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 2.58 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 149.9, 146.9, 145.0, 138.5, 136.7, 132.7, 131.6, 128.9, 128.5, 127.1, 126.7, 125.1, 119.8, 115.4, 113.4, 21.6.

2-(1*H***-benzo[***d***][1,2,3]triazol-1-yl)-6-chloroquinoline (4c)⁴: R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 42.0 mg, 52% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.89 (d, J = 8.3 Hz, 1H), 8.50 (d, J = 8.9 Hz, 1H), 8.26 (d, J = 8.9 Hz, 1H), 8.15 (d, J = 8.3 Hz, 1H), 8.07 (d, J = 8.9 Hz, 1H), 7.85 (d, J = 2.3 Hz, 1H), 7.71 (dd, J = 8.9, 2.3 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.53 – 7.45 (m, 1H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 150.6, 146.9, 144.9, 138.2, 132.3, 131.5, 131.4, 130.3, 129.1, 127.6, 126.5, 125.3, 119.9, 115.3, 114.3.**

2-(5,6-dimethyl-1*H***-benzo[***d***][1,2,3]triazol-1-yl)quinoline (4d)⁵: R_f = 0.25 (Petroleum ether/EtOAc, 5:1). 32.9 mg, 40% yield. White solid. ¹H NMR (600 MHz, Chloroform-***d***) \delta 8.71 (s, 1H), 8.48 (d,** *J* **= 8.9 Hz, 1H), 8.37 (d,** *J* **= 8.9 Hz, 1H), 8.20 (d,** *J* **= 8.4 Hz, 1H), 7.90 (d,** *J* **= 7.3 Hz, 2H), 7.80 (dd,** *J* **= 8.3, 6.8, 1.5 Hz, 1H), 7.59 (t,** *J* **= 7.6 Hz, 1H), 2.55 (s, 3H), 2.47 (s, 3H). ¹³C NMR (151 MHz, Chloroform-***d***) \delta 150.1, 146.6, 143.0, 141.7, 139.4, 139.10, 130.6, 130.4, 128.8, 127.8, 127.0, 126.5, 119.0, 114.8, 113.6, 21.1, 20.5.**

(1*H*-pyrazol-1-yl)quinoline (4e)⁵: $R_f = 0.25$ (Petroleum ether/EtOAc, 5:1). 40.0 mg, 67% yield. White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.39 (s, 0.34H), 8.78 (d, *J* = 2.6 Hz,

1H), 8.20 (q, J = 8.8 Hz, 2H), 7.99 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 7.8 Hz, 2H), 7.68 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 6.50 (t, J = 2.2 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 150.2, 146.6, 142.3, 139.0, 130.3, 128.5, 127.7, 127.4, 127.0, 125.9, 112.3, 108.2.

6. References

1. Bhattacharyya, D.; Nandi, S.; Adhikari, P.; Sarmah, B. K.; Konwar, M.; Das, A. Org. Biomol. Chem., **2020**, *18*, 1214–1220.

2. Damschroder, R. and Peterson, W. Organic Syntheses., 1940, 16-16.

3. Yu, K.; Miao, B.; Wang, W.; Zakarian, A. Org. Lett., 2019, 21 (6), 1930-1934.

4. Sun, K.; Wang, X.; Liu, L.; Sun, J.; Liu, X.; Li, Z.; Zhang, Z.; Zhang, G. ACS Catal., 2015, 5

(12), 7194-7198.

5. Xie, L. Y.; Qu, J.; Peng, S.; Liu, K. J.; Wang, Z.; Ding, M. H.; Wang, Y.; Cao, Z.; He, W. M. *Green Chem.*, **2018**, *20* (3), 760-764.

7. NMR Spectra of Products

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3a

¹H-NMR Spectrum (400MHz, CDCl₃) of 3b

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3c

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3c

Br∖

	-		-		-			
YD-13C, 9. fid YD-02-12-1	- 156.2930	— 146.8592	$- 141.0322 \\ 134.4255 \\ 131.2232 \\ 130.7094 \\ 129.3878 $	129.2097 128.4078 125.7016 120.6058 119.9502 115.9442			~ 30.7233 ~ 29.3884	— 19.8777

¹H-NMR Spectrum (400MHz, CDCl₃) of 3d

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3e

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3e

YD-13C.11.fid YD-02-17-1	155.2946 155.2946 140.98305 131.732 131.73230 131.23300 131.23305 131.23305 131.23305 135.5013 125.5013 125.5013 119.9069 1115.7323	24.6180 23.1996 18.3158
		1.57

¹H-NMR Spectrum (400MHz, CDCl₃) of 3f

¹³C-NMR Spectrum (101MHz, CDCl₃) of 3f

S33

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3g

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3g

- 159.3709 - 157.0806	- 146.8618 - 143.5402	131.3360 129.2660 128.1835 125.5693 119.8794 119.8794 119.8756 116.0371 1113.0118	.55.5438	- 23.8467
17	1.1			\sim

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3i

Relation of the second second

YD-13C.22.fid YD-22

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 fl (ppm)

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3i

- 162.1932 - 160.5561 - 155.8238 - 146.8396	- 138.8142 131.2554 131.2554 123.28135 125.1815 125.1815 125.5874 114.713 114.713 114.713 114.713 114.713 114.713 114.713 114.713 114.713	~ 24.4151 ~ 22.9446
--	--	------------------------

S37

¹H-NMR Spectrum (400MHz, CDCl₃) of 3k

¹³C-NMR Spectrum (151MHz, CDCl₃) of 3k

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

¹H-NMR Spectrum (600MHz, CDCl₃) of 3n

¹H-NMR Spectrum (400MHz, CDCl₃) of 30

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C-NMR Spectrum (151MHz, DMSO) of 3q

¹H-NMR Spectrum (600MHz, CDCl₃) of 3s

YD-1H.75.fid YD-30-1

¹³C-NMR Spectrum (151MHz, CDCl₃) of 3s

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H-NMR Spectrum (400MHz, CDCl₃) of 3t

100 90 f1 (ppm) 190 180 160 150 140 130 120

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3v

 13.0
 12.5
 12.0
 11.5
 11.0
 10.5
 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.0
 -0.5

 fl (ppm)
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 3v

¹H-NMR Spectrum (600 MHz, CDCl₃) of 3w

YD-1H.17.fid YD-02-15-3 28.6193 28.30173 27.35201 7.353427 7.353427 7.353427 7.353423 7.33163 7.33163 7.33163 7.33163 7.33163 7.33163 7.33163 7.3276 7.722964 7.722966 7.722966 7.722966 7.722966 7.722966 7.722966 7.72206 7.72007 7.72007 7.72006 7.72006 7.72006 7.72006 7.72006 7.72006 7.7200

¹³ C-NMR Spectrum	(151 I	MHz, CDCl ₃) of 3w					
10-13C, 10, fid 10-02-15-3		 > 141.9306 > 139.6978 > 139.1152 > 134.2494 > 127.8438 > 126.9360 > 120.7299 	- 112.7977			∠ 24,0103 ~ 22.8009		
			ul				•••••••••	
210 200 190 180 170	160 15	50 140 130 120	110 100 90 f1 (ppm)	80 70 60) 50 40	30 20	10 0	-10

¹H-NMR Spectrum (400MHz, CDCl₃) of 3x

¹H-NMR Spectrum (600 MHz, CDCl₃) of 4a

¹H-NMR Spectrum (600 MHz, CDCl₃) of 4b

¹H-NMR Spectrum (600 MHz, CDCl₃) of 4c

CI

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 4c

¹H-NMR Spectrum (600 MHz, CDCl₃) of 4d

¹H-NMR Spectrum (600 MHz, CDCl₃) of 4e

YD-1H. 46. fid YD-02-45-3	$ \begin{array}{c} 8.7833\\ 8.7790\\ 8.2790\\ 8.2061\\ 8.1892\\ 8.1892\\ 8.1892\\ 7.7694\\ 7.7694\\ 7.7694\\ 7.7694\\ 7.7694\\ 7.7697$

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 4e

-150.2 -146.6 142.3 122.3 -139.0 127.7 -132.5 -112.3 -108.2

¹H-NMR Spectrum (600 MHz, CDCl₃) of 8

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.: fl (ppm)

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 8

150.3436 148.2794	135.9342 129.4297 129.3785 128.2366 127.7494 126.4660 121.0015
57	

¹H-NMR Spectrum (600 MHz, CDCl₃) of 9

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 9

— 172.5404	-137.4182 -127.8730 -127.5348 -127.6334 -125.0533 -115.0951	
------------	--	--

¹⁹F-NMR Spectrum (565 MHz, CDCl₃) of 3i

¹⁹F-NMR Spectrum (565 MHz, CDCl₃) of 3s

N N=N

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹⁹F-NMR Spectrum (565 MHz, CDCl₃) of 3w

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)