Green acetyl modification of puerarin to form puerarin 6"-Oacetate using engineered *Escherichia coli* with favorable pathways and elevated acetyl-CoA supply

Xue-Ning Wang, Li Sheng, Xin-Yi Guo, Hua Sun, Jian-Qiang Kong* Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products & CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs), Beijing, 100050, China

*, Author to whom correspondence should be addressed.

E-mail: jianqiangk@imm.ac.cn

Figure legends

Figure S1 The conversion of P6"A from puerarin through the biological and chemical processes.

Figure S2 The PCR product of *E.coli* genes. 1: *acs*; 2: *pank*; 3: *aceE*; 4: *aceF*;5: *lpdA*;M: DNA markers indicated with bp.

Figure S3 The co-expression analysis of *acs* and *pank* genes.1-4, the induced expression of pACYCDuet-acs-pank, pCDFDuet-acs-pank, pETDuet-acs-pank and pRSFDuet-acs-pank, respectively; CK, the uninduced strains; M: protein markers indicated as kDa; Red arrows indicated the target proteins.

Figure S4 The co-expression analysis of *aceE*, *aceF* and *lpdA* genes. 1-4, the induced expression of pACYCDuet-pdh, pCDFDuet-pdh, pETDuet-pdh and pRSFDuet-pdh, respectively; CK: the uninduced strains; M: protein mass standards indicated with kDa. Red arrows indicated the target proteins.

Figure S5 The co-expression analysis of *acs*, *pank*, *aceE*, *aceF* and *lpdA* genes. 1-2, the induced expression of pACYCDuet-pdh-pank-acs and pCDFDuet-pdh-pank-acs, respectively; CK, the uninduced strains; M, protein mass standards indicated with kDa; Red arrows showed the expressed proteins.

Figure S6 MAT-catalyzed acetylation of puerarin in the engineered strains.

Figure S7 The condition optimizations to improve P6"A yield in the engineered cells. A, the effect of casamino acid on P6"A production; B, the effect of concentrations of puerarin (Pur) and glucose (Glc) on P6"A production; C, the effect of IPTG concentration on P6"A production.

Figure S8 Acetyltransferase-catalyzed acetylation of puerarin. A, HPLC profiles of acetylated metabolites. a, acetylation assay without acetyltransferases; b, GAT-catalyzed acetylation; c, MAT-catalyzed acetylation; d, the co-elution of the reaction

mixture and the authentical P6"A standard; e, P6"A standard; B, the MS spectrum of the metabolite 2. 1 and 2 represented puerarin and P6"A, respectively.

Figure S9 The effect of pH (A) and temperature (B) on the acetylation activity of

GAT. Values are means \pm SD, n = 3.

Figure S10 Kinetic parameters of GAT for acetyl-CoA (A) or puerarin (B). Values are means \pm SD, n = 3.

Figure S11 The whole-cell-catalyzed acetylation of puerarin to form P6"A.

The engineered E.coli Q15 with self-producing acetyl-CoA

Cell factory:

the eco-friendly bioproduction without the exogenous donor

Rhodococcus sp. AS 4.1147

Biotransformation: resulting in low chemical yields due to its complexity

Lipase: suffering from the usage of organic solvents

Acetyltransferase:

+

requiring the supplement of the expensive donor

Puerarin 6"-O-acetate

Figure S1 The conversion of P6"A from puerarin through the biological and chemical processes.

Figure S2 The PCR product of *E.coli* genes.

1:*acs*; 2:*pank*; 3:*aceE*; 4:*aceF*;5:*lpdA*; M: DNA markers indicated with bp.

Figure S3 The co-expression analysis of *acs* and *pank* genes.1-4, the induced expression of pACYCDuet-acs-pank, pCDFDuet-acs-pank, pETDuetacs-pank and pRSFDuet-acs-pank, respectively; CK, the uninduced strains; M: protein markers indicated as kDa; Red arrows indicated the target proteins.

Figure S4 The co-expression analysis of *aceE*, *aceF* and *lpdA* genes.1-4, the induced expression of pACYCDuet-pdh, pCDFDuet-pdh, pETDuet-pdh and pRSFDuet-pdh, respectively; CK: the uninduced strains; M: protein mass standards indicated with kDa. Red arrows indicated the target proteins.

Figure S5 The co-expression analysis of *acs*, *pank*, *aceE*, *aceF* and *lpdA* genes.1-2, the induced expression of pACYCDuet-pdh-pank-acs and pCDFDuet-pdh-pank-acs, respectively; CK, the uninduced strains; M, protein mass standards indicated with kDa; Red arrows showed the expressed proteins.

Figure S6 MAT-catalyzed acetylation of puerarin in the engineered strains.

Figure S7 The condition optimizations to improve P6"A yield in the engineered cells. A, the effect of casamino acid on P6"A production; B, the effect of concentrations of puerarin (Pur) and glucose (Glc) on P6"A production; C, the effect of IPTG concentration on P6"A production.

Figure S8 Acetyltransferase-catalyzed acetylation of puerarin. A, HPLC profiles of acetylated metabolites. a, acetylation assay without acetyltransferases; b, GAT-catalyzed acetylation; c, MAT-catalyzed acetylation; d, the co-elution of the reaction mixture and the authentical P6"A standard; e, P6"A standard; B, the MS spectrum of the metabolite 2. **1** and **2** represented puerarin and P6"A, respectively.

Figure S9 The effect of pH (A) and temperature (B) on the acetylation activity of GAT. Values are means \pm SD, n = 3.

Figure S10 Kinetic parameters of GAT for acetyl-CoA (A) or puerarin (B). Values are means \pm SD, n = 3.

Figure S11 The whole-cell-catalyzed acetylation of puerarin to form P6"A.

Table caption

- Table S1 Strains used in this study
- Table S2 Plasmids used in this study
- Table S3 Genes used in this study
- Table S4 Primers used in this study

Table S1 Strains used in this study

Strain	Genotype	Source
Trans1-T1	F-φ80(lacZ)ΔM15ΔlacX74hsdR(rk ⁻ , mk ⁺) ΔrecA1398 endA1tonA	Transgen
BL21(DE3)	F^- ompT hsdS ($r_B^- m_B^-$) gal dcm (DE3)	Transgen
BL21(DE3)-CoA	BL21(DE3)[pRSFDuet-acs + pCDFDuet-pdh]	This study
Q1	BL21(DE3)[pETDuet-maa]	This study
Q2	BL21(DE3)[pETDuet-maa+pRSFDuet-acs]	This study
Q3	BL21(DE3)[pETDuet-maa+pRSFDuet-acs-pank]	This study
Q4	BL21(DE3)[pETDuet-maa+pCDFDuet-pdh]	This study
Q5	BL21(DE3)[pETDuet-maa+pRSFDuet-acs+pCDFDuet-pdh]	This study
Q6	BL21(DE3)[pETDuet-maa+pRSFDuet-acs-pank+pCDFDuet-pdh]	This study
Q7	BL21(DE3)[pRSFDuet-maa+pACYCDuet-acs]	This study
Q8	BL21(DE3)[pRSFDuet-maa+pACYCDuet-acs-pank]	This study
Q9	BL21(DE3)[pRSFDuet-maa+pCDFDuet-pdh]	This study
Q10	BL21(DE3)[pRSFDuet-maa+pACYCDuet-acs+pCDFDuet-pdh]	This study
Q11	BL21(DE3)[pRSFDuet-maa+pACYCDuet-acs-pank+pCDFDuet-pdh]	This study
Q12	BL21(DE3)[pRSFDuet-maa]	This study
Q13	BL21(DE3)[pRSFDuet-maa+pACYCDuet-pdh-pank-acs]	This study
Q14	BL21(DE3) [pRSFDuet-maa+pCDFDuet-pdh-pank-acs]	This study
Q15	BL21(DE3)[pETDuet-maaE125N+pRSFDuet-acs+pCDFDuet-pdh]	This study

Plasmids	Asmids Relevant properties or genetic marker	
pEASY-Blunt	A cloning vector	TransGen
pET-28a(+)	An expression plasmid developed for the protein expression in <i>E. coli</i>	Novagen
pACYCDuet TM -1; pCDFDuet TM -1; pETDuet TM -1;	Duet plasmids, containing two multiple cloning sites (MCS), are designed for the co-expression	Novagen
pRSFDuet TM -1	of two target genes.	-
pEASY-aceF; pEASY-aceE; pEASY-lpd; pEASY-	pEASY-Blunt derived plasmids, each containing an <i>E.coli</i> gene	This study
pank; pEASY-acs		
pET28a-lpd	A pET-28a(+) derived plasmid containing <i>lpd</i> gene	This study
pACYCDuet-acs; pCDFDuet-acs; pETDuet-acs;	Duet-derived plasmids containing acs gene	This study
pRSFDuet-acs		
pACYCDuet-acs-pank; pCDFDuet-acs-pank;	Duet-derived plasmids, each containing both acs and pank genes	This study
pETDuet-acs-pank; pRSFDuet-acs-pank		
pACYCDuet-aceF; pCDFDuet-aceF; pETDuet-	Duet-derived plasmids containing <i>aceF</i> gene	This study
aceF; pRSFDuet-aceF		
pACYCDuet-aceE/F; pCDFDuet- aceE/F;	Duet-derived plasmids, each containing both aceE and aceF genes	This study
pETDuet- aceE/F; pRSFDuet- aceE/F		
pACYCDuet-pdh; pCDFDuet-pdh; pETDuet-pdh;	Duet-derived plasmids, each containing aceE, aceF and lpd genes	This study
pRSFDuet-pdh		
pACYCDuet-pdh-pank-acs and pCDFDuet-pdh-	Duet-derived plasmids containing pdh, pank and acs genes	This study
pank-acs		
pET28a-lacA	A pET-28a(+) derived plasmid containing <i>lacA</i> gene	1
pET28a-maa	A pET-28a(+) derived plasmid containing maa gene	1,2
pACYCDuet-maa, pCDFDuet-maa, pETDuet-maa	Duet-derived plasmids containing maa gene	
and pRSFDuet-maa		
pET28a-maaE125N	A pET-28a(+) derived plasmid containing maaE125N gene	2
pET28a-maaE125T	A pET-28a(+) derived plasmid containing maaE125T gene	2
pET28a-maaE125P	A pET-28a(+) derived plasmid containing maaE125P gene	2

Table S2 Plasmids used in this study

Protein	CDS (aa)	gene	ORF (bp)	GenBank
ACS (acetyl-CoA synthetase)	652	acs	1959	NP_418493.1
PanK (type I pantothenate kinase)	316	panK	951	QNG34802.1
AceE (pyruvate dehydrogenase subunit E1)	887	aceE	2664	QNG31207.1
AceF (pyruvate dehydrogenase subunit E2)	630	aceF	1893	QNG31208.1
Lpd (dihydrolipoyl dehydrogenase)	474	lpdA	1425	QNG31209.1

Table S3 Genes used in this study

Primer	Sequence (5'-3')	Description
acs-TF	ATGAGCCAAATTCACAAACACACC	A forward primer used for <i>acs</i> gene isolation
acs-TR	TTACGATGGCATCGCGATAGCCTG	A forward primer used for <i>acs</i> gene isolation
aceE-TF	ATGTCAGAACGTTTCCCAAATGACGTGG	A forward primer used for <i>aceE</i> gene isolation
aceE-TR	TTACGCCAGACGCGGGTTAACTTTATCT	A reverse primer used for <i>aceE</i> gene isolation
aceF-TF	ATGGCTATCGAAATCAAAGTACCGGACATCGGG	A forward primer used for <i>aceF</i> gene isolation
aceF-TR	TTACATCACCAGACGGCGAATGTCA	A reverse primer used for <i>aceF</i> gene isolation
<i>lpd</i> -TF	ATGAGTACTGAAAATCAAAACTCAGGTCGTGG	A forward primer used for <i>lpdA</i> gene isolation
lpd-TR	ATGAGTACTGAAAATCAAAACTCAGGTCGTGG	A reverse primer used for <i>lpdA</i> gene isolation
pank-TF	ATGAGTATAAAAGAGCAAACGTTAATGACGCC	A forward primer used for <i>pank</i> gene isolation
pank-TR	TTATTTGCGTAGTCTGACCTCTTCTACCGC	A reverse primer used for <i>pank</i> gene isolation
Duet-MAT-F	CACCACAGCCAGGATCCGAATTCGATGAGCACAGAAAAA	A forward primer to construct Duet-derived plasmids containing maa gene
Duet-MAT-R	TAAGCATTATGCGGCCGCAAGCTTTTACAATTTTTTAAT	A reverse primer to construct Duet-derived plasmids containing maa gene
acs-DuetF	GTATAAGAAGGAGATATACATATGATGAGCCAAATTCACAAACAC	A forward primer to construct Duet-derived plasmids containing acs gene
acs-DuetR	GCCGATATCCAATTGAGATCTTTACGATGGCATC	A reverse primer to construct Duet-derived plasmids containing acs gene
pank-DuetF	CCATCATCACCACAGCCAGGATCCGATGAGTATAAAAGAGCAA	A forward primer to construct Duet-derived plasmids containing pank gene
pank -DuetR	CAGGCGCGCCGAGCTCGAATTCTTATTTGCGTAGTCT	A reverse primer to construct Duet-derived plasmids containing pank gene
<i>lpd</i> -28aF	GCAAATGGGTCGCGGATCCGAATTCATGAGTACTGAAATC	A forward primer to construct pET28a-lpd
lpd-28aR	CTCGAGTGCGGCCGCAAGCTTTTACTTCTTCTTCGC	A reverse primer to construct pET28a-lpd
T7+lpd-DuetF	GCTGACGTCGGTACCCTCGAGAGATCTCGATCCCGC	A forward primer to construct Duet-derived plasmids containing <i>lpd</i> gene
T7+lpd-DuetR	CGGTGGCAGCAGCCTAGGTTAATTAATTACTTCTTCTTCGCTTTCGG	A reverse primer to construct Duet-derived plasmids containing lpd gene
aceE DuetF	G CATCATCACCACAGCCAGGATCCGATGTCAGAACGTTTCCC	A forward primer to construct Duet-derived plasmids containing aceE gene
aceE DuetR	AGGCGCGCCGAGCTCGAATTCTTACGCCAGACGCGG	A reverse primer to construct Duet-derived plasmids containing aceE gene

Table S4 Primers used in this study

aceF DuetF	ATAAGAAGGAGATATACATATGATGGCTATCGAAATCAAAGTACC	A forward primer to construct Duet-derived plasmids containing aceF gene
aceF DuetR	GCCGATATCCAATTGAGATCTTTACATCACCAGACG	A reverse primer to construct Duet-derived plasmids containing aceF gene
pdh-acs-pank-	AAAGCGAAGAAGAAGTAATTAATTAAGCCATACCGCGAAAGGTT	A forward primer to construct pACYCDuet-pdh-pank-acs
pdh-acs-pank-	TCAGCGGTGGCAGCAGCCTAGGTTACGATGGCATCGC	A reverse primer to construct pCDFDuet-pdh-pank-acs

Reference

1 M. Liu, and J.-Q.Kong, *Acta Pharm Sin B.* **2018**, 8, 981-994. 2 X. N.Wang, L.L.Hong and J.Q.Kong, *J Agric. Food Chem.* **2021**, 69, 6623-6635.