Supplementary Information

Pt anchored in skeleton of rice husk directed ZSM-5 for excellent catalytic VOCs oxidation: Structureactivity relationship and environmental impact assessment

Wenxin Lan^a, Muping Shen^a, Yinye Chen^a, Kui Niu^a, Weiming Zhou^{a,*}, Jing Xu^a, Baoquan Huang^{a,*}, Hongjie Cai^a Jiachang Zuo^b, Daifeng Lin^{a,c}, Yongjin Luo^{a,*}, Qingrong Qian^a, Qinghua Chen^a

^a Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou
 350117, China

^b State Key Lab of Physical Chemistry of Solid Surfaces, National Engineering Lab for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

^c Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, China

Corresponding author

* Weiming Zhou: Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, China. Tel/Fax: 0591-83465158. E-mail: zhouweiming721@126.com.

* Baoquan Huang: Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, China. Tel/Fax: 0591-83465158. E-mail: qbh811@fjnu.edu.cn.

* Yongjin Luo: Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, China. Tel/Fax: 0591-83465158. E-mail: yongjinluo@fjnu.edu.cn.

Materials

Rice husk powder less than 30 mesh was purchased from Lianyungang, Jiangsu Province, H₂PtCl₆·6H₂O (AR, Pt \geq 37.5 %) was purchased from Aladdin Chemical Reagent Co., Ltd. Al₂(SO₄)₃·18H₂O (AR, \geq 99.0 %), NaOH (AR, \geq 96.0 %), TPABr (AR, 99 %) and HCl (AR, 35-38 %) were purchased from Sinopharm Chemical Reagent Co., Ltd.

Characterization and Catalytic evaluation

The prepared catalysts were characterized by techniques as follows: X-ray diffraction (XRD), N₂ adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasm (ICP), temperature-programmed desorption of NH₃ (NH₃-TPD), temperature-programmed desorption of NH₃ (NH₃-TPD), temperature-programmed desorption of C₇H₈ (C₇H₈-TPD), pyridine adsorption infrared spectrometry (Py-IR), X-ray photoelectron spectroscopy (XPS), in situ diffuse reflectance infrared Fourier spectroscopy (DRIFTs) and life-cycle assessment (LCA).

X-ray powder diffraction (XRD) analysis was performed on Bruker D8 Advance diffractometer with Cu-K α radiation source in the range of 5-80°. N₂ adsorptiondesorption measurements were carried out on the Micromeritics ASAP 2460 instrument at -196 °C and fresh samples were pretreated in vacuum at 120 °C for 2 h. The morphology of the prepared samples was studied by a scanning electron microscope (SEM, Hitachi Regulus 8100, Japanese). High-resolution transmission electron microscopy (HRTEM) and HAADF-STEM images were observed on a FEI Talos F200x microscope operating at 200 kV. The metal content of the samples was determined by Inductively coupled plasma (ICP) on Agilent 5110. Surface elemental valence and concentration were studied under monochromatic Al-K α radiation (1,486.6 eV) source on Escalab 250 Xi XPS instrument.

 NH_3 temperature-programmed desorption (NH_3 -TPD), C_7H_8 temperatureprogrammed desorption (C_7H_8 -TPD) and C_7H_8 temperature programmed surface reactions (C₇H₈-TPSR) of the catalysts were carried out on a Micromeritics apparatus (AutoChem II 2920) connected with a mass spectrometer (Cirrus), where the NH₃, CO₂ and C₇H₈ signals were recorded with m/z =17, 44 and 92, respectively. For NH₃-TPD and C₇H₈-TPD, each 50 mg sample was firstly treated with 10 vol% NH₃/He (NH₃-TPD) and 500 ppm C₇H₈/Ar (C₇H₈-TPD) streams (30 mL/min) at 300 °C for 1 h, and then cooled down to room temperature, the atmosphere was switched to pure He (30 mL/min) and heated to 800 °C at a heating rate of 10 °C/min. For C₇H₈-TPSR, 50 mg of each sample was treated with 3 vol% O₂/He (30 mL/min) at 300 °C for 1 h and cooled down to room temperature. Then, the atmosphere was transferred to C₇H₈/Ar (30 mL/min) and the temperature was heated up to 800 °C at a heating rate of 10 °C/min.

Pyridine adsorption infrared spectrometry (Py-IR) and in situ diffuse reflection infrared Fourier transform spectra (in situ DRIFTs) were carried out to detect the acidity and the adsorbed species on the catalyst surface using a Thermo Scientific Nicolet iS10 equipped with Harrick Praying Mantis diffuse reflectance accessories and a high temperature reaction chamber.

For Py-IR, the catalyst was pretreated at 300 °C for 1 h in a gas flow of He to remove any adsorbed impurities, and then cooled down to 250, 200, 150, 100, 30 °C, respectively. The background spectrum was collected under each temperature. Afterward, He (15 mL/min) carrying Pyridine was introduced to the sample chamber and absorbed to saturation at 30 °C. Subsequently, the pyridine desorption was collected at 30-300 °C. At each temperature, the catalyst was exposed to a flow of He (30 mL/min) for 15 min, and then a series of IR spectra were collected.

For in situ DRIFTs, prior to each experiment, the catalyst was pretreated at 300 °C for 1 h in a gas flow of N₂ to remove any adsorbed impurities, and then cooled down to 100 °C. The background spectrum was collected under N₂ and automatically subtracted from the sample spectra. Afterward, 1000 ppm C_7H_8/N_2 (30 mL/min) was introduced for 1 min, and the catalyst was purged by N₂ for the next 2 min to remove adsorbed residuals on the catalyst surface. Subsequently, the reaction gas was switched to O₂ for

30 mL/min at 100 °C, and the DRIFTS spectra of the samples were collected at a specific time. After that, in situ DRIFTs of C_7H_8 oxidation over the catalyst were recorded at 100-175 °C. At each temperature, the catalyst was exposed to a flow of O_2 (30 mL/min) for 3 min followed by N_2 purging for another 2 min, and then a series of IR spectra were collected.

The life-cycle assessment (LCA) was applied using SimaPro 9.0 software and considered the entire life cycle of Pt/ZSM-5, from the extraction of raw materials to the final disposal. Then, an evaluation of the environmental impacts using the ReCipe 2016 Midpoint method was performed.

The activity for C₇H₈ total oxidation was measured in a continuous flow system in a fixed bed reactor at atmospheric pressure. Each Catalyst (100 mg, 30-80 mesh) with 200 mg quartz sand (30-80 mesh) was loaded in the quartz reactor. 1000 ppm C₇H₈/Air was purged into the reactor at a continuous flow 100 mL/min (WHSV = 60,000 mL/(h·g)). After reaching a stable flow, the reactants were passed through the catalyst bed and the temperature was increased from room temperature to 300 °C (5 °C/min). For catalytic activity tests and stability tests with water vapor, a certain fraction of H₂O (1 vol.%, 2 vol.%, 5 vol.%) was fed into the reaction system. The concentrations of the reactants and products were detected online by Agilent-8860 gas chromatograph equipped with a hydrogen flame ionization detector (FID) and a thermal conductivity detector (TCD). Toluene conversion (X_{Toluene}, %) was calculated using the following formula:

$$X_{\text{Toluene}}(\%) = \frac{C_{\text{in}} - C_{\text{out}}}{C_{\text{in}}} \times 100\%$$

C_{in} and C_{out} are toluene concentrations at the inlet and outlet of the feed flow, respectively.

The CO₂ selectivity (S_{CO2}, %) was defined as the ratio of toluene converted into CO_2 to the total degraded toluene, which was calculated as:

$$S_{CO_2}(\%) = \frac{C_{CO_2}}{\alpha \times X_{Toluene}} \times 100\%$$

where C_{CO2} represents the CO_2 concentration in the outlet gas, α refers to the theoretical CO_2 concentration.

The C_7H_8 reaction rate at 175 °C (R_{175}) was calculated by equation:

$$R_{175} = \frac{C_{175} \times V_{C_7 H_8}}{m_{cat}}$$

Where C_{175} is C_7H_8 conversion rate (%) at 175 °C, V_{C7H8} is C_7H_8 flow rate (µmol·s⁻¹), m_{cat} is the mass of Pt/ZSM-5 in the catalyst (g).

The C_7H_8 specific reaction rate at 175 °C (R_{175}) was calculated by equation:

$$S_{175} = \frac{R_{175}}{S_{BET}}$$

Where S_{BET} is specific surface area of catalyst (m²·g⁻¹).

Ea was calculated using the Arrhenius equation as follows:

$$\ln k = \ln A - \frac{E_a}{RT}$$

where k is the reaction rate (mol \cdot s⁻¹), Ea is the apparent activation energy (kJ·mol⁻¹), and A is the pre-exponential factor.

Finally, cycling tests of the Pt/ZSM-5-T2 catalyst for C_7H_8 oxidation were measured. The test was performed for a continuous five cycles (1000 ppm C_7H_8 /Air with the flow rate of 100 mL/min), and in each cycle, the temperature is first increased up to 300 °C then cooled to room temperature. Moreover, for catalytic activity tests and stability tests with water vapor, a certain mass fraction of H₂O was fed into the entire reaction system by the heating belt heating reaction route via a liquid phase pump.

Fig. S1 CO₂ selectivity of all the samples.

Fig. S2 XRD patterns of ZSM-5 molecular sieves with different $SiO_2/Al_2O_3[1]$.

Fig. S3 Products selectivity of VOCs on Pt/ZSM-5-T2 catalyst.

Sample	Calcination condition	Mass of rice husk powder	Mass after
	of rice husk powder	before calcination (g)	calcination (g)
SiO ₂	550 °C, 4 h	6	0.955
SiO ₂ -8.7 %C	450 °C, 2 h	6	1.045
SiO ₂ -23.6 %C	450 °C, 1 h	6	1.25

Table S1. The calcination conditions of rice husk powder and corresponding mass values.

So the carbon content:

(1.045-0.955)/1.045 = 8.7 wt.%

(1.25-0.955)/1.25 = 23.6 wt.%

Catalysts	Pollutant	Concentration	WHSV	T ₉₀	R ₁₇₅	Def
	Type	(ppm)/Flow rate	$(mL \cdot g^{-1} \cdot h^{-1})$	(°C)	$(\mu mol \cdot g^{-1} \cdot s^{-1})$	Rei
Pt/ZSM-5-T1		1000		194	0.387	T1. :
Pt/ZSM-5-T2	C ₇ H ₈	1000 ppm	60,000 1 1	170	0.733	I N1S
Pt/ZSM-5-T3		C_7H_8 , air		174	0.692	WORK
Pt/PZN-2	C ₇ H ₈	1000 ppm 1	176	0.618	[2]	
Pt/CZ-500		C ₇ H ₈ , air	60,000 air 202	202	0.015	[2]
Pd ₈ Cu ₂ /MZ		50 ppm	3,6000	152	0.022	[2]
	C_7H_8	C ₇ H ₈ , air				[3]
Co _{3-x} O _{4-y}	СИ	300 ppm	7 2000	146	0.192	E 4 1
Co _{3-x} O ₄	C_7H_8	C ₇ H ₈ , air	7,2000	180	0.113	[4]
Pt NPs@Co ₃ O ₄		1000		179	0.261	
Pt-Co ₃ O ₄	C ₇ H ₈	C_7H_8 $60,00$	60,000	,000 185	0.106	[5]
Pt ion@Co ₃ O ₄		$C_7H_8, 20 \%O_2/N_2$		194	0.063	
Pt/ZSM-5-T2	C_8H_8	200 ppm	60,000	196	0.091	This
		C_8H_8 , air				work
CeO ₂ -C	сu	600 ppm	15 000	350	0.020	C
CeO ₂ -O	C_8H_8	C_8H_8 , air	15,000	221	0.049	6
TS-1	C_8H_8	200 ppm	75,000	326	0.000	7
		C_8H_8 , air				1
Pt/ZSM-5-T2	$C_4H_8O_2$	1000 ppm	60,000	325	0.084	This
		$C_4H_8O_2$, air				work
1Ru/TiO ₂	$C_4H_8O_2$	500 ppm	60,000	237	0.047	o
		$C_4H_8O_2$, air				8
MnO _x -CeO ₂ -h	$C_4H_8O_2$	500 ppm	60,000	224	0.050	0
		$C_4H_8O_2$, air				У

Table S2. Catalytic testing conditions and comparison of catalytic activities (T_{90} , R_{175})of as-prepared Pt/ZSM-5 catalysts with previously reported catalysts.

Pt/ZSM-5-T1 in This work			
Input/Output	Quantity	Unit	
Step1: Rice husk powder Pre-treatment	I		
Input			
Rice husk powder	6.965	KG	
Energy (heating)	20.3	KWh	
Output			
SiO ₂ template (T1)	1.19567	KG	
Step2: ZSM-5 Synthesis			
Input			
T1	1.19567	KG	
$Al_2(SO_4)_3$ ·18H ₂ O	0.03303	KG	
NaOH	0.18308	KG	
TPABr	0.26467	KG	
H ₂ O	14.328	L	
Energy (stirring and heating)	67.8	KWh	
Output			
ZSM-5-T1	0.995	KG	
Step3: Pt/ZSM-5 Preparation			
Input			
Pt	0.005	KG	
ZSM-5-T1	0.995	KG	
Energy (stirring and heating)	40.2	KWh	
Output			
Pt/ZSM-5-T1	1	KG	

 Table S3. Input and output of Pt/ZSM-5 catalysts in a LCA analysis.

Pt/ZSM-5-T2 in This work			
Input/Output	Quantity	Unit	
Step1: Rice husk powder Pre-treatment			
Input			
Rice husk powder	6.965	KG	
Energy (heating)	12.25	KW-h	
Output			
SiO ₂ -8.7% C template (T2)	1.3134	KG	
Step2: ZSM-5 Synthesis			
Input			
T2	1.3134	KG	
Al ₂ (SO ₄) ₃ ·18H ₂ O	0.03303	KG	
NaOH	0.18308	KG	
TPABr	0.26467	KG	
H ₂ O	14.328	L	
Energy (stirring and heating)	67.8	KWh	
Output			
ZSM-5-T2	0.995	KG	
Step3: Pt/ZSM-5 Preparation			
Input			
Pt	0.005	KG	
ZSM-5-T2	0.995	KG	
Energy (stirring and heating)	40.2	KWh	
Output			
Pt/ZSM-5-T2	1	KG	

Pt/ZSM-5-T3 in This work			
Input/Output	Quantity	Unit	
Step1: Rice husk powder Pre-treatment			
Input			
Rice husk powder	6.965	KG	
Energy (heating)	8.75	KW-h	
Output			
SiO ₂ -23.6% C template (T3)	1.56414	KG	
Step2: ZSM-5 Synthesis			
Input			
Т3	1.56414	KG	
$Al_2(SO_4)_3$ ·18H ₂ O	0.03303	KG	
NaOH	0.18308	KG	
TPABr	0.26467	KG	
H ₂ O	14.328	L	
Energy (stirring and heating)	67.8	KWh	
Output			
ZSM-5-T3	0.995	KG	
Step3: Pt/ZSM-5 Preparation			
Input			
Pt	0.005	KG	
ZSM-5-T3	0.995	KG	
Energy (stirring and heating)	40.2	KWh	
Output			
Pt/ZSM-5-T3	1	KG	

Catalyst A: Pt/ZSM-5-C			
Input/Output	Quantity	Unit	
Step1: ZSM-5 Synthesis	· ·		
Input			
TEOS	4.2188	KG	
NaAlO ₂	0.00816	KG	
NaOH	0.18308	KG	
ТРАОН	0.48556	KG	
H ₂ O	10.746	L	
Energy (stirring and heating)	67.8	KWh	
Output			
ZSM-5-C	0.995	KG	
Step2: Pt/ZSM-5 Preparation			
Input			
Pt	0.005	KG	
ZSM-5-C	0.995	KG	
Energy (stirring and heating)	40.2	KWh	
Output			
Pt/ZSM-5-C	1	KG	

References

- [1] R. Khoshbin, R. Karimzadeh, Adv. Powder Technol., 2017, 28, 1888-1897.
- [2] G. Liu, Y. Tian, B. Zhang, L. Wang, X. Zhang, J. Hazard. Mater., 2019, 367, 568 576.
- [3] Z. Wang, P. Ma, K. Zheng, C. Wang, Y. Liu, H. Dai, C. Wang, H. Hsi, J. Deng, *Appl. Catal. B-Environ.*, 2020, **274**, 118963.
- [4] Y. Li, T. Chen, S. Zhao, P. Wu, Y. Chong, A. Li, Y. Zhao, G. Chen, X. Jin, Y. Qiu,D. Ye, ACS Catal., 2022, 1, 4906-4917.
- [5] M. Xiao, X. Yu, Y. Guo, M. Ge, Environ. Sci. Technol., 2022, 56, 1376-1385.
- [6] Y. Zhang, J. Lu, L. Zhang, T. Fu, J. Zhang, X. Zhu, D. He, Y. Luo, D. Dionysiou,
 W. Zhu, *Appl. Catal. B-Environ.*, 2022, **309**, 121249.
- [7] T. Fu, Y. Zhang, D. Wu, W. Zhu, X. Gao, C. Han, Y. Luo, W. Ma, D. Dionysiou, J. Hazard. Mater., 2020, 397, 122630.
- [8] X. Liu, Q. Han, W. Shi, C. Zhang, E. Li, T. Zhu, J. Catal., 2019, 369, 482-492.
- [9] Y. Jiang, J. Gao, Q. Zhang, Z. Liu, M. Fu, J. Wu, Y. Hu, D. Ye, Chem. Eng. J., 2019, 371, 78-87.