Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Polyester biodegradability: importance and potential for optimization

Yue Wang,^{a, b} Robert-Jan van Putten,^c Albert Tietema,^b John R. Parsons ^b and Gert-Jan M. Gruter^{*a,c}

^a van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.

^b Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.

^c Avantium Support BV, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands; <u>robert-jan.vanputten@avantium.com</u>

* Correspondence: g.j.m.gruter@uva.nl.

Section	Polyester	Molecular structures	Biodegradation methods – <u>Parameters</u>	Biodegraded products	Reference	Potential recyclability ^a
Aromatic diacid	PET		Composting (58 °C, 270 d) – <u>CO₂</u>	n.a.	Fig.8 ⁸⁵	 Mechanical (most commonly), chemical, biological^{24,77,78,107}
	PEF		Composting (58 °C, 450 d) – <u>CO₂</u>	CO _{2,}	Fig.8 ⁸⁵	 Mechanical (compatible with current PET recycling systems), chemical, biological^{78,85,107,108}
	РВАТ	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Composting (50 °C) – <u>Mass loss;</u> Enzymatic hydrolysis (37-55 °C, 1 – 18 d) – <u>Titration</u>	n.i.a.	Fig.5 & Fig.6 ⁶²	 Mechanical (for PLA/PBAT⁷⁶), chemical¹⁰⁹, biological⁷⁹
			Enzymatic hydrolysis (30 °C, 20 h) – <u>Mass loss</u>	n.i.a.	Fig.7 ⁶⁵	
	PBFGA		Non-enzymatic (35 d) & enzymatic hydrolysis (70 d) (37 °C) – <u>Mass loss</u>	n.i.a.	Fig.9 ⁸⁶	- n.i.a. - *PBF: chemical ¹¹⁰

Table S 1 Overview of polyesters discussed and their potential recyclability. n.a. = not applicable (not biodegradable); n.i.a. = no information available.

	PBIS (PIS/PBS/ PBSA)	PBIS copolyester	Non-enzymatic & enzymatic hydrolysis (37 °C, 16 w) - <u>Mass loss</u>	n.i.a.	Fig.10 ⁸⁷	 n.i.a. *PBS⁷⁶: biological^{111,112} *PLA/PBS: mechanical, chemical and biological^{76,113}
Cyclic aliphatic diol / linear aliphatic monomer	PISOX	$\begin{split} & \left(\begin{array}{c} 0\\ 0\\ \end{array} \right) \\ & \left(\begin{array}{c} 0\\ \end{array} \right) \\ \\ & \left(\begin{array}{c} 0\\ \end{array} \right)$	Biodegradation in soil (25 °C, 270 d), seawater and sediment (25 °C, 53 d) – <u>CO2;</u> Non-enzymatic hydrolysis (25 °C, 185 d) – <u>Soluble monomers</u>	CO2; monomers including oxalic acid, isosorbide and other co- diols	Fig.11 ^{89,90}	- n.i.a.

Linear aliphatic monomer.	PBAD	BD unit DCA unit $O O O O O O O O O O O O O O O O O O O$	Biodegradation in an aqueous medium (supernatant of soil suspension as inoculum, 25 °C, 30 d) – <u>O</u> 2	CO2	Fig.12 ⁹⁰	- n.i.a
			Biodegradation in an aqueous medium (supernatant of soil suspension and PBAD degrading isolates as inoculum, 25 °C, 30 d) – <u>O2</u>	n.a.	Fig.13 ^{91,92}	
	POBC	n = 2,3,4,6,8,10	Biodegradation in an aqueous medium (supernatant of soil suspension and PBAD degrading isolates as inoculum, 25 °C, 90 d) – <u>O2</u>	CO ₂	Fig.15 ⁹³	- n.i.a
Branched monomer	PLGA	$HO \left[\begin{array}{c} O \\ O \\ T \\ T \\ O \\ T \\ O$	Non-enzymatic hydrolysis (37 °C, 7 w) – <u>Mass</u> <u>loss, intrinsic viscosity</u>	n.i.a.	Fig.16 ⁹⁸	
			Biodegradation in soil (25 °C, 53 d) – <u>CO2;</u> Non-enzymatic hydrolysis (25 °C, 116 w) – <u>Soluble monomers</u>	CO₂; GA, LA	Fig.17 ⁶⁰	 *PLA: mechanical, chemical, biological^{76,77,107,114}

a. Chemical recycling specifically refers to depolymerization into monomers and or low molecular weight polymers, enabling subsequent polymerization; pyrolysis is not covered in this context.

:B⁻ + H₂O → OH⁻ + BH a) OH⁻ + R⁻C⁻O⁻R' → R⁻C⁻O⁻R' 0⁻ R-C-O-R' → R-C-OH + ⁻O-R' -O-R' + BH - HO-R' + :Bb) $O \xrightarrow{H} O'$ HA + R-C-O-R' $\longrightarrow B^+ O'$ R-C-O-R' + A⁻ $H_{2}O + \bigcup_{\substack{O \\ O \\ R-C-O-R'}}^{H} \longrightarrow \bigcup_{\substack{O \\ U-O^{*}U}}^{OH}$ ОН A⁻ + ^{R-}¢-O-R' → OH H^{2O+}H R-¢-O-R' + НА H^{2O+}H ÓH HA + $R \stackrel{OH}{-C} - O - R'$ \longrightarrow $R \stackrel{OH}{-C} - O \stackrel{+}{-R'} + A^{-}$ $\begin{array}{ccc} OH & H \\ R-C-O^{*}-R' & \longrightarrow & O^{*} \\ OH & H & R-C-OH \end{array}$

Figure S 1 Mechanism for (a) base-catalysed and (b) acid-catalysed hydrolysis of polyesters. Reprinted with permission from⁶⁴. Copyright © 2018 American Chemical Society.