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Methods

Descriptors for machine learning were calculated using RDKit (2022.9.3) ! based on the collected database.
The full list of descriptors for each DES property, including their meanings and formulae, are given in Table S1
and Table S2. Several classical machine learning models were employed for prediction tasks, including
decision tree, random forest, gradient boosting, k-nearest neighbors, support vector machines, and
multilayer perceptron. We used open-source implementations from scikit-learn (0.0.post1) 2, xgboost (1.7.3)
3 and catboost (1.1.1) 4 Python (3.9.11) packages. For hyperparameter optimization, we performed a grid
search and Bayesian search from scikit-learn (0.0.post1) 2 and scikit-optimize (0.9.0) > Python packages,
respectively. The best model was selected by evaluating R2 and RMSE metrics (Table S3). Hyperparameters
delivering the best performance for each prediction task are given in Table S4. The importance of descriptors
was assessed using Shapley values calculated with the SHAP (0.41.0) ¢ Python package. Finally, the
DESignSolvents web service was developed with the following technological stack: Python (Django (4.1.7)),
Javascript () (Vanilla, Plotly, noUiSlider), Docker 7, Nginx 8, Ofelia, and PostgreSQL °.
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Figure. S1. Distribution for the temperature at which the density and viscosity were measured
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Figure. S2. Distribution for melting point, density and viscosity depending on the type of DES



Table S1. Descriptors for melting temperature prediction

Descriptor

Formula / A source

Meaning

Molar fraction of component

Experimental data

Molar fraction of individual component #1 (since only binary
DES are used)

Type of DES

Experimental data

Type of DES (I, II, IIl, IV, V, IL)

Melting temperatures

Experimental data

Melting temperatures of individual components (in kelvin)

Molecular weight

MW =MW1 *x;+ MW2 % x, + MW * x5,

where MW s the total molecular weight, MW_m js the molecular weight in individual component m, and
*m is the molar fraction of the individual component m.

The molecular weight a molecule calculated for the entire
molecule, taking into account the molar fractions of
individual components *

Number of hydrogen bond
donors

HD = HD1# x; + HD2 * x, + HD3  x,,

where HD is the total number of H-bond donors, HD_m is the number of H-bond donors in individual
component m, and *m is the molar fraction of the individual component m.

Number of hydrogen bond donors calculated for the entire
molecule, taking into account the molar fractions of
individual components !

Number of different groups

Niroups = X1 ¥y + Xy 1y + X3 %1,
where NGmuPS is the total number of different groups, *m is the molar fraction of the individual

component, and M is the number of different groups in the individual component.

The number of elements in DES, taking into account the mole

fractions of individual components *
Number of aliphatic carboxylic acids
Number of aromatic carboxylic acid

Number of aromatic nitrogens
Number of aromatic hydroxyl groups

Number of Tertiary amines
Number of Secondary amines
Number of amides

Number of aromatic rings

AROM = AROM1 % x; + AROM2 * x, + AROM3 * x5,

where AROM js total number of aromatic rings, AROM_m is the number of aromatic rings in individual
component m, and *m is the molar fraction of the individual component m.

Number of aromatic rings in DES, taking into account the
mole fractions of individual components *

Chemical toxicity evaluation

ALERTS = ALERTS1 * x; + ALERTS2 * x, + ALERTS3 * x5,

where ALERTS is the total chemical toxicity evaluation, ALERTS_M is the chemical toxicity evaluation in
individual component m, and *m is the molar fraction of the individual component m.

Chemical toxicity evaluation of DES, taking into account the
mole fractions of individual components *

Number of heavy atoms

HM = HM1 * x; + HM2 * x, + HM3 * x,

where HM js the total number of heavy atoms, HM_M is the number of heavy atoms in individual
component m, and *m is the molar fraction of the individual component m.

Number of heavy atoms in DES, taking into account the mole
fractions of individual components *




Table S2. Descriptors for density and viscosity prediction

Meaning

Descriptor

Formula / A source

Molar fractions of individual components in DES

Molar fractions

Experimental data

Type of DES (I, II, lIl, IV, V, Ternary)

Experimental data

The temperature at which the density or viscosity

Type of DES
Temperature

Experimental data

measurement was carried out
Van der Waals volumes of individual components

VdWVolume

VvdW = Y.all atom contributions —5.92 * NB - 14.7 * RA — 3.8 * RNA,
where NB is the number of bonds, RA s the number of aromatic rings, and RNA is the number of nonaromatic
rings.
4 o To calculate the contributions of atoms, we use the ball volume formula:
Vpu= 5 *m* K,
3
where R is Van der Waals radius of atom.
To calculate the number of bonds, we use the following formula:
NB=N -1+ RA+ RNA,

where N is the total number of atoms.

calculated using Van der Waals radii obtained from
RDKit %10

The number of heteroatoms in a molecule calculated

NumHeteroatoms

NHet = NHetl * x; + NHet2 x x, + NHet3 * x5,

where NHet js the total number of heteroatoms, NHet_m js the number of heteroatoms in individual component
m, and *mis the molar fraction of the individual component m.

for the entire molecule, taking into account the molar
fractions of individual components *
The number of rings in a molecule calculated for the

RingCount

RingC = RingCT * x; + RingCZ * x, + RingC3 * x,

where RingC s the total number of rings, RingC_M is the number of rings in individual component m, and Xm is
the molar fraction of the individual component m.

entire molecule, taking into account the molar fractions
of individual components *

Inertial shape factor (it is related to the moment of

InertialShapeFactor

TiteT tiat STtape 1" acior

7
pmy x pms

where P s the principal moment of inertia n of DES calculated by the following formula:
pm,=PMI_1 *x;+ PMI_ 2, *x,+ PMI_3, *x;

where PMIm, is the principal moment of inertia n of DES of individual component m and *m is the molar

inertia of the molecule and the characteristics of its
shape) of DES taking into account the molar fractions of
individual components %%

fraction of the individual component m.

Spherocity Index (related to the shape of molecules

Spherocitylndex

SPIET O Ity TTthex — O +

pmy +pm, +pmy

where P is the principal moment of inertia n of DES calculated by the following formula:
=PMI_1, *x;+ PMI_2, *x,+ PMI_3, * x5,

n

where PMI_m, is the principal moment of inertia n of DES of individual component m and ¥m is the molar

and aspects that can be associated with sphericity or
elongation) of DES taking into account the molar
fractions of individual components %!

fraction of the individual component m.

5

Mass fraction of metal in DES, taking into account the

Mass fraction of metal

METatMGSSTTaction =
X ¥ MWy + X, x mw, + X3 ¥ mwy

where *m is the molar fraction of the individual component, "m is the number of metals in the individual
component, MW (Me) is the molar mass of metal, and MW is the molar mass of the individual component.

mole fractions of individual components

The number of elements in DES taking into account the

Number of elements

Npjem = X1 ¥y + X5 %Ny + X3 %M,
where *m is the molar fraction of the individual component and ™ is the number of elements in the individual
component m.

mole fractions of individual components *
Density: Li, C, N, O, F, Na, Mg, Al, P, S, Cl, K, Ca, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Br




Viscosity: Li, C, N, O, F, Mg, Al, P, S, Cl, K, Cr, Mn, Fe, Co,

Cu, Zn, Br

Table S3. Metrics for evaluating the accuracy of machine learning models

Metric

Meaning

Coefficient of

A metric that shows the proportion of the

Formula

d T

i

Determination (R?)

Root Mean Square Error

variance in the response variable of a
regression model that can be explained by
the predictor variables!2.

A metric that tells how far apart the

where Viis the true value of the parameter, Yiis the predicted value of the parameter, and Yiis the average value of the

(RMSE)

Average absolute relative

predicted values are from the observed
values in a dataset, on average 2.

A metric used to measure the accuracy of a

variable.
d T
1=

where Vi is the true value of the parameter and Yiis the predicted value of the parameter.

deviation (AARD)

model by calculating the average
percentage difference between predicted
and actual values 3.

n L [vi]

where " is the total number of data points or observations, Yiis the true value of the parameter, and Viis the predicted value
of the parameter.

Table S4. Optimal hyperparameters for the best models

Property ML model Hyperparameters
Melting point Cat Boosting Regression iterations: 123
learning_rate: 0.061
depth: 6
Density Cat Boosting Regression iterations: 600
learning_rate: 0.050
depth: 4
Viscosity

Cat Boosting Regression

iterations: 600
learning_rate: 0.050
depth: 6
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Figure. S3. Performance of predictive machine learning models
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MELTING TEMPERATURE

Decision Tree Regression
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Figure. S4. Metrics for different machine learning models for melting temperature
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Figure. S5. Metrics for different machine learning models for density
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Figure. S6. Metrics for different machine learning models for viscosity
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Figure. S7. RMSE for different types of deep eutectic solvents
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