Supporting Information

Improving revenue of lignin conversion into carbon dots by prior amino modification

Tingting Chu,^a Xiaoxu Yang,^a Mingjie Chen,^{*abc} Qing-Shan Shi,^{*b} Xiaobao Xie^{*b} and Yanzhu Guo^{*a}

^a Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.

^b Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China.

^c Guangdong Dimei New Materials Technology Co. Ltd. 100 Central Xianlie Road, Guangzhou 510070, China.

* Email address: chenmj@gdim.cn (M. C.); shiqingshan@hotmail.com (Q.-S. S.); xiexb@gdim.cn (X. X.); guoyz@dlpu.edu.cn (Y. G.)

Section Schemes

Scheme S1 Fractionation of ethanol organosolv lignin of corncob

A) CDs production from raw lignin

B) CDs production from Modified lignin

Scheme S2. Process diagram of industrial-scale carbon dots production from raw lignin, and modified lignin.

Section Figures

Fig. S1 The HSQC NMR of lignin model compound of the β -O-4 dimer, and the modified β -O-4 dimer by Mannich reactions with ethylenediamine. The reaction between β -O-4 dimer and ethylenediamine was performed by mixing the β -O-4 dimer (0.55 mmol), formaldehyde (1.1 mmol), and ethylenediamine (1.1 mmol) at room temperature for 24 h. Then the isolation was performed by extraction with ethyl acetate, then evaporation, and vacuum dried at 50 °C.

Fig. S2 XPS studies of the raw lignin and modified lignin by Mannich reaction. The results indicated nitrogen was covalently bonded onto lignin.

Fig. S3 Molecular weight of lignin by GPC study.

Fig. S4 FTIR spectra of lignin and CDs.

Fig. S5 XPS result of as-prepared CDs

A) CDs prepared from modified lignin

Fig. S6 Deconvolution of the XPS peaks of CDs.

Fig. S7 XRD patterns of CDs.

Fig. S8 Photoluminescence spectra of CDs solutions with different concentrations of nitroaromatic compounds

Fig. S9 The overlapped absorption spectrum of nitroaromatic compounds and fluorescence emission spectrum of CDs

Section Tables

Lignin source	Method	Synthetic methods	Yield /%	QY /%	Ref
Alkali lignin/Citric	Bottom up	Hydrothermal method with		43	[1]
acid (0.1g/7g)		ethylenediamine			
Alkali lignin	Bottom up	1. HNO3 treatment	21	22	[2]
		2. hydrothermal method			
Lignin	Bottom up	Oxidative hydrothermal with	0.8-		[3]
		H ₂ O ₂	12.06		
Alkali lignin (TCI)	Bottom up	0.1 g Lignin+0.6ml EDA+9.4	82.4	<17	[4]
	D ()			1 (0	5.63
Biorefinery residue	Bottom up	Ethanol solvothermal method		1.68-	[2]
N 1 1 1 11' '	D			2.47	
Pre-hydrolyzed lignin	Bottom up	0.075 g Lignin + 3 g sulfuric acid		2.7-	[6]
		+ 10 mL H2O		13.5%	
Alkali Lignin	Top-Down	1. Carbonization with DES		7.95	[7]
		2. Ball mill			
Lignin amines	Top-Down	1. Carbonization		8.1	[8]
		2. Ball mill			
Alkali lignin	Bottom up	Hydrothermal with ammonia		1.49-	[9]
		water		14.24	
Alkali lignin	Bottom up	1. Hydrothermal		17.3	[10]
		2. 30ml H2SO4+HNO3			
Sodium	Bottom up	Hydrothermal with 10 mg/mL		23.3	[11]
lignosulfonate/Citric		NaOH solution			
acid					
Alkali lignin	top-down	1. Carbonization	6-7	8.1-	[12]
		2. Oxidation H2SO4:HNO3 = $3:1$,		13.0	
		\mathbf{v}/\mathbf{v}			
Lignosulfonate	Bottom up	Microwave irradiation method	2.39-	31.27	[13]
			5.02		
Lignin corncob/Citric	Bottom up	Hydrothermal with EDA		43.9	[14]
acid (0.1g/2.1g)					
Lignin	Top-down	1. Hydrothermal method	42.5	10.0	[15]
		2. NaOH/O2 oxidation			

Table S1 The yield and QY of CDs by previous reports.

Carbon source	Method	Synthetic methods	Yield	QY	Ref
Lignocellulose	Bottom up	Solid acid catalyzed DMF		2.7	[16]
residue		solvothermal method			
Pine wood	Bottom up	Hydrothermal		4.69	[17]
Hemicellulose	Top-down	1. Hydrothermal carbonization	16.9-	2.8-	[15]
		2. NaOH/O2 oxidation	29.1	16.6	
Cellulose	Top-down	1. Hydrothermal carbonization	34.0	13.4	[15]
		2. NaOH/O2 oxidation			
Chitosan	Top-down	1. Hydrothermal carbonization	33.5	11.5	[15]
		2. NaOH/O2 oxidation			
Cabbage	Bottom up	hydrothermal	7.067	16.5	[18]
Cellulose (MCC)	Bottom up	1. Dissolved with NaOH/Urea	<6	<11	[19]
		2. Hydrothermal treatment of the			
		cellulose NaOH/Urea solution			
Cellulose	Bottom up	Microware assisted hydrothermal		6.20	[20]
		method			
Protein	Bottom up	Microware assisted hydrothermal		6.81	[20]
		method			
Peanut shell	Bottom up	Microware assisted hydrothermal		2.83	[20]
		method			
Cotton stalk	Bottom up	Microware assisted hydrothermal		2.95	[20]
		method			
Soymeal	Bottom up	Microware assisted hydrothermal		4.92	[20]
		method			
Tannic acid	Bottom up	Microwave-assisted hydrothermal		2.1-	[21]
		method with 25% ammonia solution		19.15	

 Table S2 The yield and QY of CDs derived from biomass other than lignin

Lignins	G units μmol/g	S units μmol/g	Total (S+G) μmol/g	S/G	Phenolic -OH mmol/g
Corncob bioethanol residue	23.0±1.0	27.4±0.6	50.3±1.6	1.19	1.29
Hardwood prehydrolysis lignin	5.09±0.09	13.8±0.4	18.8±0.3	2.70	1.53
Softwood Kraft lignin	40.9±1.3	0	40.9±1.3	0	1.50
Hardwood Kraft lignin	35.8±0.6	23.1±5.0	58.9±5.6	0.64	1.88
Hardwood organosolv lignin	159±3	158±2	317±5	0.99	1.47
Reed organosolv lignin	78.0±1.4	60.5±2.8	138±4	0.78	1.62
Corncob Kraft lignin	15.7±0.7	18.8±1.7	34.5±2.4	1.20	1.03
Corncob organosolv lignin	16.4±0.9	15.2±1.1	31.6±2.0	0.92	1.76
Corncob organosolv lignin F1	3.11±0.34	17.1±2.3	20.2±2.7	5.49	2.23
Corncob organosolv lignin F4	10.1±4.4	11.2±3.8	21.3±8.2	1.12	1.28
Corncob organosolv lignin F3	11.2±0.3	10.1±0.9	21.3±0.6	0.90	1.65
Corncob organosolv lignin F2	6.68±1.02	9.99±1.15	16.7±2.2	1.50	1.96

 Table S3 DFRC results, and phenolic hydroxyl content by potentiometric titration of lignins

Samples	Nitrogen Content Wt%		Solubility pH 7 g/L		Solubility at pH 5 g/L		QY	Yield
Samples	Raw	Modified	Raw	Modified	Raw	Modified	%	wt%
	lignin	lignin	lignin	lignin	lignin	lignin		
Softwood Kraft	0.47	9 72	0.65	4 70	0.27	4 99	1913	50.2
lignin	0.47	5.72	0.05	1.70	0.27	ч.уу 	17.15	50.2
Hardwood Kraft	0.46	9.27	0.08	9.63	0.27	9.04	12 39	64.6
lignin	0.40	9.27	0.00	7.05	0.27	7.04	12.37	04.0
Hardwood	0.43	9 4 4	0.69	932	0.32	9.01	11 69	61.5
organosolv lignin	0.45	7.77	0.07	7.52	0.52	7.01	11.07	01.5
Hardwood								
prehydrolysis	0.59	9.71	0.52	10.26	0.35	10.10	13.89	64.4
lignin								
5 Reed solvent	0.56	10.05	0.81	6 70	0.30	6.98	20.10	53 5
lignin L6	0.50	10.05	0.01	0.70	0.50	0.70	20.10	55.5
Corncob								
bioethanol	1.11	12.26	0.50	6.22	0.43	7.37	36.42	68.3
residue								
Corncob Kraft	0.62	12 17	0.21	6.27	0.11	7 1 1	36.82	723
lignin	0.02	12.17	0.21	0.27	0.11	/.11	50.02	12.5
Corncob	0.58	12 33	0.85	7 98	0.62	9.29	32.88	67.6
organosolv lignin	0.50	12.55	0.05	7.90	0.02).2)	52.00	07.0
Corncob								
organosolv lignin	0.37	11.85	0.65	4.70	0.22	7.26	35.22	55.3
F4								
Corncob								
organosolv lignin	0.57	11.43	0.52	10.26	0.34	7.70	30.30	66.1
F3								
Corncob								
organosolv lignin	0.72	10.75	0.69	9.32	0.40	9.62	21.67	63.9
F2								
Corncob								
organosolv lignin	0.45	10.28	0.08	9.63	0.43	9.07	21.81	71.7
F1								

Table S4 Nitrogen content and water solubility of modified lignin, and the yield and QY of resultant

Total Product Cost & Minimum Product Selling Prices					
Items	Cost* (UDS/t)	Descriptions			
I. Total Operation Cost	10817				
A. Direct Production Costs	8794				
1. Raw Materials	2568				
Lignin	2551				
Water	17				
2. Operating Labor	1728	10% Total Product Cost			
3. Direct Supervisory	346	20% Operating Labor			
4. Utilities	2593	15% Total Product Cost			
5. Maintenance and Repairs	904	3% Fixed-Capital Investment			
6. Operating Supplies	136	15% Maintenance and Repairs			
7. Laboratory Charges	173	10% Operating Labor			
8. Patents and Royalties	346	2% Total Product Cost			
B. Fixed Charges	813				
1. Local Taxes	602	2% Fixed-Capital Investment			
2. Insurance	211	0.5% Fixed-Capital Investment			
C. Plant-Overhead Costs	1210	70% Operating Labor			
II. Depreciation	3012	10% Fixed-Capital Investment			
III. General Expenses	3456				
A. Administrative Costs	519	3% Total Product Cost			
B. Distribution Costs	1296	7.5% Total Product Cost			
C. R&D Costs	864	5% Total Product Cost			
D. Financing	778	4.5% Total Product Cost			
IV. Total Product Cost	17285				
V. Minimum Product Selling Prices	26488				
A. Residue Value	920				
B. Income Tax	3037	30% Gross Earning			
C. Return On Investment	7087	20% Total Capital Investment			
D. Gross Earning	9204				

Table S5 Estimation of Total product cost & minimum product selling prices of carbon dots production

 from RAW lignin

Notes: * The cost to produce one ton carbon dots.

Total Product Cost & Minimum Product Selling Prices					
Items	Cost* (UDS/t)	Descriptions			
I. Total Operation Cost	5984				
A. Direct Production Costs	4963				
1. Raw Materials	1716				
Lignin	208				
Ethylenediamine	1274				
Formaldehyde	230				
Water	4.3				
2. Operating Labor	922	10% Total Product Cost			
3. Direct Supervisory	184	20% Operating Labor			
4. Utilities	1383	15% Total Product Cost			
5. Maintenance and Repairs	418	3% Fixed-Capital Investment			
6. Operating Supplies	63	15% Maintenance and Repairs			
7. Laboratory Charges	92	10% Operating Labor			
8. Patents and Royalties	184	2% Total Product Cost			
B. Fixed Charges	375				
1. Local Taxes	278	2% Fixed-Capital Investment			
2. Insurance	97	0.5% Fixed-Capital Investment			
C. Plant-Overhead Costs	645	70% Operating Labor			
II. Depreciation	1392	10% Fixed-Capital Investment			
III. General Expenses	1844				
A. Administrative Costs	277	3% Total Product Cost			
B. Distribution Costs	692	7.5% Total Product Cost			
C. R&D Costs	461	5% Total Product Cost			
D. Financing	415	4.5% Total Product Cost			
IV. Total Product Cost	9220				
V. Minimum Product Selling Prices	13854				
A. Residue Value	47				
B. Income Tax	1404	30% Gross Earning			
C. Return On Investment	3276	20% Total Capital Investment			
D. Gross Earning	4633				

Table S6 Estimation of Total product cost & minimum product selling prices of carbon dots production

 from **MODIFIED lignin**

Notes: * The cost to produce one ton carbon dots.

Stream	Description	Solid	water	Total
S1 Lignin	Dried raw lignin	1.02	0.00	1.02
S1 Water	Water added	0.00	25.5	25.5
S2	Products to filter	1.02	25.5	26.5
S3	Filtered carbon dots solution	0.100	23.7	23.8
S4	Wet residue	0.920	1.84	2.76
S5	Dried residue	0.920	0.102	1.02
S6	Purified carbon dots	0.100	0.300	0.400

Table S7 Mass balance of carbon dots production from RAW lignin

 Table S8 Mass balance of carbon dots production from MODIFIED lignin

Stream	Description	Solid	Solvent	Total
A1. Water	Feed	0.000	0.147	0.147
A1. Lignin	Feed	0.0834	0.0000	0.0834
A1. Ethylenediamine	Feed	0.0425	0.0000	0.0425
A1. Formaldehyde	Feed	0.0212	0.0361	0.0574
A2	Modified lignin slurry	0.147	0.333	0.481
A3. Ethylenediamine	Recovered ethylenediamine	0.0109	0.0000	0.0109
A3. Formaldehyde	Recovered formaldehyde	0.00545	0.00000	0.00545
A3. Water	Recovered water	0.000	0.186	0.186
S1 Lignin	Modified lignin	0.147	0.147	0.294
S1 Water	Water added	0.000	3.53	3.53
S2	Products to filter	0.147	3.53	3.68
S3	Filtered carbon dots solution	0.100	3.44	3.54
S4	Wet residue	0.0471	0.0941	0.141
S5	Dried residue	0.0471	0.0052	0.0523
S6	Purified carbon dots	0.100	0.300	0.400

Capital Investment Cost						
Items	Cost (USD)	Descriptions				
I. Direct Costs	21487288					
A. Equipment Installation	16068754					
1. Purchased Equipment	4671150					
2. Installation	1868460	40% Purchased Equipment				
3. Instrumentation and Controls	840806.9	18% Purchased Equipment				
4. Piping	2102017	45% Purchased Equipment				
5. Electrical	1167787	25% Purchased Equipment				
B. Buildings, Process and Auxiliary	1868460	40% Purchased Equipment				
C. Service Facilities and Yard Improvements	3269805	70% Purchased Equipment				
D. Land	280269	6% Purchased Equipment				
II. Indirect Costs	7677294					
A. Engineering and Supervision	2410313	15% Direct Costs				
B. Construction Expense and Contractor's Fee	2892376	18% Direct Costs				
C. Contingency	2374605	10% Fixed-Capital Investment				
III. Fixed-Capital Investment	23746048	Direct Costs + Indirect Costs				
IV. Working Capital	4190479	15% Total Capital Investment				
V. Total Capital Investment	27936527					

 Table S9 Estimation of capital investment cost of carbon dots production from RAW lignin

Capital Investment Cost						
Items	Cost (USD)	Descriptions				
I. Direct Costs	7428407					
A. Equipment Installation	4923479					
1. Purchased Equipment	2159421					
2. Installation	863768	40% Purchased Equipment				
3. Instrumentation and Controls	388696	18% Purchased Equipment				
4. Piping	971739	45% Purchased Equipment				
5. Electrical	539855	25% Purchased Equipment				
B. Buildings, Process and Auxiliary	863768	40% Purchased Equipment				
C. Service Facilities and Yard Improvements	1511594	70% Purchased Equipment				
D. Land	129565	6% Purchased Equipment				
II. Indirect Costs	3549128					
A. Engineering and Supervision	1114261	15% Direct Costs				
B. Construction Expense and Contractor's Fee	1337113	18% Direct Costs				
C. Contingency	1097753	10% Fixed-Capital Investment				
III. Fixed-Capital Investment	10977534	Direct Costs + Indirect Costs				
IV. Working Capital	1937212	15% Total Capital Investment				
V. Total Capital Investment	12914746					

 Table S10 Estimation of capital investment cost of carbon dots production from MODIFIED lignin

References

- 1. Xue, B., Y. Yang, Y. Sun, J. Fan, X. Li, and Z. Zhang, Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. Int. J. Biol. Sci. 2019, 122: 954-61. DOI: 10.1016/j.ijbiomac.2018.11.018.
- Ding, Z., F. Li, J. Wen, X. Wang, and R. Sun, Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chem. 2018, 20(6): 1383-90. DOI: 10.1039/C7GC03218H.
- Chen, W., C. Hu, Y. Yang, J. Cui, and Y. Liu, Rapid synthesis of carbon dots by hydrothermal treatment of lignin. Materials 2016, 9(3): 184. DOI: 10.3390/ma9030184.
- Zhang, B., Y. Liu, M. Ren, W. Li, X. Zhang, R. Vajtai, P.M. Ajayan, J.M. Tour, and L. Wang, Sustainable synthesis of bright green fluorescent nitrogen-doped carbon quantum dots from alkali lignin. ChemSusChem 2019, 12(18): 4202-10. DOI: 10.1002/cssc.201901693.
- Niu, N., Z. Ma, F. He, S. Li, J. Li, S. Liu, and P. Yang, Preparation of Carbon Dots for Cellular Imaging by the Molecular Aggregation of Cellulolytic Enzyme Lignin. Langmuir 2017, 33(23): 5786-95. DOI: 10.1021/acs.langmuir.7b00617.
- Yang, X., Y. Guo, S. Liang, S. Hou, T. Chu, J. Ma, X. Chen, J. Zhou, and R. Sun, Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment. J. Mater. Chem. B 2020, 8(47): 10788-96. DOI: 10.1039/D0TB00125B.
- Jiang, X., Y. Shi, X. Liu, M. Wang, P. Song, F. Xu, and X. Zhang, Synthesis of Nitrogen-Doped Lignin/DES Carbon Quantum Dots as a Fluorescent Probe for the Detection of Fe3+ Ions. Polymers 2018, 10(11): 1282. DOI: 10.3390/polym10111282.
- Shi, Y., X. Liu, M. Wang, J. Huang, X. Jiang, J. Pang, F. Xu, and X. Zhang, Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging. Int. J. Biol. Sci. 2019, 128: 537-45. DOI: 10.1016/j.ijbiomac.2019.01.146.
- 9. Li, Y., J. Ren, R. Sun, and X. Wang, Fluorescent lignin carbon dots for reversible responses to high-valence metal ions and its bioapplications. J. Biomed. Nanotechnol. 2018, 14(9): 1543-55. DOI: 10.1166/jbn.2018.2610.
- Gao, X., X. Zhou, Y. Ma, T. Qian, C. Wang, and F. Chu, Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the "on-off-on" fluorescence principle. Appl. Surf. Sci. 2019, 469: 911-16. DOI: 10.1016/j.apsusc.2018.11.095.
- Xu, L., W. Mao, J. Huang, S. Li, K. Huang, M. Li, J. Xia, and Q. Chen, Economical, green route to highly fluorescence intensity carbon materials based on ligninsulfonate/graphene quantum dots composites: Application as excellent fluorescent sensing platform for detection of Fe3+ ions. Sensors and Actuators B: Chemical 2016, 230: 54-60. DOI: 10.1016/j.snb.2015.12.043.
- Myint, A.A., W.-K. Rhim, J.-M. Nam, J. Kim, and Y.-W. Lee, Water-soluble, lignin-derived carbon dots with high fluorescent emissions and their applications in bioimaging. Journal of Industrial and Engineering Chemistry 2018, 66: 387-95. DOI: 10.1016/j.jiec.2018.06.005.
- Rai, S., B.K. Singh, P. Bhartiya, A. Singh, H. Kumar, P.K. Dutta, and G.K. Mehrotra, Lignin derived reduced fluorescence carbon dots with theranostic approaches: Nano-drug-carrier and bioimaging. J. Lumin. 2017, 190: 492-503. DOI: 10.1016/j.jlumin.2017.06.008.
- Sun, L., Z. Mo, Q. Li, D. Zheng, X. Qiu, and X. Pan, Facile synthesis and performance of pH/temperature dualresponse hydrogel containing lignin-based carbon dots. Int. J. Biol. Sci. 2021, 175: 516-25. DOI: 10.1016/j.ijbiomac.2021.02.049.
- Zhao, Y., S. Jing, X. Peng, Z. Chen, Y. Hu, H. Zhuo, R. Sun, and L. Zhong, Synthesizing green carbon dots with exceptionally high yield from biomass hydrothermal carbon. Cellulose 2020, 27(1): 415-28. DOI: 10.1007/s10570-019-02807-0.
- 16. Rodríguez-Padrón, D., M. Algarra, L.A.C. Tarelho, J. Frade, A. Franco, G. de Miguel, J. Jiménez, E. Rodríguez-

Castellón, and R. Luque, Catalyzed microwave-assisted preparation of carbon quantum dots from lignocellulosic residues. ACS Sustainable Chem. Eng. 2018, 6(6): 7200-05. DOI: 10.1021/acssuschemeng.7b03848.

- Zhao, S., X. Song, X. Chai, P. Zhao, H. He, and Z. Liu, Green production of fluorescent carbon quantum dots based on pine wood and its application in the detection of Fe3+. J. Clean. Prod. 2020, 263: 121561. DOI: 10.1016/j.jclepro.2020.121561.
- Alam, A.-M., B.-Y. Park, Z.K. Ghouri, M. Park, and H.-Y. Kim, Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: Excellent imaging agent for biomedical applications. Green Chem. 2015, 17(7): 3791-97. DOI: 10.1039/C5GC00686D.
- 19. Su, H., Z. Bi, Y. Ni, and L. Yan, One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution. Energy Environ. Sci. 2019, 4(4): 391-99. DOI: 10.1016/j.gee.2019.01.009.
- Liu, Y., C. Zhu, Y. Gao, L. Yang, J. Xu, X. Zhang, C. Lu, Y. Wang, and Y. Zhu, Biomass-derived nitrogen self-doped carbon dots via a simple one-pot method: Physicochemical, structural, and luminescence properties. Appl. Surf. Sci. 2020, 510: 145437. DOI: 10.1016/j.apsusc.2020.145437.
- Joseph, J. and A.A. Anappara, Microwave-assisted hydrothermal synthesis of UV-emitting carbon dots from tannic acid. New J. Chem. 2016, 40(9): 8110-17. DOI: 10.1039/C6NJ02107G.