Supplementary materials

## A functional deep eutectic solvent for lignocellulose valorization via lignin stabilization and cellulose functionalization

Zhen Zhang, Pingli Lv, Hairui Ji\*, Xingxiang Ji, Zhongjian Tian, and Jiachuan Chen

## \*Corresponding author: jihairui@yeah.net

Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China.

## This document includes:

Fig. S1 The X-ray diffraction profiles of cellulose residues after pretreatment with different DES solutions (a) and pretreatment conditions (b).

Fig. S2 The density of different DES solution.

Fig. S3 The SEM images of fibers pretreated at 110 °C (a) and 130 °C (b).

Fig. S4 The original depolymerization images of MWL (a), GSL (b), and LAL (c).

Fig. S5 The size distribution of GSL nanoparticles.

Fig. S6 The AFM image of LNPs.

Table S1 The employed condition in pretreatment process.

Table S2 The main chemical components and solid yield of different pretreated samples.

Table S3 The viscosities of DES with different molar ratios at different temperatures.

Table S4 The physical morphology of collected fibers at various pretreatment conditions.

Table S5 The pretreatment condition used in enzymatic hydrosis process.

Table S6 The main cross-signals and corresponding groups of the benzene ring and side-chain.

Table S7 The quantification of the major inter-unit linkages in lignin by 2D HSQC NMR spectroscopy.

Table S8 The pretreatment condition used in preparation of lignin nanoparticles.

Table S9 The abbreviations used and their detailed explanations.

Movie S1 The SDF movie of GA and MOL.

Movie S2 The SDF movie of LA and MOL.



**Fig. S1** The X-ray diffraction profiles of cellulose residues after pretreatment with different DES solutions (a) and pretreatment conditions (b).



Fig. S2 The density of different DES solution.



Fig. S3 The SEM images of fibers pretreated at 110  $^{\circ}\mathrm{C}$  (a) and 130  $^{\circ}\mathrm{C}$  (b).



Fig. S4 The original depolymerization images of MWL (a), GSL (b), and LAL (c).



Fig. S5 The size distribution of GSL nanoparticles.



Fig. S6 The AFM image of LNPs.

| Sample   | Temperature (° C) | Molar ratio | Time (min) |
|----------|-------------------|-------------|------------|
| Original | /                 | /           | /          |
| T110     | 110               | ChCl:GA=1:2 | 60         |
| T120     | 120               | ChCl:GA=1:2 | 60         |
| T130     | 130               | ChCl:GA=1:2 | 60         |
| T140     | 140               | ChCl:GA=1:2 | 60         |
| 1:2      | 130               | ChCl:GA=1:2 | 60         |
| 1:3      | 130               | ChCl:GA=1:3 | 60         |
| 1:4      | 130               | ChCl:GA=1:4 | 60         |
| 1:5      | 130               | ChCl:GA=1:5 | 60         |
| ChCl:GA  | 130               | ChCl:GA=1:4 | 30         |
| ChCl:LA  | 130               | ChCl:LA=1:4 | 30         |
| 30 min   | 130               | ChCl:GA=1:4 | 30         |
| 60 min   | 130               | ChCl:GA=1:4 | 60         |
| 90 min   | 130               | ChCl:GA=1:4 | 90         |
| 120 min  | 130               | ChCl:GA=1:4 | 120        |

 Table S1 The employed condition in pretreatment process

| Sample   | Cellulose (%)    | Hemicellulose (%) | Lignin (%)     |
|----------|------------------|-------------------|----------------|
| Original | $43.20\pm1.96$   | $22.46\pm2.43$    | $21.53\pm2.05$ |
| T 110    | $35.76 \pm 1.27$ | $11.75\pm1.09$    | $17.34\pm1.92$ |
| T 120    | $34.61 \pm 1.41$ | $5.82\pm0.66$     | $8.28\pm0.96$  |
| T 130    | $34.50\pm1.78$   | $4.13\pm0.58$     | $4.32\pm0.49$  |
| T 140    | $34.14 \pm 1.06$ | $2.53\pm0.40$     | $1.49\pm0.26$  |
| 1:2      | $34.50\pm1.78$   | $4.13\pm0.58$     | $4.32\pm0.49$  |
| 1:3      | $33.88 \pm 0.99$ | $3.07\pm0.26$     | $2.03\pm0.34$  |
| 1:4      | $33.48 \pm 0.84$ | $2.86\pm0.31$     | $1.31\pm0.20$  |
| 1:5      | $31.97 \pm 1.03$ | $2.54\pm0.33$     | $0.96\pm0.16$  |
| ChCl:GA  | $33.71\pm1.00$   | $3.33\pm0.54$     | $2.15\pm0.35$  |
| ChCl:LA  | $34.38 \pm 1.26$ | $12.19\pm2.11$    | $15.36\pm1.80$ |
| 30 min   | $33.71\pm1.00$   | $3.33\pm0.54$     | $2.15\pm0.35$  |
| 60 min   | $33.48 \pm 0.84$ | $2.86\pm0.31$     | $1.31\pm0.20$  |
| 90 min   | $32.04\pm0.73$   | $2.46\pm0.41$     | $0.84\pm0.07$  |
| 120 min  | $29.59\pm0.80$   | $2.03\pm0.29$     | $0.41\pm0.06$  |

Table S2 The main chemical components and solid yield of different pretreated samples

| Molar ratio | Viscosity (mPa·s) | Temperature (° C) |
|-------------|-------------------|-------------------|
| ChCl:GA=1:2 | $2002\pm11$       | 20                |
| ChCl:GA=1:3 | $1550\pm20$       | 20                |
| ChCl:GA=1:4 | $1064\pm17$       | 20                |
| ChCl:GA=1:5 | $996\pm32$        | 20                |
| ChCl:GA=1:2 | $91\pm 8$         | 130               |
| ChCl:GA=1:3 | $75\pm3$          | 130               |
| ChCl:GA=1:4 | $54\pm1$          | 130               |
| ChCl:LA=1:5 | $49\pm2$          | 130               |

Table S3 The viscosities of DES with different molar ratios at different temperatures

| Sample  | Length (mm)   | Width (um)     |
|---------|---------------|----------------|
| T 110   | $0.48\pm0.06$ | $44.90\pm0.71$ |
| T 120   | $0.36\pm0.02$ | $28.95\pm0.05$ |
| T 130   | $0.35\pm0.01$ | $25.30\pm0.20$ |
| T 140   | $0.37\pm0.04$ | $25.10\pm0.20$ |
| 1:2     | $0.35\pm0.01$ | $25.30\pm0.20$ |
| 1:3     | $0.35\pm0.01$ | $25.40\pm0.08$ |
| 1:4     | $0.39\pm0.05$ | $25.38\pm0.25$ |
| 1:5     | $0.40\pm0.09$ | $25.50\pm0.16$ |
| ChCl:GA | $0.36\pm0.01$ | $25.28\pm0.04$ |
| ChCl:LA | $0.59\pm0.07$ | $40.00\pm1.85$ |
| 30 min  | $0.36\pm0.01$ | $25.28\pm0.04$ |
| 60 min  | $0.39\pm0.05$ | $25.38\pm0.25$ |
| 90 min  | $0.38\pm0.02$ | $25.50\pm0.16$ |
| 120 min | $0.36\pm0.01$ | $25.10\pm0.14$ |

Table S4 The physical morphology of collected fibers at various pretreatment conditions

| Sample  | Temperature (° C) | Molar ratio | Time (min) |
|---------|-------------------|-------------|------------|
| T110-GA | 110               | ChCl:GA=1:4 | 30         |
| T120-GA | 120               | ChCl:GA=1:4 | 30         |
| T130-GA | 130               | ChCl:GA=1:4 | 30         |
| T130-LA | 130               | ChCl:LA=1:4 | 30         |

 Table S5 The pretreatment condition used in enzymatic hydrosis process

| Label             | $\delta_C/\delta_H$ (ppm) | Assignment                                                                                   |
|-------------------|---------------------------|----------------------------------------------------------------------------------------------|
| $GA_1$            | 96.0/5.11                 | 1,3-dioxane (acetal) structure                                                               |
| GAα               | 82.0/4.63                 | Cα-Hα in stable lignin structure                                                             |
| GAβ               | 73.5/4.30~4.40            | $C_{\beta}$ -H <sub><math>\beta</math></sub> in stable lignin structure                      |
| GAγ               | 67.0/3.82                 | Cγ-Hγ in stable lignin structure                                                             |
| Αα                | 72.1/4.88                 | Ca-Ha in $\beta$ -O-4'substructures (A)                                                      |
| Αγ                | 60.0/3.72                 | C $\gamma$ -H $\gamma$ in $\beta$ -O-4'substructures (A)                                     |
| A′γ               | 63.5/4.25                 | C $\gamma$ -H $\gamma$ in $\gamma$ -acylated $\beta$ -O-4'substructures (A')                 |
| $A\beta(G)$       | 84.1/4.35                 | $C_{\beta}$ -H <sub><math>\beta</math></sub> in $\beta$ -O-4' linked to G unit (A)           |
| $A\beta(S)$       | 87.0/4.13                 | $C_{\beta}$ -H <sub><math>\beta</math></sub> in $\beta$ -O-4' linked to S unit (A)           |
| Βα                | 85.2/4.69                 | $C\alpha$ -H $\alpha$ in phenylcoumaran substructures (B)                                    |
| Βγ                | 71.9/3.87~4.21            | $C\gamma$ -H $\gamma$ in phenylcoumaran substructures (B)                                    |
| Сβ                | 53.8/3.08                 | $C_{\beta}$ -H <sub><math>\beta</math></sub> in $\beta$ - $\beta$ 'resinol substructures (C) |
| Сү                | 62.8/3.85                 | C $\gamma$ -H $\gamma$ in $\beta$ - $\beta$ 'resinol substructures (C)                       |
| -OCH <sub>3</sub> | 56.1/3.76                 | C-H in methoxyls                                                                             |
| S <sub>2,6</sub>  | 104.2/6.72                | C <sub>2,6</sub> -H <sub>2,6</sub> in syringyl units (S)                                     |
| $G_2$             | 111.1/6.95                | C <sub>2</sub> -H <sub>2</sub> in guaiacyl units (G)                                         |
| $G_5$             | 116.1/6.81                | C <sub>5</sub> -H <sub>5</sub> in guaiacyl units (G)                                         |
| $G_6$             | 119.5/6.82                | $C_6$ -H <sub>6</sub> in guaiacyl units (G)                                                  |
| PCA 2,6           | 130.8/7.50                | C <sub>2,6</sub> -H <sub>2,6</sub> in p-coumaric acid (PCA)                                  |
| PB <sub>2,6</sub> | 131.1/7.57                | C <sub>2,6</sub> -H <sub>2,6</sub> in p-benzoate (PB)                                        |

 Table S6 The main cross-signals and corresponding groups of the benzene ring and side-chain

| Sample | β-Ο-4  | β-5    | β-β    | S/G  |  |
|--------|--------|--------|--------|------|--|
| MWL    | 85.57% | 10.80% | 3.63%  | 3.50 |  |
| GSL    | 69.39% | 14.83% | 15.78% | 2.40 |  |
| LAL    | 74.64% | 21.10% | 4.26%  | 3.61 |  |

 Table S7 The quantification of the major inter-unit linkages in lignin by 2D HSQC NMR spectroscopy

| Sample | Temperature (° C) | Molar ratio | Time (min) |
|--------|-------------------|-------------|------------|
| T110   | 110               | ChCl:GA=1:4 | 30         |
| T120   | 120               | ChCl:GA=1:4 | 30         |
| T130   | 130               | ChCl:GA=1:4 | 30         |
| T140   | 140               | ChCl:GA=1:4 | 30         |

 Table S8 The pretreatment condition used in preparation of lignin nanoparticles

| Abbreviation | Explanation                                                                                                                          |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|
| DES          | Deep Eutectic Solvent                                                                                                                |
| ChCl         | Choline Chloride                                                                                                                     |
| GA           | Glyoxylic Acid                                                                                                                       |
| LA           | Lactic Acid                                                                                                                          |
| ChCl:GA DES  | the DES composed of ChCl and GA                                                                                                      |
| ChCl:LA DES  | the DES composed of ChCl and LA                                                                                                      |
| LNPs         | Lignin Nanoparticles                                                                                                                 |
| SPF          | Sun Protection Factor                                                                                                                |
| T130M1:4t30  | the pretreatment was carried out under the conditions of 130 ° C, a molar ratio of ChCl:GA of 1:4, and a pretreatment time of 30 min |
| MWL          | Milled Wood Lignin                                                                                                                   |
| GSL          | the Extracted Lignin with ChCl:GA DES                                                                                                |
| LAL          | the Extracted Lignin with ChCl:LA DES                                                                                                |

Table S9 The abbreviations used and their detailed explanations



Movie S1 The SDF movie of GA and MOL.



Movie S2 The SDF movie of LA and MOL.