Saponin: A Green and Efficient Natural Surfactant for Suzuki-Miyaura Cross-Couplings of Heteroaryl Substrates in Aqueous Media at Ambient Conditions.

Vinothkumar Vinayagam,* Subir Kumar Sadhukhan, Sreenivasa Reddy Kasu, Ravi Kumar Maroju, Tanguturi Venkatanarayana Hajay Kumar, Satish Kumar Karre, Dhurwasulu Baledi

^aMedicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN park, Genome Valley, Turkapally, Hyderabad, India - 500078.

Email: <u>VinothKumar.Vinayagam@curiaglobal.com</u>, <u>vinothkv4@gmail.com</u>

Supporting Information

S. No	Title	Page No.
1	General Information	S2
2	List of Suzuki-Miyaura Cross-Coupling products	S3
3	Optimization of the amount of saponin	S5
4	The general procedure A and B of SMC reactions	S6
5	Saponin isolation from Indian soapberry nuts	S7
6	Scale-up reactions	S8-S11
7	SEM, ELD, and DLS Spectras	S12-S19
8	Spectral data (¹ H, ¹³ C, and ¹⁹ F-NMR) of SMC products $(3a - 3u, 4a - 4h, 5a - 5k, 6a - 6g)$	S20-S42
9	Scanned copy of spectra's (¹ H, ¹³ C, and ¹⁹ F-NMR) of SMC products $(3a - 3u, 4a - 4h, 5a - 5k, 6a - 6g)$	S43-S97
10	ICP-MS spectra of compounds 3m , 4h , and 5a	S98-S100
11	References	S101-S102

1. General Information:

Safety Statement:

No unusual or unexpected safety hazards were encountered or observed during the entire course of experiments.

Reagents and Surfactants:

All the reagents and solvents used in this study were purchased from BLD Pharma, Sigma-Aldrich, Tokyo Chemical Industry Co., Ltd (TCI), and Combi-Blocks. All the aryl, heteroaryl halides, and aryl, heteroaryl boron reagents used for this study were purchased from BLD pharma, Combi-blocks, and TCI-Chemicals. For this study, we used saponin (cas no: 8047-15-2) obtained from four different sources, TCI-Chemicals (S0019), Sigma-Aldrich (from Quillaja bark (S7900), and purified from quillaja bark (S4521)), and Indian soapberry nuts purchased from local supermarket at Hyderabad in India. Pd-catalysts were purchased from BLD Pharma.

Chromatography:

TLC plates: TLC silica gel 60 F_{254} ; 25 Aluminium sheets purchased from Merck. The developed TLC plate was analysed by a UV lamp (254 nm). The TLC plates were further analyzed with the use of iodine, and an ethanolic phosphomolybdic acid stain with the help of a heat gun. Flash chromatography was performed by a combiflash column, and pre-packed silica gel (100–200 mesh and 230–400 mesh) was used for CombiFlash column chromatographic separations.

Analytical methods:

Nuclear Magnetic Resonance Spectroscopy (NMR), and Mass Spectrometry (MS):

All the ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃ or DMSO-*d6* with residual CHCl₃ (¹H = 7.26 ppm, ¹³C = 77.16 ppm) or DMSO-*d6* (¹H = 2.55 ppm, ¹³C = 40.46 ppm) as the internal standard. Deuterated solvents were purchased from Cambridge Isotope Laboratories. Chemical shifts are reported in parts per million (ppm). The data presented will be reported as follows; chemical shift, multiplicity in Hertz (Hz) (s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet, brs = broad singlet), coupling constant, and number of protons.

HRMS analysis (ESI-MS) mass spectral analysis was performed using Agilent Technologies 6540 UHD Accurate-mass Q-TOF LC/MS instrument.

Palladium residual assay was performed (ICP-MS method) using Agilent instrument, Model 7800.

All the reactions were monitored by Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) along with TLC analysis. The UPLC-MS analysis was performed using Waters: Acquity UPLC BEM 2.1×50 mµ C-18 column with acetonitrile/Water as a mobile system.

Scanning Electron Microscopy:

Instrument make: Joel; Model: JSM/7610F, compound with platinum coated.

Dynamic Light Scattering (DLS):

Instrument make: Malvern Instruments

2. List of Suzuki-Miyaura Cross-Coupling products

Scheme 1. SMC reaction of pyridyl boronic acids with heteroaryl bromides.

Scheme 2. SMC reaction of pyrimidine boronic acids with heteroaryl bromides.

Scheme 3. SMC reaction with 2-pyridyl boronic acid.^a

Scheme 4. SMC reaction of alkyl boronic acids with aryl halides.^a

3. Optimization of the amount of saponin

Table-S1:

Entry	Source of saponin	Saponin quantity	Yield (%) ^b
1	Saponin from Sigma Aldrich (purified from quillaja bark)	10 wt %; 300 mg	62 %
2	Saponin from Sigma Aldrich (purified from quillaja bark)	5 wt %; 150 mg	82 %
3	Saponin from Sigma Aldrich (purified from quillaja bark)	2 wt %; 60 mg	88 %
4	Saponin from Sigma Aldrich (purified from quillaja bark)	1 wt %; 30 mg	76 %
5	Saponin from Sigma Aldrich (purified from quillaja bark)	0.5 wt %; 15 mg	62 %

^aReaction conditions: **1a** (1.0 mmol), **2a** (1.2 mmol), PdCl₂(d*t*bpf) (5 mol %), TEA (3 equiv), Water (3.0 mL), saponin, rt, 2–6 h. ^bYields determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

4. The general procedure A and B of SMC reactions

General procedure-A: Suzuki-Miyaura Cross-Coupling

To a solution of heteroaryl bromide (1 mmol) **1a**, heteroaryl boronic acid (1.2 mmol, 1.2 equiv) **2a** in water (3.0 mL) was added TEA (0.42 mL, 3.0 mmol, 3.0 equiv) and saponin (60 mg) followed by $PdCl_2(dtbpf)$ (33 mg, 0.5 mmol, 5 mol %). The reaction mixture was stirred for 2-6 h at ambient temperature. After the completion of the reaction, as observed by thin-layer chromatography (TLC) and UPLC-MS analysis, the reaction mixture was diluted with water (10 mL), and EtOAc (20 mL) and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc (20 mL) and separated the organic layer. The aqueous layer was re-extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield the corresponding cross-coupling product.

General procedure-B: Suzuki-Miyaura Cross-Coupling for 2-pyridyl boronic acid

To a solution of heteroaryl bromide (1 mmol), saponin (80 mg) in water (3.0 mL)/THF (1.0 mL) was added K_3PO_4 (636 mg, 3.0 mmol, 3 equiv), Cu(I)Cl (99 mg, 1.0 mmol, 1 equiv) and XPhos-Pd-G₂ (39.5 mg, 0.5 mmol, 5 mol %) followed by 2-pyridyl boronic acid (2.0 mmol, 2.0 equiv) The reaction mixture was stirred for 16 h at ambient temperature. After the completion of the reaction, as observed by thin-layer chromatography (TLC) and UPLC-MS analysis, the reaction mixture was diluted with water (10 mL), and EtOAc (20 mL) and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc (20 mL) and separated the organic layer. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield the corresponding cross-coupling product.

5. Saponin isolated from Indian soapberry nuts:

The soapnut is an ancient Indian herb used in Ayurveda, its botanical Name is Sapindus trifoliatus and its family name is Sapindaceae.¹ A dry soapnut is easily available across India. The dried nut was grinded as a fine powder to get brown color crude saponins. The crude material 10 g was washed with EtOAc (100 mL) three times to remove some non-polar impurities (~1 g of non-polar impurities obtained). The crude powder was used directly for the reaction as a surfactant (Entry-4 in Table 1). Later, the material was extracted with methanol (100 mL) three times and obtained 3 g of light yellow powder of saponins. The methanolic extracted material was tested as a surfactant (Entry-5 in Table 1). The ¹H-NMR of the methanolic extracted saponin from Indian soapberry nuts and saponin purchased from TCI-Japan and Sigma Aldrich (USA) is almost similar.

- (A)Soapnut berries (B) powdered Soapnut berries/crude saponines (C) methanolic extracts of crude saponines.
- (a) Panda, A.; Kumar, A.; Mishra, S.; Mohapatra, S. S. Soapnut: A replacement of synthetic surfactant for cosmetic and biomedical applications. *Sustainable Chem. Pharm.* 2020, *17*, 100297. (b) Kommalapati, R. R.; Valsaraj, K. T.; Constant, W. D.; Roy, D. Soil flushing using colloidal gas aphron suspensions generated from a plantbased surfactant. *J. Hazard. Mater.* 1998, *60*, 73.

6. Scale-up reactions:

Scale-up reaction-I

Synthesis of 3-(benzo[b]thiophen-3-yl)quinoline (3m):

To a solution of 3-bromoquinoline **1m** (4.12 g, 20 mmol), benzo[b]thiophen-3-ylboronic acid **2m** (4.27 g, 24 mmol, 1.2 equiv) in water (60.0 mL) was added TEA (8.4 mL, 60 mmol, 3.0 equiv) and saponin (1.2 g) followed by $PdCl_2(dtbpf)$ (630 mg, 1.0 mmol, 5 mol %). The reaction mixture was stirred for 2 h at ambient temperature. After the completion of the reaction, as observed by thin-layer chromatography (TLC) and UPLC-MS analysis, the reaction mixture was diluted with water (100 mL), and EtOAc (200 mL) and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc (2×50 mL) and separated the organic layer. The aqueous layer was re-extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield **3-(benzo[b]thiophen-3-yl)quinoline (3m)** (4.35 g, 16.6 mmol) in 83 % yield as an off-white solid.

The residual palladium content of the above purified **3-(benzo[b]thiophen-3-yl)quinoline** (**3m**) was tested by IPC-MS analysis and found that 12.01 ppm Palladium is present in the material.

The same above reaction of synthesis of **3-(benzo[b]thiophen-3-yl)quinoline (3m)** was performed in a 5.0 mmol batch with a reduced amount of Pd-catalyst load 2.0 mol% of $PdCl_2(dtbpf)$. The reaction was completed in 4 h and provided the desired product (**3m**) (1.04 g, 4.0 mmol) in 80% yield after column chromatography.

Entry	Total material used	Mass of the total material used	Mass of the product	E-Factor
1	Aryl Bromide	4.12 g		
2	Boronic acid	4.27 g		15.08 ÷4.35
3	Pd-Catalyst	0.63 g	4.35 g	= 3.46
4	Triethyl amine	6.06 g		
Total mass used		15.08		

The E-factor was calculated for only reaction and not for workup and column chromatography. Water is a safe solvent and saponin is a natural biodegradable surfactant therefore the amount of water and saponin are not included during the calculation of the total mass used.

Scale-up reaction-II

Synthesis of 2,4-dimethoxy-5,5'-bipyrimidine (4h)

To a solution of 5-bromopyrimidine (2.4 g, 15 mmol), (2,4-dimethoxypyrimidin-5-yl)boronic acid (3.3 g, 18 mmol, 1.2 equiv) in water (45.0 mL) was added TEA (6.3 mL, 45 mmol, 3.0 equiv) and saponin (900 mg) followed by $PdCl_2(dtbpf)$ (475 mg, 0.75 mmol, 5 mol %). The reaction mixture was stirred for 10 h at ambient temperature. After the completion of the reaction, as observed by thin-layer chromatography (TLC) and UPLC-MS analysis, the reaction mixture was diluted with water (100 mL), and EtOAc (200 mL) and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc (2 × 50 mL) and separated the organic layer. The aqueous layer was re-extracted with EtOAc (3 × 100 mL). The

combined organic layers were washed with brine (100 mL), dried over anhydrous Na_2SO_4 , filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield **2,4-dimethoxy-5,5'-bipyrimidine (4h)** (2.5 g, 11.4 mmol) in 76 % yield as an off-white solid.

The residual palladium content of the above purified material **2,4-dimethoxy-5,5'- bipyrimidine (4h)** was 41.2 ppm which was determined by IPC-MS analysis.

The same above reaction of synthesis of **2,4-dimethoxy-5,5'-bipyrimidine (4h)** was performed in a 5.0 mmol batch with a reduced amount of Pd-catalyst load 2.0 mol% of PdCl₂(d*t*bpf). The reaction was completed in 16 h and provided the desired product (**4h**) (850 mg, 3.9 mmol) in 78% yield after column chromatography.

Scale-up reaction-III

Synthesis of 2-(4-(benzyloxy)phenyl)pyridine (5a):

To a solution of 1-(benzyloxy)-4-bromobenzene (2.6 g, 10 mmol, 1 equiv), saponin (800 mg) in water (30.0 mL)/THF (10.0 mL) was added K₃PO₄ (6.3 g, 30.0 mmol, 3 equiv), XPhos-Pd- G_2 (393 mg, 0.5 mmol, 5 mol %) followed by Cu(I)Cl (990 mg, 10 mmol, 1 equiv) and 2-pyridyl boronic acid (2.46 g, 20.0 mmol, 2.0 equiv). The reaction mixture was stirred for 16 h at ambient temperature. After 16 h, the reaction mixture was diluted with water (100 mL), and EtOAc (200 mL) and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc (100 mL) and separated the organic layer. The aqueous layer was extracted with EtOAc (3 × 100 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield the **2-(4-(benzyloxy)phenyl)pyridine (5a)** (1.43 g) in 54.8 % yield as an off-white solid along with unreacted bromo compound.

The above-purified compound **2-(4-(benzyloxy)phenyl)pyridine (5a)** was tested for its residual palladium content by ICP-MS analysis and found that 1.88 ppm amount of Palladium was present in the material.

3-(pyridin-2-yl)quinoline (5d)

To a solution of 3-bromoquinoline (1.3 g, 5.0 mmol, 1 equiv), saponin (400 mg) in water (15.0 mL)/THF (5.0 mL) was added K₃PO₄ (3.15 g, 15.0 mmol, 3 equiv), XPhos-Pd-G₂ (79 mg, 0.1 mmol, 2.0 mol %) followed by Cu(I)Cl (490 mg, 5 mmol, 1 equiv) and 2-pyridyl boronic acid (1.23 g, 10.0 mmol, 2.0 equiv). The reaction mixture was stirred for 16 h at ambient temperature. After 16 h, the reaction mixture was diluted with water (50 mL), and EtOAc (100 mL) and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc (100 mL) and separated the organic layer. The aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with brine (50 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield the **23-(pyridin-2-yl)quinoline (5d)** (830 mg, 3.2 mmol) in 64 % yield as an off-white solid along with unreacted bromo compound.

7. SEM, ELD, and DLS Spectras

Field Emission Scanning Electron Microscopy (FE-SEM) of Saponin/Sigma

Aldrich (cas no: 8047-15-2) Product code: S4521

Energy Dispersive Spectroscopy (EDS) of Saponin /Sigma Aldrich (cas no: 8047-15-2) Product code: S4521

Dynamic Light Scattering (DLS) of Saponin /Sigma Aldrich (cas no: 8047-15-2) Product code: S4521

Field Emission Scanning Electron Microscopy (FE-SEM) of Saponin in water

Sample preparation: 60 mg of Saponin (Sigma Aldrich (cas no: 8047-15-2) Product code: S4521) dissolved in 3 mL of DI water (Note: The saponin dissolved immediately and provided clear light brown color solution) and stirred for 5 minutes followed by lyophilization to get dry powder. This powder was used for FE-SEM, EDS, and DLS analysis to understand the effect of water.

Energy Dispersive Spectroscopy (EDS) of Saponin in water

Dynamic Light Scattering (DLS) of Saponin in water

Field Emission Scanning Electron Microscopy (FE-SEM) of Saponin and PdCl₂(d*t*bpf) in water

Sample preparation: 60 mg of Saponin and 33 mg of $PdCl_2(dtbpf)$ were dissolved in 3 mL of DI water (Note: after the addition of Pd-catalyst, the solution became unclear brown color) and stirred for 5 minutes followed by lyophilization to get dry powder. This powder was used for FE-SEM, EDS, and DLS analysis.

Energy Dispersive Spectroscopy (EDS) of Saponin and PdCl₂(dtbpf) in water

Dynamic Light Scattering (DLS) of Saponin and PdCl₂(dtbpf) in water

Field Emission Scanning Electron Microscopy (FE-SEM) of Saponin and XPhos-Pd-G2 in water

Sample preparation: 80 mg of Saponin and 39 mg of XPhos-Pd-G2 were dissolved in 3.0 mL of DI water and 1.0 mL of THF (Note: the mixture provided unclear solution) and stirred for 5 minutes followed by lyophilization to get dry powder. This powder was used for FE-SEM, EDS, and DLS analysis.

Energy Dispersive Spectroscopy (EDS) of Saponin and XPhos-Pd-G2 in water

Dynamic Light Scattering (DLS) of Saponin and XPhos-Pd-G2 in water

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	837.5	Peak 1:	564.6	80.0	115.6
Pdl:	0.660	Peak 2:	140.3	20.0	23.64
Intercept:	0.933	Peak 3:	0.000	0.0	0.000
Result quality :	Refer to quality	report			

8. Spectral data (¹H, ¹³C, and ¹⁹F-NMR) of SMC products (3a – 3u, 4a – 4h, 5a – 5k, 6a – 6g)

2-methoxy-3,3'-bipyridine (3a)¹

¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 1.6 Hz, 1H), 8.58 (dd, J = 5.2 Hz, J = 1.6 Hz, 1H), 8.20 (dd, J = 4.8 Hz, J = 1.6 Hz, 1H), 7.90 (dt, J = 4.8 Hz, J = 2.0 Hz, 1H), 7.62 (dd, J = 7.2 Hz, J = 2.0 Hz, 1H), 7.36-7.33 (m, 1H), 7.01 (dd, J = 7.2 Hz, J = 5.2 Hz, 1H), 3.98 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.9, 149.7, 148.3, 146.6, 138.4, 136.5, 132.5, 123.0, 121.0, 117.2, 53.5.

Yield: 166 mg; 90 %

Physical appearance: High viscous oil.

Rf: 0.3 (10 % EtOAc in hexanes).

6-methoxy-3,3'-bipyridine (3b)²

¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 1.6 Hz, 1H), 8.60 (dd, J = 4.8 Hz, 1.6 Hz, 1H), 8.39 (d, J = 2.0 Hz, 1H), 7.83 – 7.77 (m, 2H), 7.38 – 7.29 (m, 1H), 6.86 (dd, J = 8.4 Hz, 0.8 Hz, 1H), 4.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.1, 148.6, 147.8, 145.1, 137.3, 133.8, 133.5, 126.8, 123.6, 111.2, 53.6.

Yield: 160 mg; 86 %

Physical appearance: High viscous oil.

Rf: 0.3 (10 % EtOAc in hexanes).

3-chloro-2'-methoxy-5-(trifluoromethyl)-2,3'-bipyridine (3c)

¹H NMR (400 MHz, CDCl₃) δ 8.83 (dd, *J* = 2.0 Hz, 0.8 Hz, 1H), 8.69-8.68 (m, 1H), 8.05-8.03 (m, 2H), 6.86 (dd, *J* = 8.4 Hz, 0.8 Hz, 1H), 4.01 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.7, 148.2, 144.4 (dd, *J* = 79.0 Hz, *J* = 4.0 Hz), 139.6, 135.4 (q, *J* = 3.5 Hz), 130.0, 126.8 (d, *J* = 18.0 Hz), 126.2, 125.9 (q, *J* = 33.0 Hz), 122.6 (d, *J* = 271 Hz), 110.4, 53.7.

HRMS (ESI): *m/z* calculated for C₁₂H₉ClF₃N₂O: 289.0356; [M+H]⁺ found: 289.0358.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.25

Yield: 205 mg; 72 %

Physical appearance: High viscous oil.

Rf: 0.3 (10 % EtOAc in hexanes).

methyl 6'-isopropoxy-[2,3'-bipyridine]-5-carboxylate (3d)

¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, *J* = 2.0 Hz, 1H), 8.80 (d, *J* = 2.0 Hz, 1H), 8.33 – 8.27 (m, 2H), 7.73 (d, *J* = 8.4 Hz, 1H), 6.79 (d, *J* = 8.4 Hz, 1H), 5.38 (m, 1H), 3.97 (s, 3H), 1.38 (d, *J* = 6.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.8, 164.6, 158.7, 151.1, 146.4, 137.9, 137.5, 127.0, 123.9, 118.8, 111.7, 68.7, 52.4, 22.0.

HRMS (ESI): m/z calculated for C₁₅H₁₇N₂O₃: 273.1239; [M+H]⁺ found: 273.1241.

Yield: 200 mg; 74 %

Physical appearance: High viscous oil.

Rf: 0.25 (10 % EtOAc in hexanes).

6-methyl-2,4'-bipyridine (3e)³

¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, *J* = 4.4 Hz, *J* = 1.6 Hz, 2H), 7.88 (dd, *J* = 4.4 Hz, *J* = 1.6 Hz, 2H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 2.64 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.02, 154.0, 150.2, 146.7, 137.1, 123.3, 121.1, 117.9, 24.6.

Yield: 150 mg; 88 %

Physical appearance: High viscous oil.

Rf: 0.3 (85 % EtOAc in hexanes).

2'-fluoro-6-methyl-2,4'-bipyridine (3f)⁴

¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 5.2 Hz, 1H), 7.77-7.75 (m, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 7.6 Hz, 1H), 2.63 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.7 (d, *J* = 236 Hz), 159.1, 152.6 (d, *J* = 3.7 Hz), 152.4 (d, *J* = 8.1 Hz), 148.0 (d, *J* = 15.0 Hz), 137.2, 123.9, 118.9 (d, *J* = 4.0 Hz), 118.0, 106.9 (d, *J* = 39.0 Hz), 24.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -68.08

Yield: 165 mg; 88 %

Physical appearance: High viscous oil.

Rf: 0.3 (10 % EtOAc in hexanes).

2',6-dimethyl-2,4'-bipyridine (3g)

¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 5.2 Hz, 1H), 7.77 (s, 1H), 7.69-7.64 (m, 2H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.19-7.17 (m, 1H), 2.64 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 159.0, 158.9, 154.3, 149.5, 147.1, 137.1, 123.2, 120.7, 118.3, 118.0, 24.6, 24.5.

HRMS (ESI): *m/z* calculated for C₁₂H₁₃N₂: 185.1079; [M+H]⁺ found: 185.1102.

Yield: 168 mg; 92 %

Physical appearance: High viscous oil.

Rf: 0.3 (10 % EtOAc in hexanes).

3-chloro-6'-fluoro-5-(trifluoromethyl)-2,3'-bipyridine (3h)

¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, *J* = 1.2 Hz, 1H), 8.38 (d, *J* = 5.2 Hz, 1H), 8.11 (d, *J* = 1.2 Hz, 1H), 7.59 (dt, *J* = 5.2 Hz, 1.2 Hz, 1H), 7.35 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 163.7 (d, J = 237.0 Hz), 155.9, 149.5 (d, J = 8.1 Hz), 147.9 (d, J = 15.1 Hz), 144.6 (q, J = 38.0 Hz), 135.8 (q, J = 36.0 Hz), 130.5, 127.7 (q, J = 34.0 Hz), 122.3 (q, J = 271 Hz), 121.5 (d, J = 4.3 Hz), 110.2 (d, J = 39.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.39, -66.71

HRMS (ESI): *m/z* calculated for C₁₁H₆ClF₄N₂: 277.0156; [M+H]⁺ found: 277.0159.

Yield: 204 mg; 74 %

Physical appearance: High viscous oil.

Rf: 0.25 (10 % EtOAc in hexanes).

3-chloro-6'-methyl-5-(trifluoromethyl)-2,3'-bipyridine (3i)

¹H NMR (400 MHz, CDCl₃) δ 8.87 - 8.86 (m, 1H), 8.65 (d, *J* = 5.2 Hz, 1H), 8.08 (d, *J* = 1.2 Hz, 1H), 7.51 (s, 1H), 7.47 (dd, *J* = 5.2 Hz, 1.2 Hz 1H), 2.66 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.9, 157.6, 149.2, 144.6, 144.5 (q, *J* = 3.8 Hz), 135.5 (q, *J* = 3.5 Hz), 130.5, 127.1(q, *J* = 33.6 Hz), 123.1, 122.4 (q, *J* = 271 Hz), 120.7, 24.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.31

HRMS (ESI): *m/z* calculated for C₁₂H₉ClF₃N₂: 273.0406; [M+H]+ found: 273.0409.

Yield: 213 mg; 79 %

Physical appearance: High viscous oil.

Rf: 0.25 (10 % EtOAc in hexanes).

2-(2-methylpyridin-4-yl)pyrimidine (3j)

¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, J = 4.8 Hz, 2H), 8.66 (d, J = 5.2 Hz, 1H), 8.16 (d, J = 1.2 Hz, 1H), 8.09 (dd, J = 5.2 Hz, 1.2 Hz, 1H), 7.31 (t, J = 4.8 Hz, 1H), 2.67 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.0, 159.4, 157.5, 149.9, 145.1, 121.5, 120.5, 119.1, 24.6.

HRMS (ESI): m/z calculated for C₁₀H₁₀N₃: 172.0875; [M+H]⁺ found: 172.0874.

Yield: 139 mg; 82 %

Physical appearance: High viscous oil.

Rf: 0.2 (10 % EtOAc in hexanes).

5-(6-methoxypyridin-3-yl)pyrimidine (3k)

¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, *J* = 2.4 Hz, 1H), 8.76 (d, *J* = 4.8 Hz, 2H), 8.58 (dd, *J* = 8.8 Hz, 2.4 Hz, 1H), 7.16 (t, *J* = 4.8 Hz, 1H), 6.83 (dd, *J* = 8.8 Hz, 0.4 Hz, 1H), 4.02 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.7, 163.2, 157.2, 148.0, 138.2, 126.9, 118.9, 110.6, 53.8.

HRMS (ESI): m/z calculated for C₁₀H₉N₃O: 188.0824; [M+H]⁺ found: 188.0822.

Yield: 165 mg; 88 %

Physical appearance: High viscous oil.

Rf: 0.2 (10 % EtOAc in hexanes).

5-(6-methoxypyridin-3-yl)pyrimidine-2-carbonitrile (3l)

¹H NMR (400 MHz, CDCl₃) δ 9.01 (s, 2H), 8.45 (d, *J* = 2.8 Hz, 1H), 7.83 (dd, *J* = 8.8 Hz, 2.8 Hz, 1H), 6.94 (d, *J* = 8.8 Hz, 1H), 4.02 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.4, 155.0, 145.8, 143.4, 136.9, 133.7, 123.6, 115.7, 112,3, 54.0.

HRMS (ESI): *m/z* calculated for C₁₁H₉N₄O: 213.0776; [M+H]+ found: 213.0776.

Yield: 143 mg; 68 %

Physical appearance: High viscous oil.

Rf: 0.15 (10 % EtOAc in hexanes).

3-(benzo[b]thiophen-3-yl)quinoline (3m)

¹H NMR (400 MHz, CDCl₃) δ 9.16 (d, *J* = 2.0 Hz, 1H), 8.34 (d, *J* = 2.0 Hz, 1H), 8.18 (d, *J* = 8.4 Hz, 1H), 7.98 – 7.88 (m, 3H), 7.78 – 7.74 (m, 1H), 7.63 – 7.60 (m, 2H), 7.57 – 7.41 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 150.9, 147.4, 140.7, 137.7, 34.8, 134.4, 129.6, 129.4, 128.0, 127.9, 127.7, 127.2, 125.1, 124.86, 124.82, 123.1, 122.4.

HRMS (ESI): *m/z* calculated for C₁₇H₁₂NS: 262.069; [M+H]+ found: 262.0693.

Yield: 199 mg; 76 %

Physical appearance: off-white solid.

Rf: 0.3 (10 % EtOAc in hexanes).

methyl 6-(3,5-dimethylisoxazol-4-yl)nicotinate (3n)

¹H NMR (400 MHz, CDCl₃) δ 9.26 (dd, *J* = 2.0, 0.8 Hz, 1H), 8.33 (dd, *J* = 8.2 Hz, 2.0 Hz, 1H), 7.42 (dd, *J* = 8.2 Hz, 0.8 Hz, 1H), 3.98 (s, 3H), 2.63 (s, 3H), 2.47 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 165.6, 158.6, 154.7, 151.0, 137.6, 123.7, 121.8, 115.5, 52.4, 12.8, 11.8.

HRMS (ESI): m/z calculated for C₁₂H₁₃N₂O₃: 233.0926; [M+H]⁺ found: 233.0926.

Yield: 180 mg; 77 %

Physical appearance: off-white solid.

Rf: 0.25 (10 % EtOAc in hexanes).

5-(pyridin-3-yl) thiophene-2-carbaldehyde (30)⁵

¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.94 (d, *J* = 1.6 Hz, 1H), 8.62 (dd, *J* = 4.8 Hz, 1.6 Hz, 1H), 7.95-7.92 (m, 1H), 7.79 (d, *J* = 4.0 Hz, 1H), 7.47 (d, *J* = 4.0 Hz, 1H), 7.40-7.36 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 182.7, 150.2, 149.9, 147.2, 143.6, 137.2, 133.6, 129.1, 125.1, 123.8.

Yield: 156 mg; 84 %

Physical appearance: off-white solid.

Rf: 0.25 (10 % EtOAc in hexanes).

5-(3-chloro-5-(trifluoromethyl)pyridine-2-yl)thiophene-2-carbaldehyde (3p)

¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 8.79 (d, *J* = 0.8 Hz, 1H), 8.25 (d, *J* = 4.0 Hz, 1H), 8.04 (d, *J* = 0.8 Hz, 1H), 7.80 (d, *J* = 4.0 Hz, 1H),

¹³C NMR (100 MHz, CDCl₃) δ 183.3, 151.1, 149.0, 145.9, 144.2 (q, *J* = 8.0 Hz), 136.3 (q, *J* = 7.0 Hz), 135.9, 130.8, 128.7, 126.3(q, *J* = 68.0 Hz), 122.4 (q, *J* = 542.0 Hz), 121.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.31.

HRMS (ESI): *m/z* calculated for C₁₁H₆ClF₃NOS: 291.9811; [M+H]⁺ found: 291.9815.

Yield: 206 mg; 72 %

Physical appearance: Off-white semi-solid.

Rf: 0.2 (10 % EtOAc in hexanes).

5-(pyrimidine-5-yl)thiophene-2-carbaldehyde (3q)

¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 9.23 (s, 1H), 9.03 (s, 2H), 7.83 (d, *J* = 4.0 Hz, 1H), 7.52 (d, *J* = 4.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 177.8, 153.9, 149.2, 140.6, 135.9, 132.2, 122.8, 121.3.

HRMS (ESI): *m/z* calculated for C₉H₇N₂OS: 191.0279; [M+H]+ found: 191.0265.

Yield: 142 mg; 75 %

Physical appearance: Off-white solid.

Rf: 0.2 (10 % EtOAc in hexanes).

tert-butyl 2-(quinolin-3-yl)-1H-indole-1-carboxylate (3r)⁶

¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, *J* = 2.0 Hz, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 8.19 (d, *J* = 2.0 Hz, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.63 (m, 2H), 7.40 (m, 1H), 7.39 (m, 1H), 7.29 (m, 1H), 6.72 (m, 1H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 151.1, 150.0, 146.9, 137.5, 136.9, 134.1, 129.6, 129.3, 129.1, 128.4, 127.8, 127.4, 127.1, 125.0, 123.3, 120.7, 115.7, 111.8, 84.2, 27.7.

Yield: 286 mg; 84 %

Physical appearance: White solid.

Rf: 0.2 (10 % EtOAc in hexanes).

tert-butyl 2-(pyrimidin-5-yl)-1H-indole-1-carboxylate (3s)

¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.81 (s, 2H), 8.24 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.32 – 7.28 (m, 1H), 6.69 (s, 1H), 1.42 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 157.3, 156.0, 149.7, 137.6, 132.9, 129.4, 128.8, 125.5, 123.5, 120.9, 115.8, 112.5, 84.7, 27.8.

HRMS (ESI): *m/z* calculated for C₁₇H₁₈N₃O₂: 296.1399; [M+H]⁺ found: 296.1401.

Yield: 210 mg; 72 %

Physical appearance: High viscous oil.

Rf: 0.2 (10 % EtOAc in hexanes).

3-(benzofuran-2-yl)quinoline (3t)⁷

¹H NMR (400 MHz, CDCl₃) δ 9.34 (d, *J* = 2.4 Hz, 1H), 8.56 (d, *J* = 2.4 Hz, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 7.88 (dd, *J* = 8.0 Hz, 2.4 Hz, 1H), 7.72 – 7.69 (m, 1H), 7.65 – 7.61 (m, 1H), 7.57 – 7.47 (m, 2H), 7.35 – 7.25 (m, 2H), 7.24 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 155.4, 153.2, 147.6, 147.5, 130.7, 129.8, 129.4, 128.9, 128.2, 127.7, 127.4, 125.0, 123.7, 123.3, 121.3, 111.3, 103.0,

Yield: 190 mg; 78 %

Physical appearance: Off-white solid.

Rf: 0.2 (20 % EtOAc in hexanes).

4'-(benzyloxy)-2,6-difluoro-4-methoxy-1,1'-biphenyl (3u)

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.29 (m, 7H), 7.04 (d, *J* = 8.8 Hz, 2H), 6.53 (d, *J* = 8.8 Hz, 2H), 5.10 (s, 2H), 3.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.8 (d, *J* = 10.0 Hz), 158.5 (t, *J* = 14.1 Hz), 158.4, 157.3, 135.8, 130.4, 127.5, 126.9, 126.4, 120.6, 113.5, 109.5 (d, *J* = 19.4 Hz), 97.0 (d, *J* = 30.1 Hz), 97.0 (d, *J* = 11.9 Hz), 68.9, 54.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.79

HRMS (ESI): m/z calculated for C₂₀H₁₇F₂O₂: 327.1197; [M+H]⁺ found: 327.1206.

Yield: 282 mg; 86 %

Physical appearance: off-white solid.

Rf: 0.2 (20 % EtOAc in hexanes).

5-(3-chloro-5-(trifluoromethyl)pyridine-2-yl)-2-methoxy pyrimidine (4a)

¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 2H), 8.87 (d, *J* = 1.6 Hz, 1H), 8.07 (d, *J* = 1.6 Hz), 4.11 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.6, 160.0, 154.3, 144.7 (q, *J* = 8.0 Hz), 135.5 (q, *J* = 7.0 Hz), 130.2, 126.5 (q, *J* = 34.0 Hz), 124.7, 123.8, 55.4.

HRMS (ESI): *m/z* calculated for C₁₁H₈ClF₃N₃O: 290.0308; [M+H]⁺ found: 290.0311.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.28

Yield: 206 mg; 72 %

Physical appearance: High viscous oil.

Rf: 0.3 (20 % EtOAc in hexanes).

S32

2'-methoxy-2,5'-bipyrimidine (4b)⁸

¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 2H), 8.80 (d, *J* = 4.8 Hz, 2H), 7.24 (t, *J* = 4.8 Hz, 1H), 4.11 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.7, 161.3, 159.6, 157.4, 125.2, 119.6, 55.3.

Yield: 144 mg; 77 %

Physical appearance: Off-white solid.

Rf: 0.3 (15 % EtOAc in hexanes).

2-methoxy-5,5'-bipyrimidine (4c)

¹H NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 8.93 (s, 2H), 8.76 (s, 2H), 4.10 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.0, 158.3, 157.4, 154.4, 128.6, 122.0, 55.3.

HRMS (ESI): *m/z* calculated for C₉H₉N₄O: 189.0776; [M+H]⁺ found: 189.0771.

Yield: 152 mg; 81 %

Physical appearance: Semi-solid.

Rf: 0.3 (15 % EtOAc in hexanes).

2-methyl-5-(5-nitropyridin-2-yl)pyrimidine (4d)

¹H NMR (400 MHz, CDCl₃) δ 9.54 (d, *J* = 2.8 Hz, 1H), 9.33 (s, 2H), 8.62 (dd, *J* = 8.8 Hz, 2.8 Hz, 1H), 7.60 (d, *J* = 8.8 Hz, 1H), 2.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.0, 157.6, 155.8, 145.7, 143.5, 132.4, 127.4, 119.9, 26.1.

HRMS (ESI): *m/z* calculated for C₁₀H₉N₄O₂: 217.0726; [M+H]⁺ found: 217.0726.

Yield: 157 mg; 74 %

Physical appearance: High viscous oil.

Rf: 0.3 (20 % EtOAc in hexanes).

2-(2-methylpyrimidin-5-yl)nicotinaldehyde (4e)

¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 8.94 (dd, *J* = 4.8 Hz, 1.6 H, 1H), 8.90 (s, 2H), / integrate in spectra/ Ravi) 8.37 (dd, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.55 (dd, *J* = 7.6 Hz, 0.8 Hz, 1H), 2.86 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.8, 168.9, 157.6, 155.9, 154.1, 137.1, 129.9, 127.9, 123.6, 26.0.

HRMS (ESI): *m/z* calculated for C₁₁H₁₀N₃O: 200.0824; [M+H]⁺ found: 200.0823.

Yield: 125 mg; 63 %

Physical appearance: High viscous oil.

Rf: 0.3 (20 % EtOAc in hexanes).

3-(2-methylpyrimidin-5-yl)quinoline (4f)

¹H NMR (400 MHz, CDCl₃) δ 9.13 (d, *J* = 2.0 Hz, 1H), 8.99 (s, 2H), 8.34 (d, *J* = 2.0 Hz, 1H), 8.18 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.79 (m, 1H), 7.64 (m, 1H), 2.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 155.2, 148.6, 147.9, 133.6, 130.4, 129.4, 128.4, 128.0, 127.7, 127.6, 127.5, 25.8.

HRMS (ESI): m/z calculated for C₁₄H₁₁N₃: 222.1031; [M+H]⁺ found: 222.1033.

Yield: 179 mg; 80 %

Physical appearance: Light brown color solid.

Rf: 0.3 (20 % EtOAc in hexanes).

2,4-dimethoxy-5-(2-methoxypyridin-4-yl)pyrimidine (4g)

¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.20 (d, *J* = 5.6 Hz, 1H), 7.04 (dd, *J* = 5.6 Hz, 1.6 Hz, 1H), 6.92 (s, 1H), 4.05 (s, 6H), 3.98 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.1, 165.2, 164.5, 157.9, 146.9, 143.8, 116.6, 113.6, 110.2, 55.1, 54.3, 53.5.

HRMS (ESI): *m/z* calculated for C₁₂H₁₄N₃O₃: 248.1035; [M+H]⁺ found: 248.1038

Yield: 185 mg; 75 %

Physical appearance: Light brown color solid.

Rf: 0.3 (20 % EtOAc in hexanes).

2,4-dimethoxy-5,5'-bipyrimidine (4h)

¹H NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 8.91 (s, 2H), 8.33 (s, 1H), 4.07 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 165.6, 157.6, 157.5, 156.0, 127.6, 109.6, 55.2, 54.5

HRMS (ESI): *m/z* calculated for C₁₀H₁₁N₄O₂: 219.0882; [M+H]⁺ found: 219.0885.

Yield: 151 mg; 70 %

Physical appearance: off-white solid.

Rf: 0.3 (20 % EtOAc in hexanes).

2-(4-(benzyloxy)phenyl)pyridine (5a)9

¹H NMR (400 MHz, CDCl₃) δ 8.66 – 8.64 (m, 1H), 7.96 – 9.93 (m, 2H), 7.74 – 7.65 (m, 2H), 7.47 – 7.45 (m, 2H), 7.42 – 7.38 (m, 2H), 7.35 – 7.31 (m, 1H), 7.19 – 7.16 (m, 1H), 7.07 (d, *J* = 9.2 Hz, 2H), 5.14 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 158.6, 156.0, 148.5, 135.8, 135.6, 131.2, 127.6, 127.1, 127.0, 126.5, 120.4, 118.8, 114.0, 69.0.

Yield: 185 mg; 71 %

Physical appearance: off-white solid.

Rf: 0.3 (10 % EtOAc in hexanes).

4-(4-(pyridine-2-yl)phenyl)morpholine (5b)¹⁰

¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 4.8 Hz, 1H), 7.87 (d, J = 8.8 Hz, 2H), 7.63 – 7.58 (m, 2H), 7.09 – 7.06 (m, 1H), 6.92 (d, J = 8.8 Hz, 2H), 3.81 (t, J = 5.2 Hz, 4H), 3.17 (t, J = 5.2 Hz, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 156.1, 150.7, 148.5, 135.6, 129.6, 126.7, 120.2, 118.5, 114.2, 65.8, 47.7.

Yield: 148 mg; 62 %

Physical appearance: off-white solid.

Rf: 0.3 (10 % EtOAc in hexanes).

methyl 6-(pyridin-2-yl)-2-naphthoate (5c)

¹H NMR (400 MHz, CDCl₃) δ 8.71 – 8.69 (m, 1H), 8.57 (s, 1H), 8.45 (s, 1H), 8.14 (dd, *J* = 8.8 Hz, 1.6 Hz, 1H), 8.07 – 7.91 (m, 2H), 7.98 – 7.91 (m, 1H), 7.84 (dd, *J* = 8.0 Hz, 0.8 Hz, 1H), 7.78 – 7.74 (m, 1H), 7.25 – 7.22 (m, 1H), 3.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 156.8, 149.9, 138.9, 136.9, 135.6, 132.6, 130.8, 129.9, 128.9, 127.9, 126.1, 125.7, 125.4, 122.6, 121.0, 52.3.

HRMS (ESI): *m/z* calculated for C₁₇H₁₄NO₂: 264.1025; [M+H]⁺ found: 264.1028.

Yield: 173 mg; 67 %

Physical appearance: Off-white solid.

Rf: 0.3 (10 % EtOAc in hexanes).

3-(pyridin-2-yl)quinoline (5d)

¹H NMR (400 MHz, CDCl₃) δ 9.55 (d, *J* = 2.0 Hz, 1H), 8.79 – 8.78 (m, 2H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.95 – 7.90 (m, 2H), 7.85 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.76 (td, *J* = 7.2 Hz, 1.6 Hz, 1H), 7.60 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.36 – 7.34 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 154.8, 150.2, 149.3, 148.2, 137.1, 133.9, 131.9, 130.0, 129.2, 128.5, 127.9, 127.0, 122.8, 120.8.

HRMS (ESI): m/z calculated for C₁₄H₁₁N₂: 207.0922; [M+H]⁺ found: 207.0922.

Yield: 124 mg; 60 %

Physical appearance: Semi-solid.

Rf: 0.3 (10 % EtOAc in hexanes).

methyl [2,3'-bipyridine]-5'-carboxylate (5e)

¹H NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 9.27 (s, 1H), 8.90 (s, 1H), 8.76 (d, *J* = 4.4 Hz, 1H), 7.86 – 7.81 (m, 2H), 7.36 – 7.33 (m, 1H), 4.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.7, 153.7, 151.8, 150.8, 150.2, 137.2, 135.2, 134.7, 126.1, 123.3, 120.8, 52.5.

HRMS (ESI): m/z calculated for C₁₂H₁₁N₂O₂: 215.0821; [M+H]⁺ found: 215.0819.

Yield: 118 mg; 55 %

Physical appearance: off-white solid.

Rf: 0.3 (10 % EtOAc in hexanes).

6-(pyridin-2-yl)-1H-pyrrolo[3,2-b]pyridine (5f)

¹H NMR (400 MHz, CDCl₃) δ 11.53 (brs, 1H), 9.06 (brs, 1H), 8.69 – 8.67 (m, 1H), 8.41 (s, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.74 – 7.73 (m, 1H), 7.36 – 7.32 (m, 1H), 6.60 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 156.0, 150.1, 147.3, 141.9, 137.7, 131.3, 129.4, 127.9, 122.6, 120.6, 116.6, 102.2.

HRMS (ESI): m/z calculated for C₁₂H₁₀N₃: 196.0875; [M+H]⁺ found: 196.0873.

Yield: 114 mg; 59 %

Physical appearance: off-white Solid

Rf: 0.3 (10 % EtOAc in hexanes).

2'-methoxy-2,4'-bipyridine

¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 4.0 Hz, 1H), 8.26 (d, *J* = 5.2 H, 1H), 7.82 – 7.74 (m, 2H), 7.49 (dd, *J* = 5.2 Hz, 1.6 Hz, 1H), 7.34 – 7.31 (m, 2H), 3.99 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.0, 153.7, 148.9, 148.3, 146.4, 135.9, 122.7, 119.9, 113.6, 107.2, 52.6.

HRMS (ESI): *m/z* calculated for C₁₁H₁₁N₂O: 187.0871; [M+H]+ found: 187.0874.

Yield: 116 mg; 64 %

Physical appearance: Brown solid.

Rf: 0.3 (20 % EtOAc in hexanes).

5-(pyridin-2-yl)pyrimidine¹¹

¹H NMR (400 MHz, CDCl₃) δ 9.46 (s, 2H), 9.27 (s, 1H), 8.75 (m, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 8.01 – 7.97 (m, 1H), 7.53 – 7.48 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 158.9, 155.3, 151.7, 150.6, 138.1, 132.2, 124.5, 121.5.

Yield: 102 mg; 65 %

Physical appearance: Colorless gummy.

Rf: 0.3 (10 % EtOAc in hexanes).

2-(pyridin-2-yl)pyrazine¹²

¹H NMR (400 MHz, CDCl₃) δ 9.64 (d, J = 1.2 Hz, 1H), 8.73 (d, J = 4.4 Hz, 1H), 8.63 – 8.60 (m, 2H), 8.36 (d, J = 8.0 Hz, 1H), 7.88 -7.83 (m, 1H), 7.39 – 7.36 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 154.2, 151.1, 149.5, 144.5, 143.6, 143.4, 137.1, 124.5, 121.5.

Yield: 95 mg; 62 %

Physical appearance: Off-white solid.

Rf: 0.3 (10 % EtOAc in hexanes).

3-(6-chloropyridin-2-yl)quinoline¹³

¹H NMR (400 MHz, CDCl₃) δ 9.48 (d, *J* = 2.0 Hz, 1H), 8.83 (d, *J* = 2.0 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.85 – 7.62 (m, 3H), 7.62 – 7.60 (m, 1H), 7.37 – 7.35 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 155.5, 151.9, 148.8, 148.4, 139.6, 134.4, 130.4, 130.3, 129.3, 128.7, 127.7, 127.2, 123.4, 119.0.

Yield: 194 mg; 82 %

Physical appearance: Off-white solid.

Rf: 0.3 (10 % EtOAc in hexanes).

6-chloro-2,3'-bipyridine¹⁴

¹H NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 8.67 (d, *J* = 1.6 Hz, 1H), 8.36 – 8.33 (m, 1H), 7.79 – 7.68 (m, 2H), 7.42 – 7.40 (m, 1H), 7.33 (d, *J* = 8.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 155.4, 151.8, 150.5, 148.1, 139.6, 143.6, 133.4, 123.7, 123.4, 118.8.

Yield: 138 mg; 74 %

Physical appearance: Off-white solid.

Rf: 0.3 (10 % EtOAc in hexanes).

10.1-methoxy-4-phenethylbenzene (5g)¹⁵

¹H NMR (400 MHz, CDCl₃) δ 7.28-7.24 (m, 2H), 7.19-7.15 (m, 3H), 7.08 (d, *J* = 6.4 Hz, 2H), 6.81 (d, *J* = 6.4 Hz, 2H), 3.77 (s, 3H), 2.87-2.86 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 157.9, 141.9, 133.9, 129.4, 128.5, 128.3, 125.9, 113.8, 55.2, 38.2, 37.0.

Yield: 164 mg; 78 %

Physical appearance: Off-white solid.

Rf: 0.3 (10 % EtOAc in hexanes).

3-phenethylquinoline (6b)¹⁶

¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 2.0 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 2.0 Hz, 1H), 7.72 – 7.70 (m, 1H), 7.66 – 7.61 (m, 1H), 7.49 (m, 1H), 7.29 – 7.25 (m, 2H), 7.23 - 7.19 (m, 3H), 3.10 - 2.97 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 152.0, 146.9, 140.8, 134.5, 134.2, 129.2, 128.7, 128.5, 128.5, 128.1, 127.4, 126.6, 126.3, 37.5, 35.1.

Yield: 195 mg; 84 %

Physical appearance: colorless gum.

Rf: 0.3 (10 % EtOAc in hexanes).

3-chloro-2-phenethyl-5-(trifluoromethyl)pyridine

¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 1.6 Hz, 1H), 7.88 (d, *J* = 1.6 Hz, 1H), 7.32 – 7.22 (m, 5H), 3.30 (t, *J* = 8.0 Hz, 2H), 3.08 (t, *J* = 8.0 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.5, 143.9, 143.9 (q, *J* = 8.0 Hz), 140.9, 133.8 (q, *J* = 7.0 Hz), 131.3, 128.4 (d, *J* = 7.0 Hz), 126.8, 125.6 (q, *J* = 66.0 Hz), 122.8 (d, *J* = 272.0 Hz), 37.4, 33.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.16

HRMS (ESI): m/z calculated for C₁₄H₁₁ClF₃N: 286.061; [M+H]⁺ found: 286.0612.

Yield: 154 mg; 54 %

Physical appearance: Off-white solid.

Rf: 0.3 (10 % EtOAc in hexanes).

2-methoxy-5-phenethylpyrimidine (6d)

¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 2H), 7.28 (m, 2H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 2H), 3.97 (s, 3H), 2.89 (t, *J* = 5.6 Hz, 2H), 2.84 (t, *J* = 5.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 164.5, 158.9, 140.1, 128.6, 128.5, 127.3, 126.4, 54.8, 37.3, 31.2.

HRMS (ESI): *m/z* calculated for C₁₃H₁₄N₂O: 215.1184; [M+H]⁺ found: 215.1192.

Yield: 145 mg; 68 %

Physical appearance: Off-white solid

Rf: 0.3 (10 % EtOAc in hexanes).

4-(4-octylphenyl)morpholine

¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 8.4 Hz, 2H), 3,86 (t, *J* = 5.6 Hz, 4H), 3.12 (t, *J* = 5.6 Hz, 4H), 2,52 (t, *J* = 7.2 Hz, 2H), 1.60 – 1.55 (m, 2H), 1.29 – 1.21 (m, 10H), 0.88 (t, *J* = 4.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 149.3, 134.8, 129.1, 115.89, 67.0, 49.8, 35.0, 31.9, 31.7, 29.5, 29.35, 29.31, 22.7, 14.1.

HRMS (ESI): *m/z* calculated for C₁₈H₃₀NO: 276.2327; [M+H]⁺ found: 276.2332.

Yield: 170 mg; 62 %

Physical appearance: High viscous oil Naveen.

Rf: 0.4 (10 % EtOAc in hexanes).

2-methoxy-4-octylpyridine

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 5.2 Hz, 1H), 6.70 (dd, J = 5.2 Hz, 1.6 Hz, 1H), 6.55 (d, J = 1.6 Hz, 1H), 3.92 (s, 3H), 2,54 (t, J = 7.6 Hz, 2H), 1.63 – 1.55 (m, 2H), 1.29 – 1.24 (m, 10H), 0.87 (t, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.4, 154.7, 146.4, 117.6, 110.2, 53.3, 35.2, 31.8, 30.2, 29.4, 29.2, 29.1, 22.6, 14.1.

HRMS (ESI): m/z calculated for C₁₄H₂₄NO: 222.1858; [M+H]⁺ found: 222.1871.

Yield: 120 mg; 54 %

Physical appearance: colorless oil.

Rf: 0.4 (5 % EtOAc in hexanes).

5-isobutyl-2-methoxy pyrimidine (6g)

¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 2H), 3.99 (s, 3H), 2.40 (d, *J* = 7.2 Hz, 2H), 1.83 (m, 1H), 0.99 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 164.4, 159.3, 127.2, 54.7, 38.5, 29.8, 21.9.

HRMS (ESI): *m/z* calculated for C₉H₁₅N₂O: 167.1184; [M+H]⁺ found: 167.1185.

Yield: 75 mg; 45 %

Physical appearance: High viscous oil.

Rf: 0.3 (5 % EtOAc in hexanes).

9. Scanned copy of spectra's (¹H, ¹³C, and ¹⁹F-NMR) of SMC products (3a – 3u, 4a – 4h, 5a – 5i, 6a – 6g)

¹H and ¹³C NMR of Compound 3b

¹H, ¹³C, and ¹⁹F-NMR of Compound 3c

-62.25

¹H and ¹³C NMR of Compound 3d

¹H, ¹³C, and ¹⁹F-NMR of Compound 3f

¹⁹F NMR in CDCl₃ 376 MHz 3f

-68.08

¹H and ¹³C NMR of Compound 3g

¹H, ¹³C, and ¹⁹F-NMR of Compound 3h

8.897 8.894 8.894 8.391 8.378 8.115 7.609 7.609 7.609 7.5956 7.5956 7.5956 7.5956 7.5956 7.5956 7.5956

¹H, ¹³C, and ¹⁹F-NMR of Compound 3i

¹⁹F NMR in CDCl₃ 376 MHz 3i

-62.31

¹H and ¹³C NMR of Compound 3j

¹H and ¹³C NMR of Compound 3m

¹H and ¹³C NMR of Compound 3n

¹H and ¹³C NMR of Compound 30

9.924 9.924 9.945 9.631 9.631 9.632 9.732 9.

¹H, ¹³C, and ¹⁹F-NMR of Compound 3p

S65

¹H and ¹³C NMR of Compound 3q

¹H NMR in CDCl₃ 400 MHz 3q

¹H and ¹³C NMR of Compound 3r

¹H and ¹³C NMR of Compound 3t

¹H, ¹³C, and ¹⁹F-NMR of Compound 3u

¹⁹F NMR in CDCl₃ 376 MHz 3u

¹H, ¹³C, and ¹⁹F-NMR of Compound 4a

-200

¹H and ¹³C NMR of Compound 4b

¹H and ¹³C NMR of Compound 4c

9.283

¹H and ¹³C NMR of Compound 4f

¹H and ¹³C NMR of Compound 4g

ppm

¹H and ¹³C NMR of Compound 5a

¹H and ¹³C NMR of Compound 5b

¹H and ¹³C NMR of Compound 5c

¹H and ¹³C NMR of Compound 5d

¹H NMR in CDCl₃ 400 MHz 5d

¹H and ¹³C NMR of Compound 5e

¹H and ¹³C NMR of Compound 5f

¹H and ¹³C NMR of Compound 5g

¹H and ¹³C NMR of Compound 5h

¹H and ¹³C NMR of Compound 5i

¹H and ¹³C NMR of Compound 5j

¹H and ¹³C NMR of Compound 5k

¹H and ¹³C NMR of Compound 6a

¹H and ¹³C NMR of Compound 6b

¹H, ¹³C, and ¹⁹F-NMR of Compound 6c

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 ppm

10. IPC-MS spectra for Pd-content:

IPC-MS spectra of compound-3m

First	Source	TEST R	EPORT	FirstSource Labor (Analytical Service	atory Solutions LLI s)
Committe	ted to Quality				
REPORT N	IO: FSLS(AS)-5231523001		I	DATE OF ISSUANCE OF	REPORT: 27/12/2023
JOB REGIS	STRATION NO: FSLS(AS)-523152	3		SAMPLE ID:	FSLS(AS)-5231523001
CUSTOME	R DETAILS:		SAMPLE DETAILS:		
ISSUED TO):		NAME OF SAMPLE	: IN-BDS	5-G-32
M/s Curia	a India Pvt.Ltd		BRAND/ GRADE/ VA BATCH NO/ LOT NO	CODE : IN-BDS	-G-32
			DATE OF MANUFAC	TURING : NA	
ADDRESS:			DATE OF EXPIRY	: NA	
Thurkapal	lly, Shameerpet		QUANTITY OF SAMI	PLE RECEIVED : "1.0 g >	(1 No
Genome v	alley,RR District		MODE OF PACKING	: Packed	a in sealed vial
nyuerabat	u- 500078.		ANY OTHER INFORM	ATION : NA	
		SAMPLE NOT DR	AWN BY FSLS(AS)		
SAMPLE R	AILS AND RESULTS: EGISTRATION DATE: 22/12/202	3 ANALYSIS START	DATE: 26/12/2023	ANALYSIS COMPLET	ED DATE: 26/12/2023
S No.	TESTS	METH	IOD	UNIT	RESULT
3140	Delladium as Dd	ESIS(AS)/DB-STP-(MA VERSION:08	mg/kg (nnm)	12.01
Rema	 Samples tested on Receive Instrument used: ICP-MS (ppm: parts per million, mg The above reported result 	d Basis. Make: Agilent, Model :: milligram, kg: kilogra s are for R&D informa	: 7800). im, NA: Not Applica tion purpose only a	ble. nd not for any regulate	ory submission or QC rel
Rema	arks: 1) Samples tested on Receive 2) Instrument used: ICP-MS (3) ppm: parts per million, mg 4) The above reported results	ed Basis. Make: Agilent, Model :: milligram, kg: kilogra s are for R&D informa ****** End of	: 7800). am, NA: Not Applica tion purpose only a Report ****	ble. Ind not for any regulate	ory submission or QC rel
Rema	arks: 1) Samples tested on Receive 2) Instrument used: ICP-MS (3) ppm: parts per million, mg 4) The above reported results	ed Basis. Make: Agilent, Model :: milligram, kg: kilogra s are for R&D informa ***** End of	: 7800). am, NA: Not Applica tion purpose only a Report ****	ble. Ind not for any regulate	ory submission or QC rel e Laboratory Solution: (Analytical Sen
Rema	arks: 1) Samples tested on Receive 2) Instrument used: ICP-MS (3) ppm: parts per million, mg 4) The above reported results	Ad Basis. Make: Agilent, Model : milligram, kg: kilogra s are for R&D informa ***** End of Committee V	Report ****	ble. Ind not for any regulate For FirstSource (Sr.Ma	e Laboratory Solutions (Analytical Serv V Raju anager – Drugs & Phar
Rema	arks: 1) Samples tested on Receive 2) Instrument used: ICP-MS (3) ppm: parts per million, mg 4) The above reported result	ed Basis. Make: Agilent, Model : milligram, kg: kilogra s are for R&D informa ***** End of OMNICE Same Same Same Same Same Same Same Same	Report ****	ble. Ind not for any regulate	e Laboratory Solutions (Analytical Serv V Raju anager – Drugs & Phar Authorized Signatory

IPC-MS spectra of compound-4h

First	Source ory Solutions		TEST F	REPORT	(Analytical Service	s)
Committ	ed to Quality					
REPORT N	IO: FSLS(AS)-5231523	3002		C	ATE OF ISSUANCE OF	REPORT: 27/12/2023
JOB REGIS	STRATION NO: FSLS(/	AS)-523152	3		SAMPLE ID:	FSLS(AS)-5231523002
CUSTOME	R DETAILS:			SAMPLE DETAILS:		
ISSUED TO):			NAME OF SAMPLE	: IN-MR	K-F-100-5
M/s Curi	a India Pvt.Ltd			BRAND/ GRADE/ VA	CODE : IN-MRI	K-F-100-5
				DATE OF MANUFAC	TURING : NA	
ADDRESS:				DATE OF EXPIRY	: NA	1 No.
Thurkapally, Shameerpet			MODE OF PACKING	: Packed	d in sealed vial	
Hyderaba	d- 500078.			SEAL DETAILS	: Intact	
**				ANY OTHER INFORM	NATION : NA	
			SAMPLE NOT D	RAWN BY FSLS(AS)		
SAMPLE R	EGISTRATION DATE:	22/12/202	B ANALYSIS STAR	T DATE: 26/12/2023	ANALYSIS COMPLET	ED DATE: 26/12/2023
SNo	TESTS		ME	THOD	UNIT	RESULT
1	Palladium as l	Pd	FSLS(AS)/DP-STF	P-044, VERSION:08	mg/kg (ppm)	41.20
Rema	arks: 1) Samples tested 2) Instrument use 3) ppm: parts per	on Receive d: ICP-MS (million, mg	ed Basis. Make: Agilent, Mod :: milligram, kg: kilog	el: 7800). gram, NA: Not Applica	ble.	oru submission or OC rel
Rema	arks: 1) Samples tested 2) Instrument use 3) ppm: parts per 4) The above repo	on Receive d: ICP-MS (million, mg orted result	ed Basis. Make: Agilent, Mod :: milligram, kg: kilog s are for R&D inform	el: 7800). gram, NA: Not Applica nation purpose only a of Report ****	ble. nd not for any regulat	ory submission or QC rel
Rema	arks: 1) Samples tested 2) Instrument use 3) ppm: parts per 4) The above repo	on Receive d: ICP-MS (million, mg orted result	ed Basis. Make: Agilent, Mod primiligram, kg: kilog s are for R&D inform ***** End N 4h	el: 7800). gram, NA: Not Applica nation purpose only a of Report **** J	ble. nd not for any regulate	ce Laboratory Solution (Analytical Serv V Raju
Rema	arks: 1) Samples tested 2) Instrument use 3) ppm: parts per 4) The above repo	on Receive d: ICP-MS (million, mg orted result	ed Basis. Make: Agilent, Mod printing and kg: kilog s are for R&D inform ***** End N 4h	el: 7800). gram, NA: Not Applica nation purpose only a of Report **** J	ble. nd not for any regulation For FirstSource (Sr.M	ce Laboratory Solution (Analytical Ser V Raju anager – Drugs & Pha
Rema	arks: 1) Samples tested 2) Instrument use 3) ppm: parts per 4) The above repo 558658	on Received d: ICP-MS (million, mg orted result	ed Basis. Make: Agilent, Mod primiligram, kg: kilog s are for R&D inform ***** End N 4h Ah	el: 7800). gram, NA: Not Applica nation purpose only a of Report **** O	ble. nd not for any regulat	ce Laboratory Solutior (Analytical Serv V Raju anager – Drugs & Phai Authorized Signatory

IPC-MS spectra of compound-5a

First	Source	TEST REPORT	FirstSource Labor (Analytical Service	atory Solutions LL s)
Committ	ted to Quality			
REPORT N	IO: FSLS(AS)-5231523003		DATE OF ISSUANCE OF	REPORT: 27/12/2023
JOB REGIS	STRATION NO: FSLS(AS)-5231523		SAMPLE ID:	FSLS(AS)-5231523003
CUSTOME	R DETAILS:	SAMPLE DETAILS:	· IN-MR	K-G-116-1
M/S Curi): a India Pvt.Ltd	BRAND/ GRADE/ V/ BATCH NO/ LOT NO DATE OF MANUFAC	ARIETY : NA D/ CODE : IN-MRI CTURING : NA	K-G-116-1
ADDRESS: Thurkapal Genome v Hyderaba	: Ily, Shameerpet valley,RR District d- 500078.	DATE OF EXPIRY QUANTITY OF SAM MODE OF PACKING SEAL DETAILS ANY OTHER INFORM	: NA PLE RECEIVED : "1.0 g : ; : Packed : Intact MATION : NA	t 1 No I in sealed vial
		SAMPLE NOT DRAWN BY FSLS(AS)		
TEST DET/ SAMPLE R	AILS AND RESULTS: EGISTRATION DATE: 22/12/2023	ANALYSIS START DATE: 26/12/2023	ANALYSIS COMPLET	ED DATE: 26/12/2023
SNo	TESTS	METHOD	UNIT	RESULT
1 Rema	Palladium as Pd rks: 1) Samples tested on Received 2) Instrument used: ICP-MS (N	FSLS(AS)/DP-STP-044,VERSION:08	mg/kg (ppm)	1.88
1 Rema	Palladium as Pd Instrument used: ICP-MS (M ppm: parts per million, mg: The above reported results	FSLS(AS)/DP-STP-044, VERSION:08	mg/kg (ppm) able. and not for any regulate	1.88
1 Rema	Palladium as Pd II. Samples tested on Received 2) Instrument used: ICP-MS (M 3) ppm: parts per million, mg: 4) The above reported results	FSLS(AS)/DP-STP-044, VERSION:08 d Basis. Aake: Agilent, Model: 7800). milligram, kg: kilogram, NA: Not Applica are for R&D information purpose only a ***** End of Report **** OBIN 5a	mg/kg (ppm)	1.88
1 Rema	Palladium as Pd rrks: 1) Samples tested on Received 2) Instrument used: ICP-MS (M 3) ppm: parts per million, mg: 4) The above reported results	FSLS(AS)/DP-STP-044, VERSION:08	mg/kg (ppm) able. and not for any regulate	1.88 ory submission or QC re e Laboratory Solution (Analytical Ser
1 Rema	Palladium as Pd Instrument used: ICP-MS (M 3) ppm: parts per million, mg: 4) The above reported results	FSLS(AS)/DP-STP-044, VERSION:08 d Basis. Aake: Agilent, Model: 7800). milligram, kg: kilogram, NA: Not Applica are for R&D information purpose only a ***** End of Report **** OBn 5a	mg/kg (ppm) able. and not for any regulate	1.88 bry submission or QC re e Laboratory Solution (Analytical Ser V Raju

11. References:

- Pena, M. A.; Perez Sestelo, J.; Sarandeses, L. A. Palladium-Catalyzed Aryl– Aryl Cross-Coupling Reaction Using Ortho-Substituted Arylindium Reagents. J. Org. Chem. 2007, 72, 1271.
- Bhattacharjee, P.; Dewan, A.; Boruah, P. K.; Das, M. R.; Mahanta, S. P.; Thakur, A. J.; Bora, U. Bimetallic Pd–Ag nanoclusters decorated micro-cellulose bio-template towards efficient catalytic Suzuki–Miyaura coupling reaction of nitrogen-rich heterocycles. *Green Chem.* 2022, 24, 7208.
- Chen, W.; Chen, W.; Liu, M.; Wu, H. Construction of heterobiaryl skeletons through Pd-catalyzed cross-coupling of nitroarenes and heterocyclic arylborononate esters with a sterically demanding NHC ligand. *Org. Lett.* 2022, *24*, 6983.
- Horan, A. M.; Duong, V. K.; McGarrigle, E. M. Synthesis of Bis-heteroaryls Using Grignard Reagents and Pyridylsulfonium Salts. *Org. Lett.* 2021, 23, 9089.
- 5. Barder, T. E.; Buchwald, S. L. Efficient catalyst for the suzuki– miyaura coupling of potassium aryl trifluoroborates with aryl chlorides. *Org. Lett.* **2004**, *6*, 2649.
- Pena, M. A.; Perez Sestelo, J.; Sarandeses, L. A. Palladium-Catalyzed Aryl– Aryl Cross-Coupling Reaction Using ortho-Substituted Arylindium Reagents. *J. Org. Chem.* 2007, 72, 1271.
- Cervantes-Reyes, A.; Smith, A. C.; Chinigo, G. M.; Blakemore, D. C.; Szostak, M. Decarbonylative Pd-catalyzed Suzuki cross-coupling for the synthesis of structurally diverse heterobiaryls. *Org. Lett.* 2022, *24*, 1678.
- Saygili, N.; Batsanov, A. S.; Bryce, M. R. 5-Pyrimidylboronic acid and 2-methoxy-5pyrimidylboronic acid: new heteroarylpyrimidine derivatives via Suzuki crosscoupling reactions. *Org. Biomol. Chem.* 2004, *2*, 852.
- Lai, B.; Ye, M.; Liu, P.; Li, M.; Bai, R.; Gu, Y. A novel and robust heterogeneous Cu catalyst using modified lignosulfonate as support for the synthesis of nitrogencontaining heterocycles. *Beilstein J. Org. Chem.* 2020, *16*, 2888.
- Tobisu, M.; Yasutome, A.; Yamakawa, K.; Shimasaki, T.; Chatani, N. Ni(0)/NHCcatalyzed amination of N-heteroaryl methyl ethers through the cleavage of carbon–oxygen bonds. *Tetrahedron*, **2012**, *68*, 5157.
- 11. Kudo, N.; Perseghini, M.; Fu, G. C. A versatile method for Suzuki cross-coupling reactions of nitrogen heterocycles. *Angew. Chem., Int. Ed.* **2006**, 45, 1282.

- Markovic, T.; Rocke, B. N.; Blakemore, D. C.; Mascitti, V.; Willis, M. C. Pyridine sulfinates as general nucleophilic coupling partners in palladium-catalyzed crosscoupling reactions with aryl halides. *Chem. Sci.* 2017, *8*, 4437.
- Choppin, S.; Gros, P.; Fort, Y. Unusual C-6 Lithiation of 2-Chloropyridine-Mediated by BuLi– Me₂N (CH2) 2OLi. New Access to 6-Functional-2-chloro pyridines and Chloro-bis-heterocycles. *Org. Lett*, 2000, *2*, 803.
- Guo, P.; Zhang, H.; Zhou, J.; Gallou, F.; Parmentier, M.; Wang, H. Micelle-Enabled Suzuki–Miyaura Cross-Coupling of Heteroaryl Boronate Esters. *J. Org. Chem.* 2018, 83, 7523.
- 15. Nguyen, J.; Chong, A.; Lalic, G. Nickel-catalyzed anti-Markovnikov hydroarylation of alkenes. *Chem. Sci.* **2019**, *10*, 3231.
- Liao, J.; Basch, C. H.; Hoerrner, M. E.; Talley, M. R.; Boscoe, B. P.; Tucker, J. W.; Watson, M. P. Deaminative reductive cross-electrophile couplings of alkylpyridinium salts and aryl bromides. *Org. Lett.* 2019, *21*, 2941.