Saponin: A Green and Efficient Natural Surfactant for Suzuki-Miyaura
 Cross-Couplings of Heteroaryl Substrates in Aqueous Media at Ambient Conditions.

Vinothkumar Vinayagam,* Subir Kumar Sadhukhan, Sreenivasa Reddy Kasu, Ravi Kumar Maroju, Tanguturi Venkatanarayana Hajay Kumar, Satish Kumar Karre, Dhurwasulu Baledi
${ }^{a}$ Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN park, Genome Valley, Turkapally, Hyderabad, India 500078.

Email: VinothKumar.Vinayagam@curiaglobal.com, vinothkv4@gmail.com

Supporting Information

S. No	Title	Page No.
1		S2
2	List of Suzuki-Miyaura Cross-Coupling products ----------------------	S3
3	Optimization of the amount of saponin ---------------------------------------	S5
4	The general procedure A and B of SMC reactions ---------------------	S6
5	Saponin isolation from Indian soapberry nuts ----------------------------- - - - -	S7
6		S8-S11
7		S12-S19
8	Spectral data $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and $\left.{ }^{19} \mathrm{~F}-\mathrm{NMR}\right)$ of SMC products ($\mathbf{3 a}-\mathbf{3 u}$, $\mathbf{4 a}-\mathbf{4 h}, 5 \mathrm{a}-5 \mathrm{k}, \mathbf{6 a}-\mathbf{6 g}$)	S20-S42
9	Scanned copy of spectra's $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and $\left.{ }^{19} \mathrm{~F}-\mathrm{NMR}\right)$ of SMC products (3a-3u, 4a-4h, 5a-5k, 6a-6g) \qquad	S43-S97
10	ICP-MS spectra of compounds $\mathbf{3 m}, \mathbf{4 h}$, and 5a	S98-S100
11		S101-S102

1. General Information:

Safety Statement:

No unusual or unexpected safety hazards were encountered or observed during the entire course of experiments.

Reagents and Surfactants:

All the reagents and solvents used in this study were purchased from BLD Pharma, SigmaAldrich, Tokyo Chemical Industry Co., Ltd (TCI), and Combi-Blocks. All the aryl, heteroaryl halides, and aryl, heteroaryl boron reagents used for this study were purchased from BLD pharma, Combi-blocks, and TCI-Chemicals. For this study, we used saponin (cas no: 8047-152) obtained from four different sources, TCI-Chemicals (S0019), Sigma-Aldrich (from Quillaja bark (S7900), and purified from quillaja bark (S4521)), and Indian soapberry nuts purchased from local supermarket at Hyderabad in India. Pd-catalysts were purchased from BLD Pharma.

Chromatography:

TLC plates: TLC silica gel $60 \mathrm{~F}_{254} ; 25$ Aluminium sheets purchased from Merck. The developed TLC plate was analysed by a UV lamp (254 nm). The TLC plates were further analyzed with the use of iodine, and an ethanolic phosphomolybdic acid stain with the help of a heat gun. Flash chromatography was performed by a combiflash column, and pre-packed silica gel (100-200 mesh and 230-400 mesh) was used for CombiFlash column chromatographic separations.

Analytical methods:

Nuclear Magnetic Resonance Spectroscopy (NMR), and Mass Spectrometry (MS):
All the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl_{3} or DMSO- $d 6$ with residual $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}=77.16 \mathrm{ppm}\right)$ or DMSO- $d 6\left({ }^{1} \mathrm{H}\right.$ $\left.=2.55 \mathrm{ppm},{ }^{13} \mathrm{C}=40.46 \mathrm{ppm}\right)$ as the internal standard. Deuterated solvents were purchased from Cambridge Isotope Laboratories. Chemical shifts are reported in parts per million (ppm). The data presented will be reported as follows; chemical shift, multiplicity in Hertz (Hz) ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{brs}=$ broad singlet), coupling constant, and number of protons.

HRMS analysis (ESI-MS) mass spectral analysis was performed using Agilent Technologies 6540 UHD Accurate-mass Q-TOF LC/MS instrument.

Palladium residual assay was performed (ICP-MS method) using Agilent instrument, Model 7800.

All the reactions were monitored by Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) along with TLC analysis. The UPLC-MS analysis was performed using Waters: Acquity UPLC BEM $2.1 \times 50 \mathrm{~m} \mu \mathrm{C}-18$ column with acetonitrile/Water as a mobile system.

Scanning Electron Microscopy:

Instrument make: Joel; Model: JSM/7610F, compound with platinum coated.

Dynamic Light Scattering (DLS):

Instrument make: Malvern Instruments

2. List of Suzuki-Miyaura Cross-Coupling products

Scheme 1. SMC reaction of pyridyl boronic acids with heteroaryl bromides.

3a

3b

3c

3d

3 e

$3 f$

3g

3h

$3 i$

3j

3k

31

$3 m$

3n

Scheme 2. SMC reaction of pyrimidine boronic acids with heteroaryl bromides.

4a

4b

4c

4d

4e

$4 f$

$4 g$

4h

Scheme 3. SMC reaction with 2-pyridyl boronic acid. ${ }^{\text {a }}$

5g

5h

$5 i$

Scheme 4. SMC reaction of alkyl boronic acids with aryl halides. ${ }^{\text {a }}$

3. Optimization of the amount of saponin

Table-S1:

Entry	Source of saponin	Saponin quantity	Yield (\%) $^{\mathrm{b}}$
1	Saponin from Sigma Aldrich (purified from quillaja bark)	$10 \mathrm{wt} \% ; 300 \mathrm{mg}$	62%
2	Saponin from Sigma Aldrich (purified from quillaja bark)	$5 \mathrm{wt} \% ; 150 \mathrm{mg}$	82%
3	Saponin from Sigma Aldrich (purified from quillaja bark)	$2 \mathrm{wt} \% ; 60 \mathrm{mg}$	88%
4	Saponin from Sigma Aldrich (purified from quillaja bark)	$1 \mathrm{wt} \% ; 30 \mathrm{mg}$	76%
5	Saponin from Sigma Aldrich (purified from quillaja bark)	$0.5 \mathrm{wt} \% ; 15 \mathrm{mg}$	62%

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}(1.0 \mathrm{mmol}), \mathbf{2 a}(1.2 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{~d} t \mathrm{bpf})(5 \mathrm{~mol} \%)$, TEA (3 equiv), Water (3.0 mL), saponin, rt, 2-6 h. ${ }^{\mathrm{b}}$ Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5trimethoxybenzene as an internal standard.

4. The general procedure A and B of SMC reactions

General procedure-A: Suzuki-Miyaura Cross-Coupling

To a solution of heteroaryl bromide (1 mmol) 1a, heteroaryl boronic acid ($1.2 \mathrm{mmol}, 1.2$ equiv) 2a in water (3.0 mL) was added TEA ($0.42 \mathrm{~mL}, 3.0 \mathrm{mmol}, 3.0$ equiv) and saponin (60 mg) followed by $\mathrm{PdCl}_{2}(\mathrm{~d} t \mathrm{bpf})(33 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The reaction mixture was stirred for 2-6 h at ambient temperature. After the completion of the reaction, as observed by thin-layer chromatography (TLC) and UPLC-MS analysis, the reaction mixture was diluted with water $(10 \mathrm{~mL})$, and EtOAc (20 mL) and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc (20 mL) and separated the organic layer. The aqueous layer was re-extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield the corresponding cross-coupling product.

General procedure-B: Suzuki-Miyaura Cross-Coupling for 2-pyridyl boronic acid

To a solution of heteroaryl bromide (1 mmol), saponin $(80 \mathrm{mg})$ in water $(3.0 \mathrm{~mL}) /$ THF $(1.0$ mL) was added $\mathrm{K}_{3} \mathrm{PO}_{4}(636 \mathrm{mg}, 3.0 \mathrm{mmol}, 3$ equiv), $\mathrm{Cu}(\mathrm{I}) \mathrm{Cl}(99 \mathrm{mg}, 1.0 \mathrm{mmol}, 1$ equiv) and XPhos-Pd-G ${ }_{2}(39.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{~mol} \%$) followed by 2-pyridyl boronic acid (2.0 mmol , 2.0 equiv) The reaction mixture was stirred for 16 h at ambient temperature. After the completion of the reaction, as observed by thin-layer chromatography (TLC) and UPLC-MS analysis, the reaction mixture was diluted with water $(10 \mathrm{~mL})$, and EtOAc $(20 \mathrm{~mL})$ and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc (20 mL) and separated the organic layer. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield the corresponding cross-coupling product.

5. Saponin isolated from Indian soapberry nuts:

The soapnut is an ancient Indian herb used in Ayurveda, its botanical Name is Sapindus trifoliatus and its family name is Sapindaceae. ${ }^{1}$ A dry soapnut is easily available across India. The dried nut was grinded as a fine powder to get brown color crude saponins. The crude material 10 g was washed with $\operatorname{EtOAc}(100 \mathrm{~mL})$ three times to remove some non-polar impurities ($\sim 1 \mathrm{~g}$ of non-polar impurities obtained). The crude powder was used directly for the reaction as a surfactant (Entry-4 in Table 1). Later, the material was extracted with methanol $(100 \mathrm{~mL})$ three times and obtained 3 g of light yellow powder of saponins. The methanolic extracted material was tested as a surfactant (Entry-5 in Table 1). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the methanolic extracted saponin from Indian soapberry nuts and saponin purchased from TCIJapan and Sigma Aldrich (USA) is almost similar.

(A) Soapnut berries (B) powdered Soapnut berries/crude saponines (C) methanolic extracts of crude saponines.

1. (a) Panda, A.; Kumar, A.; Mishra, S.; Mohapatra, S. S. Soapnut: A replacement of synthetic surfactant for cosmetic and biomedical applications. Sustainable Chem. Pharm. 2020, 17, 100297. (b) Kommalapati, R. R.; Valsaraj, K. T.; Constant, W. D.; Roy, D. Soil flushing using colloidal gas aphron suspensions generated from a plantbased surfactant. J. Hazard. Mater. 1998, 60, 73.

6. Scale-up reactions:

Scale-up reaction-I

Synthesis of 3-(benzo[b]thiophen-3-yl)quinoline (3m):

To a solution of 3-bromoquinoline $\mathbf{1 m}(4.12 \mathrm{~g}, 20 \mathrm{mmol})$, benzo[b]thiophen-3-ylboronic acid $\mathbf{2 m}(4.27 \mathrm{~g}, 24 \mathrm{mmol}, 1.2$ equiv) in water (60.0 mL) was added TEA ($8.4 \mathrm{~mL}, 60 \mathrm{mmol}, 3.0$ equiv) and saponin (1.2 g) followed by $\mathrm{PdCl}_{2}(\mathrm{~d} t \mathrm{bpf})(630 \mathrm{mg}, 1.0 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The reaction mixture was stirred for 2 h at ambient temperature. After the completion of the reaction, as observed by thin-layer chromatography (TLC) and UPLC-MS analysis, the reaction mixture was diluted with water $(100 \mathrm{~mL})$, and $\operatorname{EtOAc}(200 \mathrm{~mL})$ and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc ($2 \times 50 \mathrm{~mL}$) and separated the organic layer. The aqueous layer was re-extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield 3-(benzo[b]thiophen-3-yl)quinoline (3m) ($4.35 \mathrm{~g}, 16.6 \mathrm{mmol}$) in 83% yield as an off-white solid.

The residual palladium content of the above purified 3-(benzo[b]thiophen-3-yl)quinoline (3 m) was tested by IPC-MS analysis and found that 12.01 ppm Palladium is present in the material.

The same above reaction of synthesis of 3-(benzo[b]thiophen-3-yl)quinoline (3m) was performed in a 5.0 mmol batch with a reduced amount of Pd-catalyst load $2.0 \mathrm{~mol} \%$ of $\mathrm{PdCl}_{2}(\mathrm{~d} t \mathrm{bpf})$. The reaction was completed in 4 h and provided the desired product (3m) (1.04 g, 4.0 mmol) in 80% yield after column chromatography.

E-Factor calculation for the synthesis of 3-(benzo[b]thiophen-3-yl)quinoline (3m):

Entry	Total material used	Mass of the total material used	Mass of the product	E-Factor
1	Aryl Bromide	4.12 g	4.35 g	$15.08 \div 4.35$
2	Boronic acid	4.27 g		
3	Pd-Catalyst	0.63 g		$=3.46$
4	Triethyl amine	6.06 g		
Total mass used		15.08		

The E-factor was calculated for only reaction and not for workup and column chromatography. Water is a safe solvent and saponin is a natural biodegradable surfactant therefore the amount of water and saponin are not included during the calculation of the total mass used.

Scale-up reaction-II

Synthesis of 2,4-dimethoxy-5,5'-bipyrimidine (4h)

To a solution of 5-bromopyrimidine ($2.4 \mathrm{~g}, 15 \mathrm{mmol}$), (2,4-dimethoxypyrimidin-5-yl)boronic acid $(3.3 \mathrm{~g}, 18 \mathrm{mmol}, 1.2$ equiv) in water $(45.0 \mathrm{~mL})$ was added TEA ($6.3 \mathrm{~mL}, 45 \mathrm{mmol}, 3.0$ equiv) and saponin (900 mg) followed by $\mathrm{PdCl}_{2}(\mathrm{~d} t \mathrm{bpf})(475 \mathrm{mg}, 0.75 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The reaction mixture was stirred for 10 h at ambient temperature. After the completion of the reaction, as observed by thin-layer chromatography (TLC) and UPLC-MS analysis, the reaction mixture was diluted with water $(100 \mathrm{~mL})$, and $\operatorname{EtOAc}(200 \mathrm{~mL})$ and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc ($2 \times 50 \mathrm{~mL}$) and separated the organic layer. The aqueous layer was re-extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The
combined organic layers were washed with brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield 2,4-dimethoxy-5,5'-bipyrimidine (4h) ($2.5 \mathrm{~g}, 11.4 \mathrm{mmol}$) in 76% yield as an off-white solid.

The residual palladium content of the above purified material 2,4-dimethoxy-5,5'bipyrimidine (4h) was 41.2 ppm which was determined by IPC-MS analysis.

The same above reaction of synthesis of 2,4-dimethoxy-5,5'-bipyrimidine (4h) was performed in a 5.0 mmol batch with a reduced amount of Pd-catalyst load $2.0 \mathrm{~mol} \%$ of $\mathrm{PdCl}_{2}(\mathrm{~d} t \mathrm{bpf})$. The reaction was completed in 16 h and provided the desired product $(\mathbf{4 h})(850$ $\mathrm{mg}, 3.9 \mathrm{mmol}$) in 78% yield after column chromatography.

Scale-up reaction-III

Synthesis of 2-(4-(benzyloxy)phenyl)pyridine (5a):

To a solution of 1-(benzyloxy)-4-bromobenzene ($2.6 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv), saponin (800 mg) in water (30.0 mL)/THF (10.0 mL) was added $\mathrm{K}_{3} \mathrm{PO}_{4}(6.3 \mathrm{~g}, 30.0 \mathrm{mmol}, 3$ equiv), XPhos-PdG_{2} ($393 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{~mol} \%$) followed by $\mathrm{Cu}(\mathrm{I}) \mathrm{Cl}(990 \mathrm{mg}, 10 \mathrm{mmol}, 1$ equiv) and 2pyridyl boronic acid ($2.46 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.0$ equiv). The reaction mixture was stirred for 16 h at ambient temperature. After 16 h , the reaction mixture was diluted with water $(100 \mathrm{~mL})$, and EtOAc (200 mL) and stirred for a couple of minutes. The emulsion was filtered through celite washed with EtOAc $(100 \mathrm{~mL})$ and separated the organic layer. The aqueous layer was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine $(100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield the 2-(4-(benzyloxy)phenyl)pyridine (5a) (1.43 g) in 54.8% yield as an off-white solid along with unreacted bromo compound.

The above-purified compound 2-(4-(benzyloxy)phenyl)pyridine (5a) was tested for its residual palladium content by ICP-MS analysis and found that 1.88 ppm amount of Palladium was present in the material.

3-(pyridin-2-yl)quinoline (5d)

To a solution of 3-bromoquinoline ($1.3 \mathrm{~g}, 5.0 \mathrm{mmol}$, 1 equiv), saponin (400 mg) in water (15.0 $\mathrm{mL}) /$ THF $(5.0 \mathrm{~mL})$ was added $\mathrm{K}_{3} \mathrm{PO}_{4}(3.15 \mathrm{~g}, 15.0 \mathrm{mmol}, 3$ equiv), XPhos-Pd-G $2(79 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 2.0 \mathrm{~mol} \%$) followed by $\mathrm{Cu}(\mathrm{I}) \mathrm{Cl}(490 \mathrm{mg}, 5 \mathrm{mmol}, 1$ equiv) and 2-pyridyl boronic acid $(1.23 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.0$ equiv). The reaction mixture was stirred for 16 h at ambient temperature. After 16 h , the reaction mixture was diluted with water (50 mL), and EtOAc (100 mL) and stirred for a couple of minutes. The emulsion was filtered through celite washed with $\operatorname{EtOAc}(100 \mathrm{~mL})$ and separated the organic layer. The aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The crude residue was purified by combiflash column chromatography using a mixture of hexanes/EtOAc (8:2) as an eluent to yield the 23-(pyridin-2-yl)quinoline (5d) ($830 \mathrm{mg}, 3.2 \mathrm{mmol}$) in 64% yield as an off-white solid along with unreacted bromo compound.

7. SEM, ELD, and DLS Spectras

Field Emission Scanning Electron Microscopy (FE-SEM) of Saponin/Sigma
Aldrich (cas no: 8047-15-2) Product code: S4521

Energy Dispersive Spectroscopy (EDS) of Saponin /Sigma Aldrich (cas no: 8047-15-2) Product code: S4521

Dynamic Light Scattering (DLS) of Saponin /Sigma Aldrich (cas no: 8047-15-2)
Product code: S4521

			Size (d.nm)	\% Intensity:	St Dev (d.n...
Z-Average (d.nm):	165.5	Peak 1:	231.2	97.0	158.6
	0.396	Peak 2:	5039	3.0	591.5
Intercept:	0.953	Peak 3:	0.000	0.0	0.000
Result quality : Good					
Size Distribution by Intensity					
Size (d.nm)					
Record 4: Sapo_A 3					

Field Emission Scanning Electron Microscopy (FE-SEM) of Saponin in water

Sample preparation: 60 mg of Saponin (Sigma Aldrich (cas no: 8047-15-2) Product code: S 4521) dissolved in 3 mL of DI water (Note: The saponin dissolved immediately and provided clear light brown color solution) and stirred for 5 minutes followed by lyophilization to get dry powder. This powder was used for FE-SEM, EDS, and DLS analysis to understand the effect of water.

Energy Dispersive Spectroscopy (EDS) of Saponin in water

Dynamic Light Scattering (DLS) of Saponin in water

			Size (d.nm):	\% Intensity:	St Dev (d.n...
Z-Average (d.nm):	168.5	Peak 1:	194.7	96.1	87.81
Pdl:	0.346	Peak 2:	5174	3.4	488.8
Intercept:	0.952	Peak 3:	32.82	0.5	5.651
Result quality :	Good				

Size Distribution by Intensity

Record 7: Sapo_H2O 3

Field Emission Scanning Electron Microscopy (FE-SEM) of Saponin and $\mathbf{P d C l}_{2}(\mathbf{d} t b p f)$ in water

Sample preparation: 60 mg of Saponin and 33 mg of PdCl_{2} (dtbpf) were dissolved in 3 mL of DI water (Note: after the addition of Pd-catalyst, the solution became unclear brown color) and stirred for 5 minutes followed by lyophilization to get dry powder. This powder was used for FE-SEM, EDS, and DLS analysis.

Energy Dispersive Spectroscopy (EDS) of Saponin and $\mathbf{P d C l}_{\mathbf{2}}(\mathbf{d} t \mathrm{bpf})$ in water

Dynamic Light Scattering (DLS) of Saponin and $\mathrm{PdCl}_{\mathbf{2}}(\mathbf{d} \mathbf{t b p f})$ in water

		Size (d.nm):	\% Intensity:	St Dev (d.n...	
Z-Average (d.nm):	264.6	Peak 1:	304.2	97.5	179.7
PdI:	0.368	Peak 2:	5369	2.5	328.9
Intercept:	0.973	Peak 3:	0.000	0.0	0.000

Result quality: Good

Field Emission Scanning Electron Microscopy (FE-SEM) of Saponin and XPhos-Pd-G2 in water

Sample preparation: 80 mg of Saponin and 39 mg of XPhos-Pd-G2 were dissolved in 3.0 mL of DI water and 1.0 mL of THF (Note: the mixture provided unclear solution) and stirred for 5 minutes followed by lyophilization to get dry powder. This powder was used for FE-SEM, EDS, and DLS analysis.

Energy Dispersive Spectroscopy (EDS) of Saponin and XPhos-Pd-G2 in water

Dynamic Light Scattering (DLS) of Saponin and XPhos-Pd-G2 in water

		Size (d.nm):	\% Intensity:	St Dev (d.n...	
Z-Average (d.nm):	837.5	Peak 1:	564.6	80.0	115.6
PdI:	0.660	Peak 2:	140.3	20.0	23.64
Intercept:	0.933	Peak 3:	0.000	0.0	0.000
Result quality :	Refer to quality report				

8. Spectral data (${ }^{\mathbf{1}} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$-NMR) of SMC products ($\mathbf{3 a}-\mathbf{3 u}$,

 $4 a-4 h, 5 a-5 k, 6 a-6 g)$

2-methoxy-3,3'-bipyridine (3a) ${ }^{1}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{dd}, J=5.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.20(\mathrm{dd}, J=4.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dt}, J=4.8 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=7.2$ $\mathrm{Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.9,149.7,148.3,146.6,138.4,136.5,132.5,123.0,121.0$, 117.2, 53.5.

Yield: 166 mg ; 90 \%
Physical appearance: High viscous oil.
Rf: 0.3 (10 \% EtOAc in hexanes).

6-methoxy-3,3'-bipyridine (3b) ${ }^{\mathbf{2}}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.80(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dd}, J=4.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1,148.6,147.8,145.1,137.3,133.8,133.5,126.8,123.6$, 111.2, 53.6.

Yield: 160 mg ; 86 \%
Physical appearance: High viscous oil.
Rf: 0.3 (10 \% EtOAc in hexanes).

3-chloro-2'-methoxy-5-(trifluoromethyl)-2,3'-bipyridine (3c)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.83(\mathrm{dd}, J=2.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.69-8.68(\mathrm{~m}, 1 \mathrm{H}), 8.05-8.03$ (m, 2H), 6.86 (dd, $J=8.4 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 164.7,148.2,144.4(\mathrm{dd}, J=79.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}$), 139.6, 135.4 ($\mathrm{q}, J=3.5 \mathrm{~Hz}), 130.0,126.8(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 126.2,125.9(\mathrm{q}, J=33.0 \mathrm{~Hz}), 122.6(\mathrm{~d}, J=271$ $\mathrm{Hz}), 110.4,53.7$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}: 289.0356$; $[\mathrm{M}+\mathrm{H}]^{+}$found: 289.0358.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.25$

Yield: $205 \mathrm{mg} ; 72$ \%
Physical appearance: High viscous oil.
Rf: 0.3 (10 \% EtOAc in hexanes).

methyl 6'-isopropoxy-[2,3'-bipyridine]-5-carboxylate (3d)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33-8.27$ $(\mathrm{m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 1.38$ (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,164.6,158.7,151.1,146.4,137.9,137.5,127.0,123.9$, 118.8, 111.7, 68.7, 52.4, 22.0.

HRMS (ESI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}$: 273.1239; $[\mathrm{M}+\mathrm{H}]^{+}$found: 273.1241.

Yield: 200 mg ; 74 \%

Physical appearance: High viscous oil.
Rf: 0.25 (10 \% EtOAc in hexanes).

6-methyl-2,4'-bipyridine (3e) ${ }^{3}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{dd}, J=4.4 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=4.4 \mathrm{~Hz}, J=$ $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.02,154.0,150.2,146.7,137.1,123.3,121.1,117.9,24.6$.
Yield: 150 mg ; 88 \%
Physical appearance: High viscous oil.
Rf: 0.3 (85 \% EtOAc in hexanes).

2'-fluoro-6-methyl-2,4'-bipyridine (3f) ${ }^{4}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7(\mathrm{~d}, J=236 \mathrm{~Hz}), 159.1,152.6(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 152.4$ (d, $J=8.1 \mathrm{~Hz}), 148.0(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 137.2,123.9,118.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 118.0,106.9(\mathrm{~d}, J=$ 39.0 Hz), 24.6.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-68.08$
Yield: 165 mg ; 88 \%

Physical appearance: High viscous oil.
Rf: 0.3 (10 \% EtOAc in hexanes).

2',6-dimethyl-2,4'-bipyridine (3g)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.56$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.0,158.9,154.3,149.5,147.1,137.1,123.2,120.7,118.3$, 118.0, 24.6, 24.5.

HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2}$: 185.1079; $[\mathrm{M}+\mathrm{H}]^{+}$found: 185.1102.
Yield: $168 \mathrm{mg} ; 92$ \%
Physical appearance: High viscous oil.
Rf: 0.3 (10 \% EtOAc in hexanes).

3h

3-chloro-6'-fluoro-5-(trifluoromethyl)-2,3'-bipyridine (3h)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.89(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dt}, J=5.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7(\mathrm{~d}, J=237.0 \mathrm{~Hz}), 155.9,149.5(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 147.9(\mathrm{~d}$, $J=15.1 \mathrm{~Hz}), 144.6(\mathrm{q}, J=38.0 \mathrm{~Hz}), 135.8(\mathrm{q}, J=36.0 \mathrm{~Hz}), 130.5,127.7(\mathrm{q}, J=34.0 \mathrm{~Hz})$, 122.3 (q, $J=271 \mathrm{~Hz}), 121.5(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 110.2(\mathrm{~d}, J=39.0 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.39, -66.71
HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{ClF}_{4} \mathrm{~N}_{2}: 277.0156 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 277.0159 .
Yield: $204 \mathrm{mg} ; 74$ \%
Physical appearance: High viscous oil.
Rf: 0.25 (10 \% EtOAc in hexanes).

3-chloro-6'-methyl-5-(trifluoromethyl)-2,3'-bipyridine (3i)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.87-8.86(\mathrm{~m}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz} 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,157.6,149.2,144.6,144.5(\mathrm{q}, J=3.8 \mathrm{~Hz}), 135.5(\mathrm{q}, J=$ $3.5 \mathrm{~Hz}), 130.5,127.1(\mathrm{q}, J=33.6 \mathrm{~Hz}), 123.1,122.4(\mathrm{q}, J=271 \mathrm{~Hz}), 120.7,24.5$.
${ }^{19}$ F NMR (376 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-62.31$

HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{~N}_{2}: 273.0406 ;[\mathrm{M}+\mathrm{H}]+$ found: 273.0409 .

Yield: $213 \mathrm{mg} ; 79$ \%

Physical appearance: High viscous oil.

Rf: 0.25 (10 \% EtOAc in hexanes).

2-(2-methylpyridin-4-yl)pyrimidine (3j)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.87(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.66(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 163.0,159.4,157.5,149.9,145.1,121.5,120.5,119.1,24.6$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3}: 172.0875 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 172.0874.

Yield: $139 \mathrm{mg} ; 82$ \%

Physical appearance: High viscous oil.

Rf: 0.2 (10 \% EtOAc in hexanes).

5-(6-methoxypyridin-3-yl)pyrimidine (3k)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.24(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.58(\mathrm{dd}, J$ $=8.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,163.2,157.2,148.0,138.2,126.9,118.9,110.6,53.8$.
HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}: 188.0824 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 188.0822.
Yield: 165 mg ; 88 \%
Physical appearance: High viscous oil.
Rf: 0.2 (10 \% EtOAc in hexanes).

5-(6-methoxypyridin-3-yl)pyrimidine-2-carbonitrile (31)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01(\mathrm{~s}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,155.0,145.8,143.4,136.9,133.7,123.6,115.7,112,3$, 54.0.

HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}: 213.0776 ;[\mathrm{M}+\mathrm{H}]+$ found: 213.0776 .
Yield: $143 \mathrm{mg} ; 68$ \%
Physical appearance: High viscous oil.
Rf: 0.15 (10 \% EtOAc in hexanes).

3-(benzo[b]thiophen-3-yl)quinoline (3m)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.16(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.41(\mathrm{~m}$, 2H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 150.9,147.4,140.7,137.7,34.8,134.4,129.6,129.4,128.0$, $127.9,127.7,127.2,125.1,124.86,124.82,123.1,122.4$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NS}: 262.069 ;[\mathrm{M}+\mathrm{H}]+$ found: 262.0693 .

Yield: $199 \mathrm{mg} ; 76$ \%

Physical appearance: off-white solid.

Rf: $0.3(10 \% \mathrm{EtOAc}$ in hexanes).

methyl 6-(3,5-dimethylisoxazol-4-yl)nicotinate (3n)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.26(\mathrm{dd}, J=2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.7,165.6,158.6,154.7,151.0,137.6,123.7,121.8,115.5$, 52.4, 12.8, 11.8.

HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}: 233.0926 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 233.0926 .

Yield: $180 \mathrm{mg} ; 77$ \%

Physical appearance: off-white solid.

Rf: 0.25 (10 \% EtOAc in hexanes).

5-(pyridin-3-yl) thiophene-2-carbaldehyde (30) ${ }^{5}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}, J=4.8 \mathrm{~Hz}, 1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 182.7,150.2,149.9,147.2,143.6,137.2,133.6,129.1,125.1$, 123.8.

Yield: $156 \mathrm{mg} ; 84$ \%
Physical appearance: off-white solid.
Rf: 0.25 (10 \% EtOAc in hexanes).

5-(3-chloro-5-(trifluoromethyl)pyridine-2-yl)thiophene-2-carbaldehyde (3p)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$,
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.3,151.1,149.0,145.9,144.2(\mathrm{q}, J=8.0 \mathrm{~Hz}), 136.3(\mathrm{q}, J$ $=7.0 \mathrm{~Hz}), 135.9,130.8,128.7,126.3(\mathrm{q}, J=68.0 \mathrm{~Hz}), 122.4(\mathrm{q}, J=542.0 \mathrm{~Hz}), 121.0$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.31$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{ClF}_{3}$ NOS: 291.9811; [M+H $]^{+}$found: 291.9815.
Yield: $206 \mathrm{mg} ; 72$ \%
Physical appearance: Off-white semi-solid.
Rf: 0.2 (10 \% EtOAc in hexanes).

5-(pyrimidine-5-yl)thiophene-2-carbaldehyde (3q)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 9.23(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8,153.9,149.2,140.6,135.9,132.2,122.8,121.3$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{OS}: 191.0279 ;[\mathrm{M}+\mathrm{H}]+$ found: 191.0265 .

Yield: $142 \mathrm{mg} ; 75 \%$

Physical appearance: Off-white solid.

Rf: 0.2 (10 \% EtOAc in hexanes).

tert-butyl 2-(quinolin-3-yl)-1H-indole-1-carboxylate (3r) ${ }^{6}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H})$, $7.39(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.1,150.0,146.9,137.5,136.9,134.1,129.6,129.3,129.1$, $128.4,127.8,127.4,127.1,125.0,123.3,120.7,115.7,111.8,84.2,27.7$.

Yield: $286 \mathrm{mg} ; 84$ \%

Physical appearance: White solid.

Rf: 0.2 (10 \% EtOAc in hexanes).

tert-butyl 2-(pyrimidin-5-yl)-1H-indole-1-carboxylate (3s)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 2 \mathrm{H}), 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3,156.0,149.7,137.6,132.9,129.4,128.8,125.5,123.5$, 120.9, 115.8, 112.5, 84.7, 27.8.

HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}$: 296.1399; $[\mathrm{M}+\mathrm{H}]^{+}$found: 296.1401 .
Yield: $210 \mathrm{mg} ; 72$ \%
Physical appearance: High viscous oil.

Rf: 0.2 (10 \% EtOAc in hexanes).

3-(benzofuran-2-yl)quinoline (3t) ${ }^{7}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.57$ -7.47 (m, 2H), $7.35-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 155.4,153.2,147.6,147.5,130.7,129.8,129.4,128.9,128.2$, 127.7, 127.4, 125.0, 123.7, 123.3, 121.3, 111.3, 103.0,

Yield: $190 \mathrm{mg} ; 78$ \%
Physical appearance: Off-white solid.
Rf: 0.2 (20 \% EtOAc in hexanes).

4'-(benzyloxy)-2,6-difluoro-4-methoxy-1,1'-biphenyl (3u)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 158.5(\mathrm{t}, J=14.1 \mathrm{~Hz}), 158.4,157.3$, $135.8,130.4,127.5,126.9,126.4,120.6,113.5,109.5(\mathrm{~d}, J=19.4 \mathrm{~Hz}), 97.0(\mathrm{~d}, J=30.1 \mathrm{~Hz})$, $97.0(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 68.9,54.7$.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.79
HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{O}_{2}$: 327.1197; $[\mathrm{M}+\mathrm{H}]^{+}$found: 327.1206 .
Yield: 282 mg ; 86 \%
Physical appearance: off-white solid.

Rf: 0.2 (20 \% EtOAc in hexanes).

5-(3-chloro-5-(trifluoromethyl)pyridine-2-yl)-2-methoxy pyrimidine (4a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.04(\mathrm{~s}, 2 \mathrm{H}), 8.87(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=1.6 \mathrm{~Hz})$, 4.11 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,160.0,154.3,144.7(\mathrm{q}, J=8.0 \mathrm{~Hz}), 135.5(\mathrm{q}, J=7.0$ Hz), 130.2, 126.5 ($\mathrm{q}, J=34.0 \mathrm{~Hz}$), 124.7, 123.8, 55.4.

HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}: 290.0308 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 290.0311.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.28$
Yield: 206 mg; 72 \%
Physical appearance: High viscous oil.
Rf: 0.3 (20 \% EtOAc in hexanes).

4b

2'-methoxy-2,5'-bipyrimidine (4b) ${ }^{8}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.49(\mathrm{~s}, 2 \mathrm{H}), 8.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.11 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.7, 161.3, 159.6, $157.4,125.2,119.6,55.3$.
Yield: $144 \mathrm{mg} ; 77$ \%
Physical appearance: Off-white solid.
Rf: 0.3 (15 \% EtOAc in hexanes).

4c

2-methoxy-5,5'-bipyrimidine (4c)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.28(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{~s}, 2 \mathrm{H}), 8.76(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.0,158.3,157.4,154.4,128.6,122.0,55.3$.
HRMS (ESI): m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}: 189.0776 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 189.0771 .
Yield: 152 mg ; 81 \%
Physical appearance: Semi-solid.
Rf: 0.3 (15 \% EtOAc in hexanes).

2-methyl-5-(5-nitropyridin-2-yl)pyrimidine (4d)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 2 \mathrm{H}), 8.62(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,157.6,155.8,145.7,143.5,132.4,127.4,119.9$, 26.1.
HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2}: 217.0726$; $[\mathrm{M}+\mathrm{H}]^{+}$found: 217.0726.

Yield: $157 \mathrm{mg} ; 74$ \%
Physical appearance: High viscous oil.
Rf: 0.3 (20 \% EtOAc in hexanes).

2-(2-methylpyrimidin-5-yl)nicotinaldehyde (4e)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{dd}, J=4.8 \mathrm{~Hz}, 1.6 \mathrm{H}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 2 \mathrm{H}), /$ integrate in spectra/ Ravi) 8.37 (dd, $J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (dd, $J=7.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.8,168.9,157.6,155.9,154.1,137.1,129.9,127.9,123.6$, 26.0.

HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}: 200.0824 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 200.0823 .
Yield: $125 \mathrm{mg} ; 63$ \%
Physical appearance: High viscous oil.
Rf: 0.3 (20 \% EtOAc in hexanes).

3-(2-methylpyrimidin-5-yl)quinoline (4f)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.13$ (d, $\left.J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.99(\mathrm{~s}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,155.2,148.6,147.9,133.6,130.4,129.4,128.4,128.0$, 127.7, 127.6, 127.5, 25.8.

HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3}$: 222.1031; [M+H] found: 222.1033.

Yield: 179 mg ; 80 \%
Physical appearance: Light brown color solid.
Rf: 0.3 (20 \% EtOAc in hexanes).

2,4-dimethoxy-5-(2-methoxypyridin-4-yl)pyrimidine (4g)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 1.6$ Hz, 1H), 6.92 (s, 1H), 4.05 (s, 6H), 3.98 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,165.2,164.5,157.9,146.9,143.8,116.6,113.6,110.2$, 55.1, 54.3, 53.5.

HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}: 248.1035 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 248.1038
Yield: $185 \mathrm{mg} ; 75 \%$
Physical appearance: Light brown color solid.
Rf: 0.3 (20 \% EtOAc in hexanes).

2,4-dimethoxy-5,5'-bipyrimidine (4h)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 2 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,165.6,157.6,157.5,156.0,127.6,109.6,55.2,54.5$
HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}: 219.0882 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 219.0885 .
Yield: $151 \mathrm{mg} ; 70$ \%
Physical appearance: off-white solid.
Rf: 0.3 (20 \% EtOAc in hexanes).

2-(4-(benzyloxy)phenyl)pyridine (5a) ${ }^{9}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66-8.64(\mathrm{~m}, 1 \mathrm{H}), 7.96-9.93(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,156.0,148.5,135.8,135.6,131.2,127.6,127.1,127.0$, 126.5, 120.4, 118.8, 114.0, 69.0.

Yield: $185 \mathrm{mg} ; 71$ \%
Physical appearance: off-white solid.
Rf: 0.3 (10 \% EtOAc in hexanes).

4-(4-(pyridine-2-yl)phenyl)morpholine (5b) ${ }^{10}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.58$ (m, 2H), $7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.17(\mathrm{t}, J=$ $5.2 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,150.7,148.5,135.6,129.6,126.7,120.2,118.5,114.2$, 65.8, 47.7.

Yield: $148 \mathrm{mg} ; 62$ \%
Physical appearance: off-white solid.
Rf: 0.3 (10 \% EtOAc in hexanes).

methyl 6-(pyridin-2-yl)-2-naphthoate (5c)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71-8.69(\mathrm{~m}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=$ $8.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.98-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}$, 1H), 7.78 - 7.74 (m, 1H), 7.25 - 7.22 (m, 1H), 3.93 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,156.8,149.9,138.9,136.9,135.6,132.6,130.8,129.9$, 128.9, 127.9, 126.1, 125.7, 125.4, 122.6, 121.0, 52.3.

HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}$: 264.1025; $[\mathrm{M}+\mathrm{H}]^{+}$found: 264.1028.
Yield: 173 mg ; 67 \%
Physical appearance: Off-white solid.

Rf: 0.3 (10 \% EtOAc in hexanes).

3-(pyridin-2-yl)quinoline (5d)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.79-8.78(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (td, $J=7.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,150.2,149.3,148.2,137.1,133.9,131.9,130.0,129.2$, 128.5, 127.9, 127.0, 122.8, 120.8 .

HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2}$: 207.0922; $[\mathrm{M}+\mathrm{H}]^{+}$found: 207.0922.
Yield: $124 \mathrm{mg} ; 60 \%$
Physical appearance: Semi-solid.
Rf: 0.3 (10 \% EtOAc in hexanes).

methyl [2,3'-bipyridine]-5'-carboxylate (5e)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.86-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,153.7,151.8,150.8,150.2,137.2,135.2,134.7,126.1$, 123.3, 120.8, 52.5.

HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}: 215.0821 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 215.0819 .
Yield: 118 mg ; 55%
Physical appearance: off-white solid.
Rf: 0.3 (10 \% EtOAc in hexanes).

6-(pyridin-2-yl)-1H-pyrrolo[3,2-b]pyridine (5f)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.53$ (brs, 1H), $9.06($ brs, 1 H$), 8.69-8.67(\mathrm{~m}, 1 \mathrm{H}), 8.41(\mathrm{~s}$, $1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H})$, $6.60(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0,150.1,147.3,141.9,137.7,131.3,129.4,127.9,122.6$, 120.6, 116.6, 102.2.

HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{3}$: 196.0875; $[\mathrm{M}+\mathrm{H}]^{+}$found: 196.0873.
Yield: $114 \mathrm{mg} ; 59$ \%
Physical appearance: off-white Solid
Rf: 0.3 (10 \% EtOAc in hexanes).

$5 g$

2'-methoxy-2,4'-bipyridine

${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=5.2 \mathrm{H}, 1 \mathrm{H}), 7.82-7.74$ $(\mathrm{m}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.0,153.7,148.9,148.3,146.4,135.9,122.7,119.9,113.6$, 107.2, 52.6.

HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}: 187.0871 ;[\mathrm{M}+\mathrm{H}]+$ found: 187.0874.

Yield: $116 \mathrm{mg} ; 64$ \%

Physical appearance: Brown solid.

Rf: 0.3 (20 \% EtOAc in hexanes).

5h

5-(pyridin-2-yl)pyrimidine ${ }^{11}$

${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.46(\mathrm{~s}, 2 \mathrm{H}), 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,155.3,151.7,150.6,138.1,132.2,124.5,121.5$.

Yield: $102 \mathrm{mg} ; 65$ \%

Physical appearance: Colorless gummy.

Rf: 0.3 (10 \% EtOAc in hexanes).

$5 i$

2-(pyridin-2-yl)pyrazine ${ }^{12}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.63-8.60$ (m, 2H), 8.36 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.2, 151.1, 149.5, 144.5, 143.6, 143.4, 137.1, 124.5, 121.5.
Yield: 95 mg ; 62 \%
Physical appearance: Off-white solid.
Rf: 0.3 (10 \% EtOAc in hexanes).

3-(6-chloropyridin-2-yl)quinoline ${ }^{13}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.35$ (m, 1H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5,151.9,148.8,148.4,139.6,134.4,130.4,130.3,129.3$, 128.7, 127.7, 127.2, 123.4, 119.0.

Yield: $194 \mathrm{mg} ; 82$ \%
Physical appearance: Off-white solid.
Rf: 0.3 (10 \% EtOAc in hexanes).

6-chloro-2,3'-bipyridine ${ }^{14}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36-8.33(\mathrm{~m}, 1 \mathrm{H})$, $7.79-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,151.8,150.5,148.1,139.6,143.6,133.4,123.7,123.4$, 118.8.

Yield: $138 \mathrm{mg} ; 74$ \%
Physical appearance: Off-white solid.
Rf: 0.3 (10 \% EtOAc in hexanes).

10.1-methoxy-4-phenethylbenzene (5g) ${ }^{15}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.86(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.9,141.9,133.9,129.4,128.5,128.3,125.9,113.8,55.2$, 38.2, 37.0.

Yield: $164 \mathrm{mg} ; 78$ \%

Physical appearance: Off-white solid.
Rf: 0.3 (10 \% EtOAc in hexanes).

6b

3-phenethylquinoline (6b) ${ }^{16}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.19 (m, 3H), 3.10-2.97 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.0,146.9,140.8,134.5,134.2,129.2,128.7,128.5,128.5$, 128.1, 127.4, 126.6, 126.3, 37.5, 35.1.

Yield: $195 \mathrm{mg} ; 84$ \%
Physical appearance: colorless gum.

Rf: 0.3 (10 \% EtOAc in hexanes).

3-chloro-2-phenethyl-5-(trifluoromethyl)pyridine

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.22$ (m, 5H), $3.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5,143.9,143.9(\mathrm{q}, J=8.0 \mathrm{~Hz}), 140.9,133.8(\mathrm{q}, J=7.0$ $\mathrm{Hz}), 131.3,128.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 126.8,125.6(\mathrm{q}, J=66.0 \mathrm{~Hz}), 122.8(\mathrm{~d}, J=272.0 \mathrm{~Hz}), 37.4$, 33.8 .
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.16$
HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{~N}$: $286.061 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 286.0612 .
Yield: 154 mg; 54 \%
Physical appearance: Off-white solid.

Rf: 0.3 (10 \% EtOAc in hexanes).

2-methoxy-5-phenethylpyrimidine (6d)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,158.9,140.1,128.6,128.5,127.3,126.4,54.8,37.3$, 31.2.

HRMS (ESI): m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: 215.1184 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 215.1192.
Yield: $145 \mathrm{mg} ; 68$ \%
Physical appearance: Off-white solid

Rf: 0.3 (10 \% EtOAc in hexanes).

4-(4-octylphenyl)morpholine

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3,86(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.12(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 2,52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.29-$ $1.21(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,134.8,129.1,115.89,67.0,49.8,35.0,31.9,31.7,29.5$, 29.35, 29.31, 22.7, 14.1.

HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}: 276.2327 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 276.2332 .
Yield: 170 mg ; 62 \%
Physical appearance: High viscous oil Naveen.

Rf: 0.4 (10 \% EtOAc in hexanes).

2-methoxy-4-octylpyridine

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2,54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.29-$ $1.24(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,154.7,146.4,117.6,110.2,53.3,35.2,31.8,30.2,29.4$, 29.2, 29.1, 22.6, 14.1.

HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}: 222.1858 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 222.1871 .
Yield: 120 mg ; 54 \%

Physical appearance: colorless oil.

Rf: 0.4 (5 \% EtOAc in hexanes).

5-isobutyl-2-methoxy pyrimidine (6 g)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~m}$, $1 \mathrm{H}), 0.99$ (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,159.3,127.2,54.7,38.5,29.8,21.9$.
HRMS (ESI): m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}: 167.1184 ;[\mathrm{M}+\mathrm{H}]^{+}$found: 167.1185 .
Yield: $75 \mathrm{mg} ; 45 \%$
Physical appearance: High viscous oil.
Rf: 0.3 (5 \% EtOAc in hexanes).

9. Scanned copy of spectra's (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and $\left.{ }^{19} \mathrm{~F}-\mathrm{NMR}\right)$ of SMC products (3a-3u, 4a-4h, 5a-5i, 6a-6g)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 3a

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 3b

すু

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$-NMR of Compound 3 c

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{c}$

3c

${ }^{19}$ F NMR in $\mathrm{CDCl}_{3} 376 \mathrm{MHz} 3 \mathrm{c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 3d

多为
$\stackrel{\circ}{i}$
$\stackrel{\substack{\infty \\ \stackrel{\infty}{\sim}}}{\substack{n}}$

${ }^{13} \mathrm{C} \mathrm{NMR}$ in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{~d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 3e

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 3 \mathrm{e}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{e}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$-NMR of Compound 3 f

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z ~ 3 f ~}$

$\ddot{6}$
$\dot{\sim}$
$\stackrel{1}{1}$
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 f$

${ }^{19}$ F NMR in $\mathrm{CDCl}_{3} 376 \mathrm{MHz} 3 f$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 3 g

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 3 \mathrm{~g}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{~g}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$-NMR of Compound 3h

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{M H z} \mathbf{3 h}$

3h

${ }^{13} \mathbf{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{~h}$

3h

3h

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$-NMR of Compound 3 i

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 3 \mathrm{i}$

$3 i$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{i}$

${ }^{19}$ F NMR in $\mathrm{CDCl}_{3} 376 \mathrm{MHz} 3 \mathrm{i}$

| | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | |

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 3 j

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z} 3 \mathrm{j}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{3 k}$
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z ~ 3 k}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{k}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 31

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z} 31$

31
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 31$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{3 m}$

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z ~ 3 m}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{~m}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound $3 n$

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z ~ 3 n}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{n}$

3n

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 3 o

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z ~} 30$

30

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 30$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$-NMR of Compound 3 p

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 3 \mathrm{p}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 p$

${ }^{19}$ F NMR in $\mathrm{CDCl}_{3} 376 \mathrm{MHz} 3 p$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound $3 q$

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 3 q$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 q$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 3 r

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{r}$

3r

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 3s

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 3 t

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 3 t$

${ }^{13} \mathbf{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{t}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$-NMR of Compound 3 u

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 3 \mathrm{u}$

3u

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 3 \mathrm{u}$

${ }^{19}$ F NMR in $\mathrm{CDCl}_{3} 376 \mathrm{MHz} 3 \mathrm{u}$
$3 u$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$-NMR of Compound 4 a

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z ~ 4 a}$

${ }^{19}$ F NMR in $\mathrm{CDCl}_{3} 376 \mathrm{MHz} 4 \mathrm{a}$

4a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 4 b

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z ~ 4 b}$

${ }^{13} \mathbf{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 4 \mathrm{~b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 4 c

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z} 4 \mathrm{c}$

4c

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 4 \mathrm{c}$

4c

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 4 d

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z} 4 d$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 4 e

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 4 f

+

$\stackrel{+}{\infty}$
ì
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 4 \mathrm{f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 4 g

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} \mathrm{4g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 4h

${ }^{13} \mathbf{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 4 \mathrm{~h}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5a

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 5 \mathrm{a}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 5 \mathrm{a}$

5a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5 b

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z ~ 5 b ~}$

5b

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 5 \mathrm{~b}$

5b

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5 c

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{M H z} \mathbf{5 c}$

5c

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 5 \mathrm{c}$
5c

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5d

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z} 5 \mathrm{~d}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz}$ 5d

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5e

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 5 \mathrm{e}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 5 \mathrm{e}$

5e

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5 f

${ }^{13} \mathbf{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 5 \mathrm{~b}$

5f

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5 g

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z ~ 5 g}$

5g

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 5 \mathrm{~g}$

5 g

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{5 h}$

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z} \mathbf{5 h}$

5h

${ }^{13} \mathrm{C} \mathrm{NMR}$ in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 5 \mathrm{~h}$

5h

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5 i

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} \mathbf{5 i}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 5 \mathrm{i}$

$5 i$

[^0]
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5 j

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z ~ 5 j}$

5j

5j
${ }^{13} \mathbf{C}$ NMR in $\mathrm{CDCl}_{3} \mathbf{1 0 0} \mathbf{~ M H z} \mathbf{5 j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5 k

${ }^{1} \mathbf{H}$ NMR in $\mathbf{C D C l}_{3} \mathbf{4 0 0} \mathbf{~ M H z} \mathbf{5 k}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 5 \mathrm{k}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 6a

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 6 \mathrm{a}$

6a

$$
\begin{aligned}
& -157.90 \\
& -141.91 \\
& \int_{-}^{133.94} \\
& <_{1}^{129.40} \\
& -128.33 \\
& -125.91 \\
& -113.80
\end{aligned}
$$

ก
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 6 \mathrm{a}$

6a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound db

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z} \mathbf{6 b}$

s s jul/ I)
f

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} \mathbf{6 b}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$-NMR of Compound $\mathbf{6 c}$

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz} 6 \mathrm{c}$

6c

$\stackrel{\substack{\stackrel{m}{\infty} \\ \stackrel{\infty}{\sim} \\ \sim}}{\sim}$
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 6 \mathrm{c}$

${ }^{19}$ F NMR in $\mathrm{CDCl}_{3} 376 \mathrm{MHz} \mathbf{6 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 6d

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz}$ 6d

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} \mathbf{6 d}$

6d

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 6e

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} 400 \mathrm{MHz}$ 6e

$6 \mathbf{6}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 6 e$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound $\mathbf{6 f}$

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z}$ of

6

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 6 f$

6 g
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \mathbf{4 0 0} \mathbf{~ M H z} \mathbf{6 g}$

${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3} 100 \mathrm{MHz} 4 \mathrm{~g}$

$6 g$

10. IPC-MS spectra for Pd-content:

IPC-MS spectra of compound-3m

TEST REPORT

FirstSource Laboratory Solutions LLP. (Analytical Services)

REPORT NO: FSLS(AS)-5231523001	DATE OF ISSUANCE OF REPORT: 27/12/2023	
JOB REGISTRATION NO: FSLS(AS)-5231523	SAMPLE ID: FSLS(AS)-5231523001	
CUSTOMER DETAILS:	SAMPLE DETAILS:	
ISSUED TO:	NAME OF SAMPLE	: IN-BDS-G-32
M/S Curia India Pvt.Ltd	BRAND/ GRADE/ VARIETY	IETY : NA
	BATCH NO/ LOT NO/ CODE	CODE : $\mathrm{IN}-\mathrm{BDS}$-G-32
	DATE OF MANUFACTURING	URING : NA
ADDRESS:		DATE OF EXPIRY : NA \square QUANTITY OF SAMPLE RECEIVED : $\sim 1.0 \mathrm{~g} \times 1$ No
Thurkapally, Shameerpet	QUANTITY OF SAMP	
Genome valley,RR District	MODE OF PACKING	: Packed in sealed vial
Hyderabad-500078.	SEAL DETAILS	: Intact
	ANY OTHER INFORM	ATION : NA
SAMPLE NOT DRAWN BY FSLS(AS)		
TEST DETAILS AND RESULTS:		
SAMPLE REGISTRATION DATE: 22/12/2023	ANALYSIS START DATE: 26/12/2023	ANALYSIS COMPLETED DATE: $26 / 12 / 2023$

S No	TESTS	METHOD	UNIT	RESULT
1	Palladium as Pd	FSLS(AS)/DP-STP-044,VERSION:08	$\mathrm{mg} / \mathrm{kg}$ (ppm)	12.01

Remarks:

1) Samples tested on Received Basis.
2) Instrument used: ICP-MS (Make: Agilent, Model: 7800).
3) ppm: parts per million, mg: milligram, kg: kilogram, NA: Not Applicable.
4) The above reported results are for R\&D information purpose only and not for any regulatory submission or QC release.

For FirstSource Laboratory Solutions LLP. (Analytical Services)

(Sr.Manager - Drugs \& Pharma) Authorized Signatory

[^1]
IPC-MS spectra of compound-4h

FirstSource Laboratory Solutions LLP. (Analytical Services)

REPORT NO: FSLS(AS)-5231523002	DATE OF ISSUANCE OF REPORT: 27/12/2023	
JOB REGISTRATION NO: FSLS(AS)-5231523	SAMPLE ID: FSLS(AS)-5231523002	
CUSTOMER DETAILS:	SAMPLE DETAILS:	
ISSUED TO: M/S Curia India Pvt.Ltd	NAME OF SAMPLE BRAND/ GRADE/ VARIETY BATCH NO/ LOT NO/ CODE DATE OF MANUFACTURING	$:$ IN-MRK-F-100-5 IETY $:$ NA CODE $:$ IN-MRK-F-100-5 URING $:$ NA
ADDRESS: Thurkapally, Shameerpet Genome valley,RR District Hyderabad- 500078.	DATE OF EXPIRY QUANTITY OF SAM MODE OF PACKING SEAL DETAILS ANY OTHER INFOR	$: \mathrm{NA}$ E RECEIVED $: 1.0 \mathrm{~g} \times 1$ No Packed in sealed vial Intact NA
SAMPLE NOT DRAWN BY FSLS(AS)		
TEST DETAILS AND RESULTS:		
SAMPLE REGISTRATION DATE: 22/12/2023	ANALYSIS START DATE: 26/12/2023	ANALYSIS COMPLETED DATE: $26 / 12 / 2023$

S No	TESTS	METHOD	UNIT	RESULT
1	Palladium as Pd	FSLS(AS)/DP-STP-044,VERSION:08	$\mathrm{mg} / \mathrm{kg}(\mathrm{ppm})$	41.20

Remarks:

1) Samples tested on Received Basis,
2) Instrument used: ICP-MS (Make: Agilent, Model: 7800).
3) ppm: parts per million, mg: milligram, kg: kilogram, NA: Not Applicable.
4) The above reported results are for R\&D information purpose only and not for any regulatory submission or QC release.

For FirstSource Laboratory Solutions LLP (Analytical Services)

(Sr.Manager - Drugs \&i. Pharma) Authorized Signatory

IPC-MS spectra of compound-5a

FirstSource Laboratory Solutions LLP. (Analytical Services)
FirstSOurce
Luboratory Solutions
$C_{0 m \text { mitted to }}$ Quallial

S No	TESTS	METHOD	UNIT	RESULT
1	Palladium as Pd	FSLS(AS)/DP-STP-044,VERSION:08	$\mathrm{mg} / \mathrm{kg}(\mathrm{ppm})$	1.88

Remarks:

1) Samples tested on Received Basis.
2) Instrument used: ICP-MS (Make: Agilent, Model: 7800).
3) ppm: parts per million, mg: milligram, kg: kilogram, NA: Not Applicable.
4) The above reported results are for R\&D information purpose only and not for any regulatory submission or QC release.

5a
For FirstSource Laboratory Solutions LLP (Analytical Services)

658659

11. References:

1. Pena, M. A.; Perez Sestelo, J.; Sarandeses, L. A. Palladium-Catalyzed Aryl- Aryl Cross-Coupling Reaction Using Ortho-Substituted Arylindium Reagents. J. Org. Chem. 2007, 72, 1271.
2. Bhattacharjee, P.; Dewan, A.; Boruah, P. K.; Das, M. R.; Mahanta, S. P.; Thakur, A. J.; Bora, U. Bimetallic $\mathrm{Pd}-\mathrm{Ag}$ nanoclusters decorated micro-cellulose bio-template towards efficient catalytic Suzuki-Miyaura coupling reaction of nitrogen-rich heterocycles. Green Chem. 2022, 24, 7208.
3. Chen, W.; Chen, W.; Liu, M.; Wu, H. Construction of heterobiaryl skeletons through Pd-catalyzed cross-coupling of nitroarenes and heterocyclic arylborononate esters with a sterically demanding NHC ligand. Org. Lett. 2022, 24, 6983.
4. Horan, A. M.; Duong, V. K.; McGarrigle, E. M. Synthesis of Bis-heteroaryls Using Grignard Reagents and Pyridylsulfonium Salts. Org. Lett. 2021, 23, 9089.
5. Barder, T. E.; Buchwald, S. L. Efficient catalyst for the suzuki- miyaura coupling of potassium aryl trifluoroborates with aryl chlorides. Org. Lett. 2004, 6, 2649.
6. Pena, M. A.; Perez Sestelo, J.; Sarandeses, L. A. Palladium-Catalyzed Aryl- Aryl Cross-Coupling Reaction Using ortho-Substituted Arylindium Reagents. J. Org. Chem. 2007, 72, 1271.
7. Cervantes-Reyes, A.; Smith, A. C.; Chinigo, G. M.; Blakemore, D. C.; Szostak, M. Decarbonylative Pd-catalyzed Suzuki cross-coupling for the synthesis of structurally diverse heterobiaryls. Org. Lett. 2022, 24, 1678.
8. Saygili, N.; Batsanov, A. S.; Bryce, M. R. 5-Pyrimidylboronic acid and 2-methoxy-5pyrimidylboronic acid: new heteroarylpyrimidine derivatives via Suzuki crosscoupling reactions. Org. Biomol. Chem. 2004, 2, 852.
9. Lai, B.; Ye, M.; Liu, P.; Li, M.; Bai, R.; Gu, Y. A novel and robust heterogeneous Cu catalyst using modified lignosulfonate as support for the synthesis of nitrogencontaining heterocycles. Beilstein J. Org. Chem. 2020, 16, 2888.
10. Tobisu, M.; Yasutome, A.; Yamakawa, K.; Shimasaki, T.; Chatani, N. Ni(0)/NHCcatalyzed amination of N -heteroaryl methyl ethers through the cleavage of carbon-oxygen bonds. Tetrahedron, 2012, 68, 5157.
11. Kudo, N.; Perseghini, M.; Fu, G. C. A versatile method for Suzuki cross-coupling reactions of nitrogen heterocycles. Angew. Chem., Int. Ed. 2006, 45, 1282.
12. Markovic, T.; Rocke, B. N.; Blakemore, D. C.; Mascitti, V.; Willis, M. C. Pyridine sulfinates as general nucleophilic coupling partners in palladium-catalyzed crosscoupling reactions with aryl halides. Chem. Sci. 2017, 8, 4437.
13. Choppin, S.; Gros, P.; Fort, Y. Unusual C-6 Lithiation of 2-Chloropyridine-Mediated by $\mathrm{BuLi}-\mathrm{Me}_{2} \mathrm{~N}$ (CH2) 2OLi. New Access to 6-Functional-2-chloro pyridines and Chloro-bis-heterocycles. Org. Lett, 2000, 2, 803.
14. Guo, P.; Zhang, H.; Zhou, J.; Gallou, F.; Parmentier, M.; Wang, H. Micelle-Enabled Suzuki-Miyaura Cross-Coupling of Heteroaryl Boronate Esters. J. Org. Chem. 2018, 83, 7523.
15. Nguyen, J.; Chong, A.; Lalic, G. Nickel-catalyzed anti-Markovnikov hydroarylation of alkenes. Chem. Sci. 2019, 10, 3231.
16. Liao, J.; Basch, C. H.; Hoerrner, M. E.; Talley, M. R.; Boscoe, B. P.; Tucker, J. W.; Watson, M. P. Deaminative reductive cross-electrophile couplings of alkylpyridinium salts and aryl bromides. Org. Lett. 2019, 21, 2941.

[^0]:

[^1]: Note : This report is subject to the terms \& conditions mentioned overleaf.

