Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Fig. S1 XRD pattern of MoO₃ sample.

Fig. S2 (A) N₂ adsorption–desorption isotherms and (B) pore diameter distribution of MoO₃@Beta and MoO₃/Beta samples.

Fig. S3 FT-IR spectrum of MoO₃ sample.

Fig. S4 UV-Vis spectrum of MoO₃ sample.

Fig. S5 UV Raman spectrum of MoO₃ sample.

Fig. S6 UV Raman spectrum of Beta sample.

Fig. S7 Mo 3d XPS spectra with the etching depth of 0 nm (a) and 30 nm (b) over (A)

MoO₃/Beta and (B) MoO₃@Beta samples.

Fig. S8 High resolution TEM image of MoO_3 @Beta sample. The yellow dash line indicated the presence of intracrystalline mesopores within zeolite crystal.

Scheme S1 Reaction pathways of DBT oxidation.

No.	Catalyst	Mo loading ^b (wt%)	Conversion ^c (%)
1	MoO ₃	-	< 1.0
2	MoO ₃ /Beta	1.00	< 1.0
3	MoO ₃ @Beta	0.95	< 1.0

Table S1 Catalytic activity of various catalysts for oxidative desulfurization of DBT with molecular O_2 .^{*a*}

^a Reaction conditions: catalyst, 0.02 g; model oil (S content, decalin, 500 µg mL⁻¹), 20 mL; O₂

pressure, 1 atm.; flow rate of O₂, 60 mL min⁻¹; temperature, 90 °C; time, 3 h.

^b Calculated by ICP.

^{*c*} Conversion = moles of DBT converted/initial moles of DBT \times 100%.

 Table S2 Comparison of TOF values over heterogeneous catalysts with the oxidant of

 O_2 or air.

Catalyst	Sulfide	Oxidant	Reaction conditions	Conversion	TOF	Ref.
				(%)	(h ⁻¹)	
Mo@Beta	DBT	O ₂	90 °C, 1 mg/1 mL, 6 h	100	26.3	This work
Mo@Beta	DBT	O ₂	100 °C, 1 mg/1 mL, 5 h	100	31.6	This work
CoMo nanosheet	DBT	air	80 °C, 10 mg/20 mL, 5 h	38.0	5.2	1
CoMo nanosheet	DBT	air	90 °C, 10 mg/20 mL, 5 h	70.0	9.6	1
CoMo nanosheet	DBT	air	100 °C, 10 mg/20 mL, 5 h	100.0	13.6	1
CoMo nanosheet	DBT	air	110 °C, 10 mg/20 mL, 2 h	100.0	34.1	1
Co-Mo-O	DBT	air	80 °C, 100 mg/20 mL, 9 h	75.0	0.2	2
Co-Mo-O	DBT	air	100 °C, 100 mg/20 mL, 6 h	82.0	0.4	2
Co-Mo-O	DBT	air	120 °C, 100 mg/20 mL, 3 h	100	0.9	2
Ce-Mo-O	DBT	air	80 °C, 100 mg/20 mL, 8 h	30.0	0.1	3
Ce-Mo-O	DBT	air	90 °C, 100 mg/20 mL, 8 h	50.0	0.1	3
Ce-Mo-O	DBT	air	100 °C, 100 mg/20 mL, 6 h	100	0.4	3
Q5IMo6O24	DBT	O ₂	80 °C, 10 mg/50 mL, 8 h	100	6.3	4
Q5IMo6O24	DBT	O ₂	85 °C, 10 mg/50 mL, 7 h	100	7.1	4
Q5IMo6O24	DBT	O ₂	90 °C, 10 mg/50 mL, 6 h	100	8.3	4
Q5IMo6O24	DBT	O ₂	100 °C, 10 mg/50 mL, 3 h	100	16.7	4
$Q_3Co(OH)_6Mo_6O_1$	DBT	O ₂	80 °C, 11 mg/25 mL, 7 h	100	2.3	5
Pt/h-BN	DBT	air	110 °C, 50 mg/40 mL, 6 h	55.0	8.6	6
Pt/h-BN	DBT	air	120 °C, 50 mg/40 mL, 6 h	62.0	9.7	6
Pt/h-BN	DBT	air	130 °C, 50 mg/40 mL, 6 h	98.0	15.3	6
MoOx/MC-600	DBT	air	110 °C, 10 mg/20 mL, 8 h	43.3	0.7	7
MoOx/MC-600	DBT	air	115 °C, 10 mg/20 mL, 8 h	83.4	1.3	7
MoOx/MC-600	DBT	air	120 °C, 10mg/20 mL, 4 h	97.1	2.9	7
MIL-101(Cr)	DBT	O ₂	120 °C, 5 mg/10 mL, 4 h	100	19.9	8
V ₂ O ₅ /BNNS	DBT	air	110 °C, 200 mg/50 mL, 4 h	72.4	0.6	9
V ₂ O ₅ /BNNS	DBT	air	120 °C, 200 mg/50 mL, 4 h	100	0.9	9
V ₂ O ₅ /BNNS	DBT	air	130 °C, 200 mg/50 mL, 3.5	100	1.0	9
V ₈ @iPAF	DBT	O ₂	80 °C, 20 mg/6 mL, 5 h	100	1.0	10
3DOM WOx	DBT	air	120 °C, 10 mg/20 mL, 7 h	99.9	0.3	11
Atomic-layered	DBT	air	120 °C, 10 mg/50 mL, 10 h	99.7	1.8	12

(continued)							
V ₂ O ₅ BM-3	DBT	air	120 °C, 30 mg/50 mL, 4 h	99.7	0.6	13	
[C ₈ H ₁₇ N(CH ₃) ₃] ₃	DBT	O ₂	90 °C, 40 mg/20 mL, 8 h	100	0.3	14	
[C ₈ H ₁₇ N(CH ₃) ₃] ₃	DBT	O ₂	100 °C, 40 mg/20 mL, 1.25	100	1.7	14	
[C ₈ mim] ₃ H ₃ V ₁₀ O ₂	DBT	air	110 °C, 80 mg/40 mL, 4 h	67.4	1.6	15	
[C ₈ mim] ₃ H ₃ V ₁₀ O ₂	DBT	air	120 °C, 80 mg/40 mL, 4 h	99.8	2.4	15	
[C ₈ mim] ₃ H ₃ V ₁₀ O ₂	DBT	air	130 °C, 80 mg/40 mL, 4 h	100	2.4	15	
[C ₈ H ₁₇ N(CH ₃) ₃] ₃	DBT	O ₂	100 °C, 40 mg/20 mL, 2.5 h	100	0.6	16	
Q ₅ H ₄ PV ₁₄ O ₄₂	DBT	O ₂	90 °C, 40 mg/20 mL, 7 h	100	0.2	17	
$Q_5H_4PV_{14}O_{42}$	DBT	O ₂	100 °C, 40 mg/20 mL, 5 h	100	0.3	17	
MFM-300(V)	DBT	O ₂	120 °C, 3.75 mg/5 mL, 5 h	99.6	6.7	18	

The column of 'Reaction conditions' contained reaction temperature (°C), catalyst dosage (mg), volume of model oil (mL), reaction time (h), respectively.

Turnover frequency (TOF, h^{-1}) was calculated as follows:

$$TOF(h^{-1}) = \frac{S_{conv} \times C_0 \times V_{oil}/t}{m \times \omega/M}$$

S_{conv}: conversion of sulfides;

 C_0 : initial sulfur content, mol L⁻¹;

*V*_{oil}: volume of model oil, L;

t: reaction time, h;

_

m: mass of catalyst dosage, g;

 ω : loading in the catalyst;

M: atomic mass of active metal, g mol⁻¹.

Fig. S9 Reusability of (A) MoO₃/Beta and (B) MoO₃@Beta catalysts in the DBT oxidation. The used catalysts were regenerated by calcination at 600 °C for 6 h after each run. Reaction conditions: model diesel (S content of 500 μg mL⁻¹), 20 mL; DES, 4 g; MoO₃@Beta, 0.02 g; temperature, 90 °C; O₂ pressure, 1 atm.; flow rate of O₂, 60 mL min⁻¹.

Fig. S10 Mo content for fresh and spent $MoO_3/Beta$ catalyst.

Fig. S11 AC-HAADF-STEM image of the spent MoO₃/Beta catalyst regenerated by calcination at 600 °C for 6 h.

No.	Catalyst	Mo loading ^a (wt%)	Conversion ^b (%)
1 ^c	MoO ₃ @Beta[O]	0.95	< 1.0
2^d	MoO ₃ @Beta[O]	0.95	< 1.0

Table S3 Catalytic activity of O_2 -treated MoO_3 @Beta for 3 h in oxidativedesulfurization of DBT with molecular O_2 .

^{*a*} Calculated by ICP.

^{*b*} Conversion = moles of DBT converted/initial moles of DBT \times 100%.

^c Reaction conditions: catalyst, 0.02 g; model oil (S content, decalin, 500 µg mL⁻¹), 20 mL;

temperature, 90 °C; time, 5 h.

^d Reaction conditions: catalyst, 0.02 g; model oil (S content, decalin, 500 μg mL⁻¹), 20 mL; O₂

pressure, 1 atm.; flow rate of O₂, 60 mL min⁻¹; temperature, 90 °C; time, 5 h.

Fig. S12 Selective quenching experiments with (A) L-histidine and (B) ethanol. Reaction conditions: model diesel (S content of 500 μ g mL⁻¹), 20 mL; DES, 4 g; MoO₃@Beta, 0.02 g; quencher, 50% mass ratio to DBT; temperature, 90 °C; O₂ pressure, 1 atm; flow rate of O₂, 60 mL min⁻¹.

References

- Y. Dong, J. Zhang, Z. Ma, H. Xu, H. Yang, L. Yang, L. Bai, D. Wei, W. Wang, H. Chen, Preparation of Co-Mo-O ultrathin nanosheets with outstanding catalytic performance in aerobic oxidative desulfurization, Chem. Commun. 55 (2019) 13995–13998, https://doi.org/10.1039/C9CC07452J.
- [2] Q. Zhang, J. Zhang, H. Yang, Y. Dong, Y. Liu, L. Yang, D. Wei, W. Wang, L. Bai, H. Chen, Efficient aerobic oxidative desulfurization over Co–Mo–O bimetallic oxide catalysts. Catal, Sci. Technol. 9 (2019) 2915–2922, https://doi.org/10.1039/C9CY00459A.
- [3] Y. Shi, G. Liu, B. Zhang, X. Zhang, Oxidation of refractory sulfur compounds with molecular oxygen over a Ce–Mo–O catalyst, Green Chem. 18 (2016) 5273–5279, https://doi.org/10.1039/C6GC01357K.
- [4] H. Lv, Y. Zhang, Z. Jiang, C. Li, Aerobic oxidative desulfurization of benzothiophene, dibenzothiophene and 4,6-dimethyldibenzothiophene using an anderson-type catalyst [(C₁₈H₃₇)₂N(CH₃)₂]₅[IMo₆O₂₄], Green Chem. 12 (2010) 1954–1958, https://doi.org/10.1039/C0GC00271B.
- [5] H. Lv, W. Ren, W. Liao, W. Chen, Y. Li, Z. Suo, Aerobic oxidative desulfurization of model diesel using a B-type anderson catalyst [(C₁₈H₃₇)₂N(CH₃)₂]₃Co(OH)₆Mo₆O₁₈·3H₂O, Appl. Catal. B: Environ. (2013), 138–139, 79–83, https://doi.org/10.1016/j.apcatb.2013.02.034.
- [6] P.W. Wu, Y.C. Wu, L.L. Chen, J. He, M.Q. Hua, F.X. Zhu, X.Z. Chu, J. Xiong, M.Q. He, W.S. Zhu, H.M. Li, Boosting aerobic oxidative desulfurization performance in fuel oil via strong metal-edge interactions between Pt and h-BN, Chem. Eng. J. 380 (2020) 122526, https://doi.org/10.1016/j.cej.2019.122526.

- [7] W. Jiang, J. Xiao, L. Dong, C. Wang, H. Li, Y. Luo, W. Zhu, H. Li, Polyoxometalate-based poly (ionic liquid) as a precursor for superhydrophobic magnetic carbon composite catalysts toward aerobic oxidative desulfurization, ACS Sustain. Chem. Eng. 7 (2019) 15755–15761, https://doi.org/10.1021/acssuschemeng.9b04026.
- [8] A. Gomez-Paricio, A. Santiago-Portillo, S. Navalon, P. Concepcion, M. Alvaro, H. Garcia, MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes, Green Chem.
 18 (2016) 508–515, https://doi.org/10.1039/C5GC00862J.
- [9] C. Wang, Y. Qiu, H. Wu, W. Yang, Q. Zhu, Z. Chen, S. Xun, W. Zhu, H. Li, Construction of 2D-2D V₂O₅/BNNS nanocomposites for improved aerobic oxidative desulfurization performance, Fuel 270 (2020) 117498, https://doi.org/10.1016/j.fuel.2020.117498.
- [10] J. Song, Y. Li, P. Cao, X. Jing, M. Faheem, Y. Matsuo, Y. Zhu, Y. Tian, X. Wang, G. Zhu, Synergic catalysts of polyoxometalate@cationic porous aromatic frameworks: reciprocal modulation of both capture and conversion materials, Adv. Mater. 31 (2019) 1902444, https://doi.org/10.1002/adma.201902444.
- [11] M. Zhang, W. Liao, Y. Wei, C. Wang, Y. Fu, Y. Gao, L. Zhu, W. Zhu, H. Li, Aerobic oxidative desulfurization by nanoporous tungsten oxide with oxygen defects, Appl. Nano Mater. 4 (2021) 1085–1093, https://doi.org/10.1021/acsanm.0c02639.
- [12] C. Wang, H.P. Li, X.J. Zhang, Y. Qiu, Q. Zhu, S.H. Xun, W.S. Yang, H.M. Li, Z.G. Chen,
 W.S. Zhu, Atomic-layered α-V₂O₅ nanosheets obtained via fast gas-driven exfoliation for superior aerobic oxidative desulfurization, Energy Fuels 34 (2020), 2612–2616, https://doi.org/10.1021/acs.energyfuels.9b04401.
- [13] Y. Zou, C. Wang, H. Chen, H. Ji, Q. Zhu, W. Yang, L. Chen, Z. Chen, W. Zhu, Scalable and

facile synthesis of V_2O_5 nanoparticles via ball milling for improved aerobic oxidative desulfurization, Green Energy Environ. 6 (2021) 169–175, https://doi.org/10.1016/j.gee.2020.10.005.

- [14] N.F. Tang, Y.N. Zhang, F. Lin, H.Y. Jiang, Z.X. Lu, C. Li, Oxidation of dibenzothiophene catalyzed by [C₈H₁₇N(CH₃)₃]₃H₃V₁₀O₂₈ using molecular oxygen as oxidant, Chem. Commun. 48 (2012) 11647–11649, https://doi.org/10.1039/C2CC36482D.
- [15] C. Wang, Z.G. Chen, X.Y. Yao, Y.H. Chao, S.H. Xun, J. Xiong, L. Fan, W.S. Zhu, H.M. Li, Decavanadates anchored into micropores of graphene-like boron nitride: efficient heterogeneous catalysts for aerobic oxidative desulfurization, Fuel 230 (2018) 104–112, https://doi.org/10.1016/j.fuel.2018.04.153.
- [16] N.F. Tang, Z.X. Jiang, C. Li, Oxidation of refractory sulfur-containing compounds with molecular oxygen catalyzed by vanadoperiodate, Green Chem. 17 (2015) 817–820, https://doi.org/10.1039/C4GC01790K.
- [17] N.F. Tang, X.P. Zhao, Z.X. Jiang, C. Li, Oxidation of dibenzothiophene using oxygen and a vanadophosphate catalyst for ultra-deep desulfurization of diesels, Chinese J. Catal. 35 (2014) 1433–1437, https://doi.org/10.1016/S1872-2067(14)60194-7.
- [18] X.L. Li, Y.L. Gu, H.Q. Chu, G. Ye, W. Zhou, W. Xu, Y. Y.Sun, MFM-300(V) as an active heterogeneous catalyst for deep desulfurization of fuel oil by aerobic oxidation, Appl. Catal. A: Gen. 584 (2019) 117152, https://doi.org/10.1016/j.apcata.2019.117152.