Supporting Information

Ultra-low Temperature Direct reconstruction of Biomass

Fermentation Ethanol to Higher Alcohols in Water over

Thermostable Hcp-Ni

Xinqi Zheng^a, Bo Chen^a, Juweng Gu^a, Songbai Qiu^{a,b,c}, Xiaoping Wu^{a,b,c}, Qian Zhang^{a,b,c,*}, Tiejun Wang^{a,b,c,*}

^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China, 510006.

^b Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China, 510006.

^c Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.

* Corresponding authors: zhangqian@gdut.edu.cn (Q. Zhang), tjwang@gdut.edu.cn (T. Wang)

Catalysts	BET Area (m²/g)	Pore Size (nm)	Ni (wt%)	N (wt%)	Particle size (nm)
hcp/fcc-Ni@C-1/1-450	59	5.1	78.8	2.7	10.0
hcp/fcc-Ni@C-1/2-450	191	2.8	47.9	5.6	4.62
hcp/fcc-Ni@C-1/4-450	158	2.5	26.5	7.9	3.22
hcp/fcc-Ni@C-1/2-400	49	5.3	44.7	7.1	4.13
hcp/fcc-Ni@C-1/2-500	187	2.8	54.9	5.2	4.31
hcp/fcc-Ni@C-1/2-600	175	3.0	62.9	4.2	5.53

Table S1. Chemical compositions and textural properties of the catalysts.

Figure S1. TEM image of hcp/fcc-Ni@C-1/2-T (T=400 °C, 500 °C, 600 °C, 700 °C)

Figure S2. (a-e) TEM image of hcp/fcc-Ni@C-X-450 (1/4, 1/3, 1/2, 1/1.5, 1/1); (f-i) TEM image of hcp/fcc-Ni@C-1/2-500 with different molecular weight of PVP (Mw=8000, 24000, 58000, 1300000)

Figure S3. (a) N₂ adsorption/desorption isotherms and (b) pore distributions of hcp/fcc-Ni@C-X-T (X=1/1, 1/2, 1/4; T=400, 450, 500, 600); (c) N₂ adsorption/desorption isotherms and (d) pore distributions of fresh and spent hcp/fcc-Ni@C-1/2-500.

Figure S4. The XRD patterns and XPS spectra of hcp/fcc-Ni@C-X-T catalysts: (a) hcp/fcc-Ni@C-X-450 catalysts with different Ni/PVP molar ratio, (b) hcp/fcc-Ni@C -1/2-T catalysts prepared with different carbonization temperature, (c) hcp/fcc-Ni@C-1/2-500 catalysts with different molecular weight of PVP;(d) hcp/fcc-Ni@C-1/2-500 catalysts with different carbonization from 1h to 6h.

Figure S5. XPS spectra of hcp/fcc-Ni@C-1/2-T catalysts synthesized under different carbonization temperatures: (a) Ni 2p spectra, (b) C 1 s spectra, (c) N 1 s spectra, (d) O 1s spectra.

Figure S6. Overall catalytic performance of ethanol aqueous reconstruction over hcp/fcc-Ni@C catalysts (Reaction conditions: 0.3 g catalysts, 0.87 g NaOH, 20g fermentation ethanol solution (50 wt.%); 180 °C,12 h: (a) hcp/fcc-Ni@C-X-450 catalysts, (b) carbon number distribution of (a), (c) hcp/fcc-Ni@C-1/2-T catalysts, (d) hcp/fcc-Ni@C-1/2-500 catalysts with different molecular weight of PVP. (e) Catalytic performances of hcp/fcc-Ni@C-1/2-500 catalysts under different reaction temperatures (Reaction conditions: 0.3 g catalysts, 0.87 g NaOH, 20g fermentation ethanol solution (50 wt.%), 150-230 °C, 12 h. (f) carbon number distribution of (e).

sob catalysts for to recycle runs.										
Conversion		Carbon	Selectivity							
Recycle (%)	balance (%)	n-OH	iso-OH	СНО	LCH	Gas	Other			
1	62.8	86.0	50.5	29.4	1.7	9	8	1.4		
2	62.9	90.8	49.2	27.8	1.5	9.6	10.4	1.5		
3	63.8	84.9	49	28.1	2	10.9	8.5	1.5		
4	64.5	88.7	49.5	28	2.3	8.5	9.5	2.2		
5	65.7	85.6	48.1	31.1	2.7	9.6	7.1	1.3		
6	65.7	85.3	48.6	31.6	1.8	9.8	7.2	0.9		
7	64.5	84.9	49.4	31.1	1.4	9.5	7.5	1.1		
8	67.2	86.4	47.8	31.8	1.6	9.5	8.3	1		
9	67.8	85.9	47.2	32.3	2	9.5	7.1	1.9		
10	65.9	87.6	45.6	32.3	3.3	10.5	6.5	1.9		

Table S2. Catalytic performance of ethanol aqueous reconstruction over hcp/fcc-Ni@C-1/2-500 catalysts for 10 recycle runs.

(Reaction conditions: 0.3 g catalysts, 0.87 g NaOH, 20g fermentation ethanol solution (50 wt.%), 180 °C for 12 h. *n/iso*-OH: C4+ n/iso-alcohol, -CHO: C4+ aldehyde, LCH: C6+ hydrocarbons, Gas: H₂, and C1-C4 hydrocarbons)

	Conversion	Carbon	Selectivity						
Catalyst (%)	balance (%)	n-OH	iso-OH	СНО	LCH	Gas	Other		
5% Pd/C	27.1	90.0	36.7	40.2	0	23	0	0.1	
5% Pt/C	9.7	91.4	73.3	26	0	0	0.8	0	
5% Ru/C	18.6	98.0	47.9	5	0	0	47	0	
fcc- Ni@C	38.5	92.5	60.6	23	2.5	7.1	6.8	0	
hcp/fcc- Ni@C	52.3	90.8	52.4	30.5	6.5	9.4	0.8	0.4	

 Table S3. Comparison of catalytic activities in aqueous ethanol reconstruction over hcp/fcc-Ni@C-1/2-500 catalysts, fcc-Ni@C-1/2-500 catalysts and commercial noble metal catalysts

(Reaction conditions: 0.3 g catalysts, 0.87 g NaOH, 10g fermentation ethanol solution (50 wt.%), 130 °C for 36 h)

Table S4. Evaluation of hcp/fcc-Ni@C-1/2-500 catalysts activity at near-ambient temperatures with prolonged reaction time.

Reaction Reaction Conversion		Conversion	Carbon	Selectivity				
temperature	time (h)	(%)	balance	n-	2-ethyl	n-	C8+	Gas
(°C)	time (ii)	(70)	(%)	butanol	butanol	hexanol	alcohol	Gas
	36	5.9	94.4	99.9	0	0	0	0.1
80	72	9.1	99.0	62	37.7	0	0	0.3
	108	11.7	95.3	53	24.7	17.9	0	0.4
	36	9.1	95.4	43.96	21.05	11.08	23.91	0.2
100	72	13	91.7	51.45	16.87	9.26	22.42	0.6
	108	17.6	92.1	50.25	15.94	8.5	24.66	0.9

(Reaction conditions: 0.3 g catalysts, 0.87 g NaOH, 10g fermentation ethanol solution (50 wt.%))

Table S5. Evaluation of hcp/fcc-Ni@C-1/2-500 catalysts activity at near-ambient temperature with different concentration of ethanol solution.

Contant of	Conversion	Carbon	Selectivity					
		balance (%)	n hutanal	2-ethyl	n-	C8+	Cas	
LIOII	(70)	Datalice (70)	n-butanoi	butanol	hexanol	alcohol	Gas	
3%	1.2	98.0	100	0	0	0	0	
10%	3.1	98.2	100	0	0	0	0	
20%	4.6	96.5	62	37.7	0	0	0.05	
40%	7.8	93.2	53	24.7	17.9	0	0.3	

(Reaction conditions: 0.9 g catalysts, 0.87 g NaOH, fermentation ethanol solution (3-40 wt.%), 80 °C for 72 h)

Figure S7. Rietveld refined XRD pattern of hcp/fcc-Ni@C-500 of different calcination time in N₂: (a) 1h, (b) 4h, (c) 6h,; (d) Rietveld refined XRD pattern of spent hcp/fcc-Ni@C-500 after 10 recycles. The legends are: Obs (observed) and Calc (calculated) patterns, diff (difference) plot between Obs and Calc), and bck (background plot).

Samples	BET Area (m ² /g)	Pore Size (nm)	hcp-Ni content (%)
spent-hcp/fcc-Ni@C-1/2/500	176	3.2	54.6
hcp/fcc-Ni@C-1/2/500	187	2.8	60.7

Table S6. Chemical compositions and textural properties of the spent catalysts.

Figure S8. (a) TEM image of fcc-Ni@C-1/2-500; (b) SAED pattern corresponding to (a); (c) HR-TEM image of fcc-Ni@C-1/2-500; (d) The XRD patterns of hcp/fcc-Ni@C-1/2-500 and fcc-Ni@C-1/2-500.

Catalvat	Reaction	EtOH Conv.	C4+ alcohol	Defense
Catalyst	temperature(°C)	(C%)	Selectivity (C%)) Reference
1.04wt% Ru/Mg ₃ Al1- LDO-P-A.	350	29.6	82.6	Applied Catalysis B- Environmental,2022. 309.
Co _{0.15} Mg _{2.85} AlOx	250	32.9	95.4	Green Chemistry,2023. 25: 2653-2662.
				ACS Sustainable Chemistry &
Cu ₁ Ni ₇ -PMO	320	47.9	72	Engineering,2017. 5: 1738- 1746.
[Ru]-6	150	73.4	100	J Am Chem Soc,2016. 138: 9077-9080.
[Mn]-1	160	11.2	92	J Am Chem Soc,2017. 139: 11941-11948.
Ru-5	130	49	96	ACS Catalysis,2023. 13: 5449- 5455.
BAP-0.25Ni	200	55.6	90.3	ACS Sustainable Chemistry & Engineering,2022. 10: 3466- 3476.
Cu-HAP	250	36.6	86.7	Green Chemistry, Journal of Energy Chemistry,2022. 72: 306-317.
Cu-NiMgAlO	250	30	64.2	Journal of Energy Chemistry,2022. 72: 306-317.
CuMgAl (LDH)	325	59.3	82	ACS Catalysis,2022. 12: 12045-12054.
Ni-MgAlO	275	18.7	85	Journal of Catalysis,2016. 344: 184-193.
Ni-TiO2	210	49.2	69.7	ChemistrySelect,2020. 5: 8669-8673.
10%Ni15%CeO ₂ /AC	250	27.2	85.6	Industrial & Engineering Chemistry Research,2020. 59: 22057-22067.
[Ru(bipy ^{OH})]	80	28	57	Organometallics,2021. 40: 1884-1888.
$[(RPNP)-MnBr(CO)_2] (R = iPr,Cy, tBu, Ph or Ad)$	150	50	50	ACS Catalysis,2018. 8: 997- 1002.
Sn-Ni/CS	230	60	86.4	Applied Catalysis B- Environmental,2023. 321.
NiSn/ MgAlO	250	66.9	93.8	ACS Sustainable Chemistry & Engineering,2021. 9: 11269- 11279.
NiSn@C(CA)	250	48.1	90.8	Energy Conversion and Management,2021. 249.
NiMo@C-3/1	240	89.4	84.6	Chemical Engineering Journal,2023. 461.
	180	62.8	79.9	
hcp/fcc-Ni@C-1/2-	130	52.3	82.9	This work
500	100	17.6	100	THIS WOLK
	80	11.7	100	

Table S7. Catalytic activities of ethanol upgrading to higher alcohols in reported researches.

Figure S9. Configuration diagrams of $C_2H_5OH^*$, transition state (TS) and $C_2H_5O^*+H^*$ for the dehydrogenation and C-C cleavage of ethanol on the hcp-Ni (101) and fcc-Ni (111) models.

- B. W. Yuan, J. Zhang, Z. An, Y. R. Zhu, X. Shu, H. Y. Song, X. Xiang, W. N. Wang, Y. S. Jing, L. R. Zheng and J. He, *Appl Catal B-Environ*, 2022, 309.
- W.-L. Lv, L. He, W.-C. Li, B.-C. Zhou, S.-P. Lv and A.-H. Lu, *Green Chemistry*, 2023, 25, 2653-2662.
- Z. H. Sun, A. C. Vasconcelos, G. Bottari, M. C. A. Stuart, G. Bonura, C. Cannilla, F. Frusteri and K. Barta, *Acs Sustainable Chemistry & Engineering*, 2017, 5, 1738-1746.
- 4. Y. Xie, Y. Ben-David, L. J. Shimon and D. Milstein, J Am Chem Soc, 2016, 138, 9077-9080.
- 5. S. Fu, Z. Shao, Y. Wang and Q. Liu, *J Am Chem Soc*, 2017, **139**, 11941-11948.
- 6. Z. Ni, R. Padilla, L. dos Santos Mello and M. Nielsen, ACS Catalysis, 2023, 13, 5449-5455.
- 7. M. Xue, B. Yang, C. Xia and G. Zhu, ACS Sustainable Chemistry & Engineering, 2022, 10, 3466-3476.
- M. J. G. Mond F. Guo, Heather Job, Carlos Alvarez-Vasco, Senthil Subramaniam, Xiao Zhang, Libor Kovarik, Vijayakumar Murugesan, Steven Phillips, and Karthikeyan K. Ramasamy, green Chemistry, DOI: 10.1039/x0xx00000x.
- Z. Wang, M. Yin, J. Pang, X. Li, Y. Xing, Y. Su, S. Liu, X. Liu, P. Wu, M. Zheng and T. Zhang, Journal of Energy Chemistry, 2022, 72, 306-317.
- B.-C. Zhou, W.-C. Li, W.-L. Lv, S.-Y. Xiang, X.-Q. Gao and A.-H. Lu, ACS Catalysis, 2022, 12, 12045-12054.
- J. Pang, M. Zheng, L. He, L. Li, X. Pan, A. Wang, X. Wang and T. Zhang, *Journal of Catalysis*, 2016, **344**, 184-193.
- 12. S. Li, X. Zhu, H. An, X. Zhao and Y. Wang, *ChemistrySelect*, 2020, 5, 8669-8673.

- 13. Z. Wang, J. Pang, L. Song, X. Li, Q. Yuan, X. Li, S. Liu and M. Zheng, *Industrial & Engineering Chemistry Research*, 2020, **59**, 22057-22067.
- 14. T. A. DiBenedetto and W. D. Jones, *Organometallics*, 2021, 40, 1884-1888.
- 15. N. V. Kulkarni, W. W. Brennessel and W. D. Jones, ACS Catalysis, 2018, 8, 997-1002.
- B. Chen, X. Q. Zheng, J. W. Gu, S. B. Qiu, J. L. Song, X. P. Wu, H. F. Dong, Q. Zhang and T. J. Wang, *Appl Catal B-Environ*, 2023, 321.
- 17. X. Wu, X. Cai, Q. Zhang, P. Bi, Q. Meng, Y. Pi and T. Wang, ACS Sustainable Chemistry & Engineering, 2021, 9, 11269-11279.
- W. P. Liu, B. Chen, Q. Zhang, S. B. Qiu, X. P. Wu, Q. W. Meng, L. Ma and T. J. Wang, *Energy Conversion and Management*, 2021, 249.
- 19. J. Liao, Z. Liu, Y. Ling, Q. Zhang, S. Qiu, J. Gu, J. Li, H. Dong, J. Song and T. Wang, *Chemical Engineering Journal*, 2023, **461**.