Supporting Information

First application of antimony(III) corrole for electrocatalytic

hydrogen evolution

Qiao-Wei Yan, ${ }^{a}$ Ling-Wei Wu, ${ }^{\text {a }}$ Zhen-Wu Liu, ${ }^{a}$ Feng Chen, ${ }^{a}$ Chen Ling, ${ }^{a}$ Hai-Yang

 Liu, ${ }^{\text {a, }}$ * Xin-Yan Xiao, ${ }^{\text {a, }}$, Li-Ping Si, ${ }^{\text {b* }}$a. School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, P.R. China.
b. School of Materials Science and Energy, Foshan University, Foshan 528000, P. R. China
*Corresponding authors: chhyliu@scut.edu.cn, cexyxiao@scut.edu.c, lipingsi@fosu.edu.cn

Experimental Instrumentation

UV-Vis spectra in $\mathrm{CH}_{3} \mathrm{CN}$ solution were recorded on aHitachi U-3010 spectrophotometer at room temperature. HRMS was performed using aBruker Maxis impact mass spectrometer with an electrospray ionization (ESI) source. 1H and 19F spectra were recorded atroom temperature using aBruker Avance $1 I I 400 \mathrm{MHz}$ in CDCl_{3} solution. XPS was acquired using Thermo Scientific K-Alpha + electron spectrometer from Thermo Fisher using 225 WAIK α radiation, correcting the binding energies by comparing to C1s peak (284.8 eV) by the adventitious hydrocarbon. The single crystal structure of the complex was obtained from Rigaku Oxford Diffraction. SEM observations were performed on aNova NanoSEM 430 scanning electron microscope.

Synthetic of 10-(4-nitrophenyl)-5,15-bis-pentafluorophenyl corrole (4-NBPC)

Fig S1. Schematic of the synthesis of 2-NBPC,3-NBPC and 4-NBPC
The specific synthesis steps are exemplified by 4-NBPC. Add 320 mL of vacuum-distilled pyrrole and 5.60 g of pentafluorobenzaldehyde (28.56 mmol) into a 500 mL roundbottomed flask, then add $240 \mu \mathrm{~L}$ of trifluoroacetic acid, stir at room temperature for 4 hours, next add $220 \mu \mathrm{~L}$ of triethylamine to neutralize the reaction. for 1 hour. Remove excess pyrrole by distillation under reduced pressure, fill the column with 100 ~ 200 mesh silica gel, and purify the product with the eluent of dichloromethane (DCM)/hexane (Hex) $(\mathrm{V} / \mathrm{V})=1 / 1$ to obtain beige powder 5-(pentafluorophenyl)-dipyrromethane as solid

Dissolve 0.151 g 4 -nitrobenzaldehyde (1.0 mmol) and 0.629 g 5 -(pentafluorophenyl)dipyrromethane (2.0 mmol) in 125 mL of methanol in a 500 mL dry round-bottomed flask, stir thoroughly to dissolve. Then, a solution of HCl aq $(36 \%, 15 \mathrm{~mL})$ dissolved in 125 mL H 2 O was added, and the reaction was stirred at room temperature for 4 hours. After extraction three times with DCM and H 2 O , it was dried over anhydrous sodium sulfate. Then 1.2 g of p -chlorobenzoquinone was added and the reaction was stirred for 2 hours. Use $300 \sim 400$ mesh silica gel as column chromatography and DCM/Hex = 3/1 as the eluent to obtain pure corrole solid. After recrystallization from DCM/Hex to obtain pure purple 10-(2-nitrophenyl)-5,15-bis-pentafluorophenyl corrole (4-NBPC) (210 mg , yield 28.65\%). MS: (ESI-HRMS) m/z $752.1165[\mathrm{M}+\mathrm{H}]^{+}$, calculated: $\mathrm{m} / \mathrm{z} 752.1139[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 9.14$ (d, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.76 (d, $J=4.7 \mathrm{~Hz}, 2 \mathrm{H}$), $8.70-8.53$ (m, 6 H), 8.37 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform- d) $\delta-137.88$ ($\mathrm{d}, J=20.6 \mathrm{~Hz} 4 \mathrm{~F}$), -152.28(2F), -161.50(4F).

Synthetic of 10-(4-nitrophenyl)-5,15-bis-pentafluorophenyl Antimony corrole (4-NBPC-Sb)

Fig S2. Schematic of the synthesis of 1-3
The specific synthesis steps are exemplified by 4-NBPC-Sb. Dissolve $200 \mathrm{mg} 4-$ NBPC $(0.27 \mathrm{mmol})$ and 1 g SbCl 3 in a round-bottomed flask with 20 ml pyridine. Then the temperature was raised to $100^{\circ} \mathrm{C}$ and reacted for 1 hour, and the solution turned into dark green. Remove excess solvent with a rotary evaporator, and fill the column with 100 ~ 200 mesh silica gel. Use dichloromethane (DCM)/hexane (Hex) (V/V) $=1 / 1$ as an eluent to purify the product. After recrystallization obtain green solid (205 mg , yield 86.50%) MS: (ESI-HRMS) m/z 868.9868 [M], calculated: $\mathrm{m} / \mathrm{z} 868.9869$ [M]. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 9.34$ (dd, $J=5.9,4.1 \mathrm{~Hz}, 2 \mathrm{H}$), $9.00-8.91(\mathrm{~m}, 2 \mathrm{H}), 8.81(\mathrm{dd}, J=7.5,4.4 \mathrm{~Hz}$, $4 \mathrm{H}), 8.65(\mathrm{~s}, 3 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform-d) δ-136.62-137.05 (m,2F), -137.19-137.86 (m,2F), -152.12-152.91 (m,2F), -159.98-162.76 (m,4F).

Synthetic of 10-(3-nitrophenyl)-5,15-bis-pentafluorophenyl corrole (3-NBPC)

The synthetic route was similar to 4-NBPC, after recrystallization from DCM/Hex to obtain pure corrole (260 mg , yield 35.47\%).: MS: (ESI-HRMS) m/z $752.1167[\mathrm{M}+\mathrm{H}]^{+}$, calculated: m/z $752.1165[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform-d) $\delta 9.14$ ($\mathrm{d}, \mathrm{J}=4.2 \mathrm{~Hz}$, 2 H), 9.04 (s, 1H), 8.77 (d, $J=4.7 \mathrm{~Hz}, 2 \mathrm{H}$), $8.69-8.54(\mathrm{~m}, 5 \mathrm{H}), 8.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ ($\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform-d) $\delta-137.68$ ($\mathrm{d}, \mathrm{J}=24.3 \mathrm{~Hz}, 2 \mathrm{~F}$), -138.00 (d, $J=24.2 \mathrm{~Hz}, 2 \mathrm{~F}),-152.39(\mathrm{~d}, J=26.9 \mathrm{~Hz}, 2 \mathrm{~F}),-161.57$ (dd, $J=86.2,22.5 \mathrm{~Hz}, 4 \mathrm{~F})$.

Synthetic of 10-(3-nitrophenyl)-5,15-bis-pentafluorophenyl Antimony corrole (3-NBPC-Sb)

The synthetic route was similar to 4-NBPC-Sb, after recrystallization obtain pure antimony corrole (215 mg , yield 90.72\%): MS: (ESI-HRMS) m/z 868.9869 [M], calculated: $\mathrm{m} / \mathrm{z} 868.9869$ [M]. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 9.34(\mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 9.24 ($\mathrm{s}, 1 \mathrm{H}$), $8.97(\mathrm{dt}, J=4.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.89-8.67(\mathrm{~m}, 5 \mathrm{H}), 8.67-8.61(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz, Chloroform-d) δ-135.81-137.73 (m, 4F), -152.58 (t, J = $20.8 \mathrm{~Hz}, 2 \mathrm{~F}$), -161.65 (d, $J=103.5 \mathrm{~Hz}, 4 \mathrm{~F}$).

Synthetic of 10-(2-nitrophenyl)-5,15-bis-pentafluorophenyl corrole (2-NBPC)

The synthetic route was similar to 4-NBPC, after recrystallization from DCM/Hex to obtain pure corrole (241 mg , yield 32.88\%): MS: (ESI-HRMS) m/z $752.1162[\mathrm{M}+\mathrm{H}]^{+}$, calculated: m/z $752.1165[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 9.10$ (d, J = 4.4 Hz ,
$2 \mathrm{H}), 8.69(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.60-8.43(\mathrm{~m}, 4 \mathrm{H}), 8.42-8.36(\mathrm{~m}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.01-$ $7.92(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz, Chloroform-d) $\delta-137.25(\mathrm{~d}, \mathrm{~J}=32.3 \mathrm{~Hz}, 2 \mathrm{~F}),-137.56-$ 138.60 (m, 2F), -152.61 (2F), -161.67 (d, J = $156.8 \mathrm{~Hz}, 4 \mathrm{~F})$.

Synthetic of 10-(2-nitrophenyl)-5,15-bis-pentafluorophenyl Antimony corrole (2-NBPC-Sb)

The synthetic route was similar to 4-NBPC-Sb, after recrystallization obtain pure antimony corrole (209 mg , yield 88.19%): MS: (ESI-HRMS) m/z 868.9874 [M], calculated: $\mathrm{m} / \mathrm{z} 868.9869[\mathrm{M}] .{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 9.31(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.91 (dd, $J=$ $4.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $8.82-8.74(\mathrm{~m}, 2 \mathrm{H}), 8.67(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.49-8.43(\mathrm{~m}, 1 \mathrm{H}), 8.08-$ $8.03(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{tt}, J=7.5,5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform-d) $\delta-136.35$ (dd, $J=24.1,7.0 \mathrm{~Hz}, 2 \mathrm{~F}),-137.72(\mathrm{dd}, J=24.3,8.4 \mathrm{~Hz}, 2 \mathrm{~F}),-152.72(2 \mathrm{~F}),-160.96-163.37(\mathrm{~m}, 2 \mathrm{~F})$.

Fig S3. 1H NMR spectrum of 4-NBPC

Fig S4. ${ }^{19}$ F NMR spectrum of 4-NBPC

Fig S5. ESI-HRMS spectrum of 4-NBPC

Fig S6. 1H NMR spectrum of Complex 3

Fig S7. 19F NMR spectrum of Complex 3

Fig S8. ESI-HRMS spectrum of Complex 3

Fig S9. 19F NMR spectrum of 3-NBPC

Fig S10. 19F NMR spectrum of 3-NBPC

Fig S11. ESI-HRMS spectrum of 3-NBPC

Fig S12. 1H NMR spectrum of Complex 2

Fig S13. 19F NMR spectrum of Complex 2

Fig S14. ESI-HRMS spectrum of Complex 2

Fig S15. 1H NMR spectrum of 2-NBPC

Fig S16. 19F NMR spectrum of 2-NBPC

Fig S17. ESI-HRMS spectrum of 2-NBPC

Fig S18. 1H NMR spectrum of Complex 1

Fig S19. 19F NMR spectrum of Complex 1

Fig S20. ESI-HRMS spectrum of Complex 1

Fig S21. XPS spectra for C1s of complexes 1-3.

Fig S22. XPS spectra for F1s complexes 1-3.

Fig S23. XPS survey scan spectrum of complexes 1-3.

Fig S24. the maximum current (ip) plots of [Sb-corrole]/[Sb-corrole] reduction and first oxidation waves vs. the scan rate ($\mathrm{v}^{1 / 2}$). complex $\mathbf{1}(\mathrm{a}, \mathrm{d}), \mathbf{2}(\mathrm{b}, \mathrm{e})$, and $\mathbf{3}(\mathrm{c}, \mathrm{f})$

Fig 25. CVs of 0.2 mM antimony complexes 1-3 (a-c) with increasing amounts of TFA from 0 to 38 equivalents in N 2 -saturated $\mathrm{CH}_{3} \mathrm{CN}$

Fig S26. CVs of bare glassy carbon electrode(black), 2-NBPC(red), and 2-NBPCSb (blue) with 38.eq TFA in $\mathrm{CH}_{3} \mathrm{CN}$

Fig S27. UV-Vis spectra of 0.2 mM complexes 1-3 in $\mathrm{CH}_{3} \mathrm{CN}$ with 2 or 38 mM TFA(a-c) and 2 or 38 mM TsOH(d-f)

Fig S28. $\mathrm{E}_{\text {ocp }}$ of complex 1-3 by using TFA(a-c) and TsOH(d-f) as proton source

Fig S29. Plot of $\mathrm{i}_{\text {cat }}$ of complexes 1-3 versus TFA(a-c) and TsOH(d-f) concentrations

Fig S30. The hydrogen calibration plot from GC measurements.

Fig S31. Charge buildup of bare glassy at a range of overpotentials in buffer solutions at $\mathrm{pH}=7.00$

Fig S32. Charge buildup of $1.25 \mu \mathrm{M}$ complexes 1-3 at a range of overpotentials in buffer solutions at $\mathrm{pH}=7.00$ (a-c). The TOF values of $1.25 \mu \mathrm{M}$ complexes 1-3 at different overpotentials were calculated (d)

Fig S33. GC analysis for identification and quantification the hydrogen production after 1 h of electrolysis by complexes 1-3 (1.25 $\mu \mathrm{M}$) in neutral aqueous medium ($\mathrm{V}_{\mathrm{DMF}} / \mathrm{V}_{\mathrm{H} 2 \mathrm{O}}=1 / 2$), the black line refers the control without catalyst.

Fig S34. Current versus time for 4 h of $1.25 \mu \mathrm{M}$ complexes 1-3 in buffer solution at $\mathrm{pH}=7.0$ at -1.9 V

Fig S35. CVs of the GC working electrode before and after electrolysis in buffer

Fig S36. SEM images and EDX data of GC electrodes before (a-c) and after (d-f) electrolysis

Complex	Proton source	Overpotent ial (mV)	$\begin{aligned} & \hline \text { TOF } \\ & \left(\mathrm{s}^{-1}\right) \end{aligned}$	Refs.
1	TFA	642	17.65	This work
1	TSOH	413	13.61	This work
2p	TFA	900	23.5	1
3P	TFA	900	19.4	1
4P	TFA	900	9.5	1
(tpfc) $\mathrm{MoV}(\mathrm{O}$)	DMF-H+	/	23	2
3 (tpfc) $\mathrm{MoV}(\mathrm{O}) \mathrm{Br}_{8}$	DMF-H+	/	2.48	2
```cobalt meso-5,15-bis(pentafluorophenyl)-10-(3formylphenyl)corrole```	TFA	600	$134.5$	3
```cobalt meso-5,15- bis(pentafluorophenyl)-10-(3- formylphenyl)corrole```	TSOH	600	62.17	3
1-PPh3	TFA	1010	11	4
2-PPh3	TFA	1010	17	4
2-Py	TFA	1010	15	4
2-Py	TFA	1010	19	4
[$\mathrm{Ni}-2]^{-}$	TFA	360	3700	5
[Ni-3] ${ }^{-}$	TFA	560	1500	5
$(t p f c) \mathrm{Cu}$	TFA	/	49	6
(($\left.\mathrm{CF}_{3}\right) 3$-tpfc) Cu	TFA	/	356	6
((CF ${ }_{3}$)4-tpfc) Cu	TFA	/	227	6

Table S1. TOF and overpotencial of corrole complexes as electrocatalysts for HER

Complex	Charge/C	Hydrogen gas/ $\mu \mathrm{mol}$	FE/\%
$\mathbf{1}$	2.38	9.84	80
$\mathbf{2}$	2.10	7.53	69
$\mathbf{3}$	2.01	7.38	71

Table S2. The amount of charge in one hour of electrolysis, the number of moles of hydrogen, and the FE in neutral buffer solution.(Blanks deducted)

Identification code	Complex 1
Empirical formula	$\mathrm{C}_{37} \mathrm{H}_{12} \mathrm{~F}_{10} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Sb}$
Formula weight	870.27
Temperature/K	100
Crystal system	orthorhombic
Space group	Pbca
a/Å	11.3971(4)
b/Å	14.1237(6)
c/Å	37.4265(14)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	6024.5(4)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.919
μ / mm^{-1}	1.027
F(000)	3408.0
Crystal size/mm ${ }^{3}$	$0.12 \times 0.08 \times 0.05$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.184 to 52.768
Index ranges	$-13 \leq h \leq 14,-17 \leq k \leq 16,-46 \leq 1 \leq 46$
Reflections collected	26904
Independent reflections	$6145\left[\mathrm{R}_{\text {int }}=0.1037, \mathrm{R}_{\text {sigma }}=0.0775\right]$
Data/restraints/parameters	6145/0/496
Goodness-of-fit on F^{2}	1.039
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0512, \mathrm{wR}_{2}=0.1049$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0853, \mathrm{wR}_{2}=0.1194$
Largest diff. peak/hole / e \AA^{-3}	0.70/-0.88

Table S3. Crystal data and structure refinement for complex 1

Identification code
Empirical formula

Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\mathrm{V} /{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$1>=2 \sigma(I)$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

Complex 2
$\mathrm{C}_{37} \mathrm{H}_{12} \mathrm{~F}_{10} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Sb}$
870.27

100
monoclinic
$P 2_{1} / n$
14.0880(4)
7.8247(2)
30.2785(9)

90
102.7170(10)

90
3255.85(16)

4
1.775
0.950
1704.0
$0.09 \times 0.05 \times 0.04$
MoK $\alpha(\lambda=0.71073)$
4.528 to 52.79
$-17 \leq h \leq 12,-8 \leq k \leq 9,-37 \leq \mathrm{l} \leq 37$
24091
$6552\left[\mathrm{R}_{\text {int }}=0.0561, \mathrm{R}_{\text {sigma }}=0.0462\right]$
6552/0/496
0.999
$R_{1}=0.0875, w R_{2}=0.2398$
$R_{1}=0.1050, w R_{2}=0.2634$
5.23/-0.87

Atom		Bond length, \AA	Atom			Angle/ ${ }^{\circ}$
Sb	N1	2.120(4)	N1	Sb1	N3	124.81(16)
Sb	N4	2.113(4)	N1	Sb1	N2	78.71(16)
Sb	N3	2.142(4)	N4	Sb1	N1	71.75(15)
Sb	N2	2.127(4)	N4	Sb1	N3	79.17(15)
O1	N5	1.241(6)	N4	Sb1	N2	126.29(16)
02	N5	1.219(6)	N2	Sb1	N3	82.58(15)
N5	C14	1.465(7)	01	N5	C14	117.9(5)
			O 2	N5	01	123.8(5)
			O 2	N5	C14	118.3(4)

Table S5. Crystal data and structure refinement for complex 1

Atom		Bond length, A	Atom			Angle/ ${ }^{\circ}$
Sb1	N4	$2.131(6)$	N 4	Sb 1	N 1	$125.3(2)$
Sb1	N 2	$2.119(7)$	N 2	Sb 1	N 4	$78.6(3)$
Sb1	N 3	$2.125(7)$	N 2	Sb 1	N 3	$124.6(3)$
Sb1	N 1	$2.132(7)$	N 2	Sb 1	N 1	$71.8(3)$
O1	N 5	$1.220(10)$	N 3	Sb 1	N 4	$82.4(2)$
O2	N 5	$1.223(9)$	N 3	Sb 1	N 1	$78.4(3)$
N5	C 15	$1.474(12)$	O 1	N 5	O 2	$123.4(8)$
			O 1	N 5	C 15	$119.2(7)$
			O 2	N 5	C 15	$117.4(8)$

Table S6. Crystal data and structure refinement for complex 2.

Complex	oxidation	Redution	
	$\mathrm{Sb}^{\mathrm{III} / \mathrm{Sb}^{\mathrm{IV}}}$	$-\mathrm{NO}_{2} \mathrm{Ph}$	[Sb-corrole] /[Sb-corrole] ${ }^{-}$
$\mathbf{1}$	0.48	-1.05	-1.48
$\mathbf{2}$	0.47	-1.08	-1.50
$\mathbf{3}$	0.45	-1.12	-1.50

Table S7. Peak potentials of complexes 1-3 in $\mathrm{CH}_{3} \mathrm{CN}$ containing $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$.

Reference:

1 G. Yang, Z. Ullah, W. Yang, H. W. Kwon, Z.-X. Liang, X. Zhan, G.-Q. Yuan and H.-Y. Liu, ChemSusChem, n/a, e202300211.

2 P. Yadav, I. Nigel-Etinger, A. Kumar, A. Mizrahi, A. Mahammed, N. Fridman, S. Lipstman, I. Goldberg and Z. Gross, iScience, 2021, 24, 102924.

3 J.-J. Fang, J. Lan, G. Yang, G.-Q. Yuan, H.-Y. Liu and L.-P. Si, New J. Chem., 2021, 45, 5127-5136.

4 A. Kumar, S. Fite, A. Raslin, S. Kumar, A. Mizrahi, A. Mahammed and Z. Gross, ACS Catal., 2023, 13, 13344-13353.

5 Q.-C. Chen, S. Fite, N. Fridman, B. Tumanskii, A. Mahammed and Z. Gross, ACS Catal., 2022, 12, 4310-4317.

6 K. Sudhakar, A. Mahammed, Q.-C. Chen, N. Fridman, B. Tumanskii and Z. Gross, ACS Appl. Energy Mater., 2020, 3, 2828-2836.

