Supporting Information

High astaxanthin production by *Xanthophyllomyces dendrorhous* strain DW6 from cane molasses using two-stage pH strategies

Dawei Zhou^a, Lixin Yang^a, Fang Guo^a, Wankui Jiang^a, Yujia Jiang^a,

Wenming Zhang^{a,b*}, Fengxue Xin^{a,b*}, Min Jiang^{a,b},

^aState Key Laboratory of Materials-Oriented Chemical Engineering,

College of Biotechnology and Pharmaceutical Engineering,

Nanjing Tech University, Nanjing, China

^bJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM),

Nanjing Tech University, Nanjing, China

* Corresponding authors at: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing 211800, P. R. China.
E-mail addresses: bioengine@njtech.edu.cn (M. Jiang)
xinfengxue@njtech.edu.cn (F.X. Xin)

Figure S3 Α

B

	1					
sample	Raw_Read_Number	Raw_Bases	Raw_Q20_Rate	Raw_Q30_Rate	Useful_read%	Useful_bases%
A35_1	48042684	7254445284	98.02	94.46	98.50	98.37
A35_2	49961406	7544172306	97.85	94.05	98.37	98.22
A35_3	47446656	7164445056	97.94	94.25	98.45	98.31
B35_1	52591860	7941370860	98.16	94.79	98.60	98.46
B35_2	48368232	7303603032	97.87	94.11	98.35	98.21
B35_3	49750124	7512268724	98.13	94.75	98.54	98.39
A94_1	49905082	7535667382	97.82	93.95	98.38	98.27
A94_2	45213324	6827211924	97.94	94.25	98.49	98.35
A94_3	45822160	6919146160	97.91	94.21	98.42	98.30
B 94_1	48979232	7395864032	97.91	94.17	98.48	98.34
B94_2	51102186	7716430086	97.99	94.37	98.52	98.38
B94_3	46943398	7088453098	98.15	94.76	98.64	98.49

Table S1Transcriptome data quality statistics.

sample	Clean_Reads	Total_Mapped	Multiple_Mapped	Uniquely_Mapped
A35_1	47322812	98.25%	2.45%	97.55%
A35_2	49146832	98.19%	2.48%	97.52%
A35_3	46709620	98.25%	2.44%	97.56%
B35_1	51855188	98.17%	2.38%	97.62%
B35_2	47571500	98.06%	2.32%	97.68%
B35_3	49022214	98.14%	2.33%	97.67%
A94_1	49099072	98.11%	2.37%	97.63%
A94_2	44528948	98.06%	2.38%	97.62%
A94_3	45098386	98.09%	2.41%	97.59%
B94_1	48233764	98.12%	2.22%	97.78%
B94_2	50347726	98.03%	2.22%	97.78%
B94_3	46303488	98.14%	2.19%	97.81%

Table S2Reference genome comparison results

Characteristic	Abridge	Name	35 h	94 h
	11dD	L-lactate dehydrogenase	-2.41	+2.44
Desmarate	acs	acetyl-CoA synthetase	-1.52	/
Pyruvale	LDHD	D-lactate dehydrogenase	-1.25	+1.72
metabolism	aldh	aldehyde dehydrogenase	/	-1.47
	adhp	alcohol dehydrogenase		-1.6
Aming goid	ALDH	aldehyde dehydrogenase	-3.62	/
Amino acid	fadi	acetyl-CoA acyltransferase	-1.74	/
degradation	EGT2	hercynylcysteine S-oxide lyase	-1.68	/
	PepN	aminopeptidase N	-1.45	/
	ggt	glutathione hydrolase	-1.04	/
Clutathiona	gst	glutathione S-transferase	-1.61	+2.34
matchaliam	Trys	trypanothione synthetase/amidase	-2.23	/
metabolism	TryR	trypanothione-disulfide reductase	-1.64	/
		ribonucleoside-diphosphate		1
	KKMI	reductase subunit M1	-1.5	/
	DTTCA	peroxisomal long-chain fatty acid	2.14	12.70
Derevisore	P152	import protein	-2.14	+2.19
biogeneoic	PEX5	peroxin-5	-1.88	+2.76
Diogenesis	PTS1	carnitine O-acetyltransferase	-1.91	+1.66
	PEX13	peroxin-13	-1.4	+1.75

Table S3Enrichment analysis of differential genes in pyruvate metabolism.

	PEX12	peroxin-12	/	+1.94
	PEX10	peroxin-10	-2.8	/
	PEX2	peroxin-2	/	+1.76
	PEX6	peroxin-6	/	+2.03
	PEX1	peroxin-1	/	+1.15
	PEX16	peroxin-16	/	+2.83
	PEX3	peroxin-3	/	+1.94
	PEX19	peroxin-19	-1.67	+2.03
	PXMP4	peroxisomal membrane protein 4	-1.65	+2.48
	PMP34	peroxisomal adenine nucleotide	2 22	+2.96
		transporter	-2.22	
	UMCCS	hydroxymethylglutaryl-CoA	/	+1.98
	HMGCS	synthase	/	
	FDPS	farnesyl diphosphate synthase	-1.81	/
	heps	heptaprenyl diphosphate synthase	-1.29	/
Terpenoid	CODE1	geranylgeranyl diphosphate	-1.64	. 1 71
backbone	GGPS1	synthase		+1./1
biosynthesis	ERG6	sterol 24-C-methyltransferase	-1.41	
	ERG7	lanosterol synthase	-2.21	-2.2
	ERG24	Delta14-sterol reductase	/	-2.13
	ERG25	methylsterol monooxygenase	/	1.8
	ERG3	Delta7-sterol 5-desaturase	/	1.73

	ERG7	lanosterol synthase	-2.21	-2.2
	ERG2	C-8 sterol isomerase	/	-1.16
	ERG4	Delta24(24(1))-sterol reductase	+2.06	-1.24
	ATG32	autophagy-related protein 32	+2.13	/
	DNM1	dynamin 1-like protein	+1.99	/
Mitorham	F1S1	mitochondrial fission 1 protein	+1.8	/
Mitophagy-		mitochondrial distribution and	0.50	/
yeast	MDM34	morphology protein 34	+2.78	
	MDM10	mitochondrial distribution and	. 2. 22	1
		morphology protein 10	+2.23	/
	ACSL	long-chain acyl-CoA synthetase	/	+2.61
Fatty acid	Fas1	fatty acid synthase subunit beta	/	-1.86
biosynthesis	ACACA	acetyl-CoA carboxylase	/	-1.64
	ACSL	long-chain acyl-CoA synthetase	/	+2.61
Fatty acid	acd	acyl-CoA dehydrogenase	/	+2.98
degradation	ACOX1	acyl-CoA oxidase	/	+3.16
	fadA	acetyl-CoA acyltransferase	-2.08	+2.79

Table S4	
Name	Sequences
18S-F	TTGAACTTCAGGCCTGGTCG
18S-R	AGGCCTGCTTTGAACACTCT
PTS2-F	GATGGCTGTGATCTCTGGAGG
PTS2-R	CTTGGAGGGATGTGGTCAAAGA
PEX5-F	TTCTGCTCAACGAGGAAAAGGC
PEX5-R	CATCGTCTGAGGATCGAACGC
PEX19-F	ATGATTTGGATGACTTGATCCCTTCG
PEX19-R	CTTCATCTCCATCCTCCCCGG
PMP34-F	TTAGCAGTTCGATTGCCGTTACAT
PMP34-R	AGAAGAAGTAGGCATACTGCATAGAG
gst-F	AACACTATTGCCGAGTCCGG
gst-R	GCATCAAACTACCCTCGGCA
TRYS-F	actggtgcgtaagggactgt
TRYS-R	atcggtggaggggtagacaag
ATG32-F	tgaacttaatcaagacattaggcatctgac
ATG32-R	cagttccgcatttgcaaatatgtct
MDM10-F	CGGTCTTTATACAAGCAGGCTCTC
MDM10-R	AAAGAGAAGGCTGGATTTGACGG
MDM34-F	GTTCTCTCATTCGTTGTTCAGATCAGC
MDM34-R	ATCATCAGGTGGAGGTTCAGGAG
ACSL-F	CGACAAGCTCGAATGGATCAGC
ACSL-R	AGATACCGACACCCCATCCAC
ERG7-F	CATAAGCTCTCCAACGCTATCTCTCC
ERG7-R	CACCATCCGATAGTTCCTTTCTAAGGC
GGPS1-F	GGACGGGAAGAAGAAGCTCTACA
GGPS1-R	GCCAAAGACGCGGTAATGAG
ERG4-F	ACATTTTCGATACCGCAAACTCCC
ERG4-R	TAAGAAGCTTGCTACCATGCTGAGT
acd-F	TGGCTGATTTGACGGGAGCAAA
acd-R	ATCGAACGAGGAGACATCCTCA
fadA-F	GAGGCTTCGACCGATTCTACTACC
fadA-R	CGAGGAAAGGAGCGTTGGAC
11dh-F	CTCTGCTCTCACATTGGCAGC
11dh-R	GATCCATAGGCTGTCTTTGGTATTGT