Sulfur vacancies and Ni₂P co-catalyst synergistically boosting

Zn_{0.5}Cd_{0.5}S photocatalytic H₂ evolution

Lindong Xia[#], Wenzhen Qin[#], Yu Xie*, YiqiaoWang, Yun Ling

College of Environment and Chemical Engineering, Nanchang Hangkong University,

Nanchang, 330063, China

Corresponding authors: Yu Xie

Email addresses: <u>xieyu_121@163.com</u> (Y. Xie)

Tel.: +86(791) 83953408, Fax: +86(791) 83953373

[#] These authors contributed equally to this work

Fig. S1 (a) Zeta potentials of Ni₂P, ZCS, Vs-ZCS, Vs-ZCS/Ni₂P-5%; (b) XRD pattern

of ZCS, Vs-ZCS, Vs-ZCS/Ni₂P-x%

Fig. S2 SEM images of Vs-ZCS (a), Ni_2P (b), Vs-ZCS/ Ni_2P -5% (c)

Fig. S3 EPR spectra of Vs-ZCS/Ni₂P-5%

Fig. S4 UV-vis DRS spectra (a) and band gap spectra (b) of ZCS, Vs-ZCS and Vs-

ZCS/Ni₂P-5%

Fig. S5 Mott-Schottky plots of Vs-ZCS (a) and Ni₂P(b)

Samples	$S_{BET} (m^2/g)$	Pore volume (cm ³ /g)
Vs-ZCS	30.1790	0.184686
Ni ₂ P	67.5146	0.275776
Vs-ZCS/Ni ₂ P-5%	45.6236	0.267017

Table S1 Surface area and pore volume of Vs-ZCS, Ni_2P , and Vs-ZCS/ Ni_2P -5%

Table S2 Comparison of Vs-ZCS/Ni_2P-5% photocatalytic hydrogen production

Dhata aata kusta	Light Source	Performance	Reference	
Photocatarysts	Scavenger	$(mmol \cdot h^{-1} \cdot g^{-1})$		
Co ₉ S ₈ /Zn _{0.5} Cd _{0.5} S	300 W Xe lamp (λ>400 nm)	10.00	S1	
	Na ₂ S/Na ₂ SO ₃	10.90		
PtPd/Zn _{0.5} Cd _{0.5} S	300 W Xe lamp (λ>400 nm)	9 69	\$2	
	Na ₂ S/Na ₂ SO ₃	5.05	52	
Ni(OH) ₂ /Zn _{0.5} Cd _{0.5} S	300 W Xe lamp (λ>400 nm)	6 87	\$3	
	Na ₂ S/Na ₂ SO ₃	0.07	00	
Cu ₃ P/Zn _{0.5} Cd _{0.5} S	300 W Xe lamp (λ>420 nm)	2 70	S4	
	Na ₂ S/Na ₂ SO ₃	2.70		
Ni/Zn _{0.5} Cd _{0.5} S	300 W Xe lamp (λ>420 nm)	5 93	S5	
	Na ₂ S/Na ₂ SO ₃	5.75		
Ni ₂ P/Zn _{0.9} Cd _{0.1} S	300 W Xe lamp (λ>400 nm)	1 88	\$6	
	Na ₂ S/Na ₂ SO ₃	1.00	50	
Ni ₂ P/Zn _x Cd _{1-x} Se	300 W Xe lamp (λ>420 nm)	1 3/	\$7	
	Na ₂ S/Na ₂ SO ₃	тт	57	
Fe-Ni ₂ P/ZnIn ₂ S ₄ -Vs	300 W Xe lamp (λ>420 nm)	1 55	S8	
	TEOA	ч.55		
Vs-ZCS/Ni ₂ P-5%	300 W Xe lamp (λ>380 nm)	/0.81	This work	
	Na ₂ S/Na ₂ SO ₃	40.01		

Samples	ZCS	Vs-ZCS	Vs-ZCS/	Vs-ZCS/
			Ni ₂ P-3%	Ni ₂ P-4%
AQY (%)	2.74	7.01	15.18	16.83
Samples	Vs-ZCS/	Vs-ZCS/	Vs-ZCS/	ZCS/
	Ni ₂ P-5%	Ni ₂ P-6%	Ni ₂ P-7%	Ni ₂ P-5%
AQY (%)	21.60	18.96	16.20	5.76

Table S3 The AQY of all samples at 380 nm

References

- S1. X. L. Li, R. B. He, Y. J. Dai, S. S. Li, N. Xiao, A. X. Wang, Y. Q. Gao, N. Li, J.
 F. Gao, L. H. Zhang and L. Ge, *Chem. Eng. J.*, 2020, 400, 125474.
- S2. L. H. Zhang, F. D. Zhang, H. Q. Xue, J. F. Gao, Y. Peng, W. Y. Song and L. Ge, *Chin. J. Catal.*, 2021, 42, 1677-1688.
- S3. X. Y. Gao, D. Q. Zeng, J. R. Yang, W. J. Ong, T. Fujita, X. L. He, J. Q. Liu and Y. Z. Wei, *Chin. J. Catal.*, 2021, **42**, 1137-1146.
- S4. G. Y. Ge, S. T. Yuan, Q. Z. Liu, D. F. Yang, J. S. Shi, X. F. Lan and K. F. Xiao, *Appl. Surf. Sci.*, 2022, **597**, 153660.
- S5. X. Y. Gao, J. R. Yang, D. Q. Zeng, G. He, C. Dai, Y. N. Bao and Y. Z. Wei, J. *Alloys Compd.*, 2021, 871, 159460.
- S6. Z. W. Shao, X. Meng, H. Lai, D. F. Zhang, X. P. Pu, C. H. Su, H. Li, X. Z. Ren and Y. L. Geng, *Chin. J. Catal.*, 2021, 42, 439-449.
- S7. L. Wei, D. Q. Zeng, J. Q. Liu, H. F. Zheng, T. Fujita, M. Y. Liao, C. Y. Li and Y.
 Z. Wei, *J. Colloid Interface Sci.*, 2022, 608, 3087-3097.

S8. G. Q. Li, H. O. Liang, X. Y. Fan, X. L. Lv, X. W. Sun, H. G. Wang and J. Bai, J. Mater. Chem. A., 2023, 11, 14809-14818.