Supporting Information

Photocatalyst-free H₂O-regulated and regiodivergent

multicomponent hydrogenation/bifunctional sulfonylation of alkynes

Jie Sun,^a Chaodong Wang,^a Chunlei Wu,^b Wenjian Wang,^a Yue Zeng,^a Shengjie Song,^a Zhiwei Chen^{*a} and Jianjun Li^{*a,c}

^aKey Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China

^bZhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, P. R. China

^cKey Laboratory of Pharmaceutical Engineering of Zhejiang Province. College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China

E-mail: chenzhiwei@zjut.edu.cn.

E-mail: lijianjun@zjut.edu.cn.

Table of Contents

1. General information	S2
2. Light-promoted reaction equipment	S2
3. General Procedure for Synthesis of Products 1, 2, 2, 3 and 4.	S3
4. Optimization of reaction conditions	S6
5. Mechanistic Studies	S8
6. References	S12
7. Characterization data for the products	S13
8. ¹ H, ¹³ C and ¹⁹ F NMR spectra for products	S34
9. X-ray crystallography date of 3ac and 4fa	S98

1. General information.

Unless otherwise specified, all reagents are obtained from commercial sources and can be used without further purification (including acetonitrile (AR, moisture \leq 3000 ppm and moisture \leq 30 ppm) and dimethyl sulfoxide (AR, moisture ≤ 1000 ppm and moisture ≤ 50 ppm)). Chromatographic purification of products was performed by flash column chromatography on silica gel (200-300 meshes). Thin-layer chromatography (TLC) was carried out on silica plates (TLC Silica GF254). Visualization of the compounds was accomplished by projecting UV light onto the developed plates. The experiments were conducted in sealed 10 mL or 100 mL Schlenk tube for gram-scale synthesis. The experiments under 460-465 nm light irradiation were performed using two 25 W JG LED lamps from Xuzhou Ai Jia Electronic Technology Co., Ltd. The distance from the light source to the irradiation vessel was approximate 2-3 cm, and no filter was used in our study. A fan was employed to ensure reactions remained at or near room temperature when using LED. ¹H NMR (400/600 MHz), ¹³C NMR (100/150 MHz) and ¹⁹F NMR (376/565 MHz) spectra were recorded on a Varian spectrometer in CDCl₃ or DMSO- d_6 using tetramethylsilane (TMS) as internal standards. Data are reported as follows: Chemical shift (number of protons, multiplicity, coupling constants). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doubletdoublet of doublets, dt = doublet of triplets, td = triplet of doublets, ddd = doublet of doublet of doublets, brs = broad singlet. HRMS spectra were recorded on a Bruker Impact II UHR-QTOF spectrometer using ESI on a TOF mass analyze. UV-visible absorption experiments were performed on UV-2250 spectrophotometer. Fluorescence quenching experiments were performed on Hitachi F7000 FL Spectrophotometer. The cyclic voltammetry measurements were detected by using a CHI 600E electrochemical workstation.

2. Light-promoted reaction equipment.

Light source details: The experiments under 460-465 nm light irradiation were performed using two 25 W JG LED lamps from Xuzhou Ai Jia Electronic Technology Co., Ltd. The distance between the light source and the irradiation glass vessel is 2-3 cm, and no filter was used in our study. A fan was employed to ensure reactions remained at or near room temperature when using LEDs.

3. General Procedure for Synthesis of Products 1, 2, 2', 3 and 4.

(1) General Procedure for the Synthesis of 1.^[1]

Arylpropiolic acids were prepared using a modified procedure according to the reported literature.¹ To a solution of aryl iodide (5.0 mmol) in DMSO (6 mL) was added Pd(PPh₃)₄ (144 mg, 2.5 mol%) and DBU (1.83 g, 12 mmol, 2.4 equiv.). The solution of propiolic acid (420 mg, 6.0 mmol, 1.2 equiv.) in DMSO (6 mL) was poured into the flask. The mixture was stirred at room temperature for 12 h before ethyl acetate (20 mL) was poured into the reaction mixture. The reaction mixture was extracted with saturated aqueous NaHCO₃ solution. The aqueous layer was separated, acidified to pH 2.0 by addition of cold HCl (1 N), and extracted with DCM. The combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to afford the desired product **A**.

To a solution of the relative phenol A (3.0 mmol, 1.0 equiv.) in DCM (30 mL) was added arylpropiolic acid (3.3 mmol, 1.1 equiv.) at 0 °C, then a mixture of DCC (929 mg, 4.5 mmol, 1.5 equiv.) and DMAP (37 mg, 0.3 mmol, 0.1 equiv.) in CH_2Cl_2 (15 mL) was added dropwise. The mixture was stirred at room temperature for 12 h. Then, the crude mixture was filtered and washed with DCM and concentrated. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to afford the desired product 1.

(2) General Procedure for the Synthesis of 2.^[2]

A 10 mL Schlenk bomb was charged with lanthanum trifluoromethanesulfonate La(OTf)₃, 0.25 mmol, 5 mol%), ethyl bromodifluoroaceate (6.0 mmol) and amine (5.0 mmol) in an atmosphere of N₂ at the room temperature. The mixture was monitored by TLC. After the amine was exhausted, purification by chromatography on silica gel afforded the target amides **B**.

To a solution of the 2-bromo-2,2-difluoro-*N*-phenylacetamide **B** (1.25 g, 5.0 mmol) in CH₃CN (25 mL), K_2CO_3 (2.07 g, 15 mmol) and 3-bromopropene (1.21 g, 10 mmol) were added. The reaction mixture was stirred at 100 °C and monitored by TLC. After the amide was exhausted, the mixture was purified by silica gel column chromatography to give the desired product **2**.

(3) General Procedure for the Synthesis of 2'.^[3]

Appropriate amine A_1 (10 mmol, 1.0 equiv.), magnesium sulfate (1.81 g, 15.0 mmol) and 3-methyl-2-butenal A_2 (1.38 g, 10.0 mmol, 1.0 equiv.) suspended in DCM stirred 4 hours at room temperature. Filtered the mixture and concentrated the filtrate by evaporation. The residue was dissolved in methanol (10.00 mL) and cooled to 0 °C. Slowly added the sodium borohydride (0.19 g, 5.0 mmol), stirred reaction mixture at room temperature for 2 hours. Then, quenched the reaction system with saturated NH₄Cl aqueous solution, extracted with EtOAc, washed with brine, and dried over Na₂SO₄. Final, the organic layer was evaporated under reduced pressure and residue was purified by column chromatography on silica to afford the A_3 (10/1 petroleum ether/EtOAc).

 A_3 and Et₃N (1.40 mL, 10.0 mmol, 2.0 equiv.) were suspended in DCM (20.00 mL) and cooled to 0 °C, subsequently, dropwise added 2-bromo-2-methylpropanoyl bromide (0.67 mL, 5.5 mmol, 1.1 equiv.) and stirred the reaction system at room temperature for 12 h. After that, NH₄Cl aqueous solution was added, extracted with dichloromethane washed with saturated sodium bicarbonate,

dried with Na_2SO_4 . Evaporated the organic layer and purified by column chromatography (10-20% EtOAc in petroleum ether) gave the **2**'

(4) General Procedure for the Synthesis of 4.

To a 10 mL schlenk-tube was charged with 1 (0.2 mmol, 1.0 equiv.), 2 (0.4 mmol, 2.0 equiv.), DABCO·(SO₂)₂ (0.4 mmol, 2.0 equiv.) in dry CH₃CN (2 mL, moisture \leq 30 ppm) under nitrogen atmosphere. The mixture was irradiated with 25 W blue LEDs under vigorous stirring at room temperature for 12-16 h. After the reaction completed, the reaction mixture was diluted with H₂O (15 mL) and extracted with CH₂Cl₂ (20 mL × 4). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to afford the desired product **3**.

(5) General Procedure for the Synthesis of 3.

To a 10 mL schlenk-tube was charged with 1 (0.2 mmol, 1.0 equiv.), 2 (0.4 mmol, 2.0 equiv.), DABCO·(SO₂)₂ (0.4 mmol, 2.0 equiv.) in DMSO/H₂O (2 mL (v/v = 39:1)) under nitrogen atmosphere. The mixture was irradiated with 25 W blue LEDs under vigorous stirring at room temperature for 12-24 h. After the reaction completed, the reaction mixture was diluted with H₂O (15 mL) and extracted with CH₂Cl₂ (20 mL × 4). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to afford the desired product **4**.

(6) Gram Procedure for the Synthesis of 4aa and 3aa.

To a 100 mL schlenk-tube was charged with **1a** (4 mmol, 1.0 equiv.), **2a** (8 mmol, 2.0 equiv.), DABCO·(SO₂)₂ (8 mmol, 2.0 equiv.) in dry CH₃CN (40 mL, moisture \leq 30 ppm) under nitrogen

atmosphere. The mixture was irradiated with 25 W blue LEDs under vigorous stirring at room temperature for 30 h. After the reaction completed, the reaction mixture was diluted with H_2O (50 mL) and extracted with CH_2Cl_2 (40 mL × 4). The combined organic layers were washed with brine (40 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford the desired product **4aa**.

To a 100 mL schlenk-tube was charged with **1a** (4 mmol, 1.0 equiv.), **2a** (8 mmol, 2.0 equiv.), DABCO·(SO₂)₂ (8 mmol, 2.0 equiv.) in DMSO/H₂O (40 mL (v/v = 39:1)) under nitrogen atmosphere. The mixture was irradiated with 25 W blue LEDs under vigorous stirring at room temperature for 30 h. After the reaction completed, the reaction mixture was diluted with H₂O (50 mL) and extracted with CH₂Cl₂ (40 mL × 4). The combined organic layers were washed with brine (40 mL× 3), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to afford the desired product **3aa**.

4. Optimization of reaction conditions.

4.1 Effect of solvent ratio on reaction.^a

Entry	Solvent	4aa/Yield (%) ^b
1	DMSO (2 mL)	0
2°	DMSO (2 mL)	14
3	DMSO/H ₂ O (2 mL, v/v=199:1)	27
4	DMSO/H ₂ O (2 mL, v/v=99:1)	35
5	DMSO/H ₂ O (2 mL, v/v=197:3)	48
6	DMSO/H ₂ O (2 mL, v/v=49:1)	66
7	$DMSO/H_2O$ (2 mL, $v/v=39:1$)	76
8	DMSO/H ₂ O (2 mL, v/v=97:3)	68
9	DMSO/H ₂ O (2 mL, v/v=19:1)	47
10	DMSO/H ₂ O (2 mL, v/v=1:1)	0

^aReaction conditions: 1 (0.2 mmol, 1.0 equiv.), 2 (0.4 mmol, 2.0 equiv.), DABSO (0.4 mmol, 2.0

equiv.), solvent (2 mL, (dry DMSO, moisture \leq 50 ppm)), room temperature under N₂, irradiation with blue LEDs (25W \times 2, 460-465nm) for 12 h. ^bIsolated yields. ^cSolvent (2 mL, moisture \leq 1000 ppm).

4.2 Effect of temperature on reaction.^a

Entry	T/°C	Solvent	3aa/Yield (%) b	4aa/Yield (%) ^b
1	25	DMSO/H ₂ O	76	<10
2	20	DMSO/H ₂ O	trace	N.D.
3	30	DMSO/H ₂ O	72	<15
4	25	CH ₃ CN	N.D.	90
5	20	CH ₃ CN	N.D.	30
6	30	CH ₃ CN	N.D.	82

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), DABSO (0.4 mmol, 2.0 equiv.), degassed solvent (2 mL, (CH₃CN (moisture \leq 30 ppm) and DMSO (moisture \leq 1000 ppm)), room temperature under N₂, irradiation with blue LEDs (25W × 2, 460-465nm) for 12-24 h. ^{*b*}Isolated yields.

4.3 Effect of solvent on reaction.^{[4] a}

Entry	Solvent	4aa/Yield (%) ^b
1	CH ₃ CN	90
2	MeOH	31
3	2-Methyltetrahydrofuran	49
4	Ethyl acetate	18
5	Acetone	74
6	N-Methylpyrrolidone	N.D.
7	DCE	45

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), DABSO (0.4 mmol, 2.0 equiv.), degassed solvent (2 mL), room temperature under N₂, irradiation with blue LEDs (25W × 2, 460-465nm) for 12-31 h. ^{*b*}Isolated yields.

4.4 Effect of light sources on reaction.^a

Entry	Solvent	Light source	3aa/Yield (%) ^b	4aa/Yield (%) ^b
1	DMSO/H ₂ O	blue LEDs (460-465 nm)	76	<10
2	DMSO/H ₂ O	green LEDs (520-530 nm)	trace	N.D.
3	DMSO/H ₂ O	violet LEDs (390-400 nm)	61	<5
4	DMSO/H ₂ O	white LEDs (400-800 nm)	24	trace
5	CH ₃ CN	blue LEDs (460-465 nm)	N.D.	90
6	CH ₃ CN	green LEDs (520-530 nm)	N.D.	24
7	CH ₃ CN	violet LEDs (390-400 nm)	N.D.	78
8	CH ₃ CN	white LEDs (400-800 nm)	N.D.	43

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), DABSO (0.4 mmol, 2.0 equiv.), degassed solvent (2 mL, (CH₃CN (moisture \leq 30 ppm) and DMSO (moisture \leq 1000 ppm)), room temperature under N₂, irradiation with light sources (25W × 2) for 12-16 h. ^{*b*}Isolated yields.

5. Mechanistic Studies.

(1) Radical trapping Experiment.

The radical trapping experiments were conducted with **1a** and **2a** under the standard conditions with two different trapping agents (TEMPO or BHT) to capture the radical intermediates. No desired product **3aa/4aa** were detected in the above two controlled experiments, indicating that the reaction was completely inhibited. Meanwhile, a trapping product **7** was detected by the HRMS. **HRMS-ESI (m/z)**: calcd for $C_{26}H_{34}F_2NO_4S^+$ [M + H] + 494.2171, found 494.2162.

(2) Deuterium Experiment.

To a 10 mL schlenk-tube was charged with 1 (0.2 mmol, 1.0 equiv.), 2 (0.4 mmol, 2.0 equiv.), DABCO·(SO₂)₂ (0.4 mmol, 2.0 equiv.) in DMSO/D₂O or CH₃CN/D₂O (2 mL, v/v =39:1) under nitrogen atmosphere. The mixture was irradiated with 25 W blue LEDs under vigorous stirring at room temperature for 12 h. After the reaction completed, the reaction mixture was diluted with H₂O (15 mL) and extracted with CH₂Cl₂ (20 mL × 4). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to afford the desired product 11.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.7–7.6 (m, 2H), 7.6–7.5 (m, 5H), 7.5–7.4 (m, 2H), 7.4–7.3 (m, 2H), 7.3 (t, *J* = 7.5 Hz, 1H), 7.2 (t, *J* = 7.4 Hz, 1H), 6.9 (d, *J* = 7.5 Hz, 2H), 4.1 (t, *J* = 10.0 Hz, 1H), 3.9 (t, *J* = 7.7 Hz, 1H), 3.7–3.6 (m, 1H), 3.6–3.5 (m, 2H).

HRMS-ESI (m/z): calcd for C₂₆H₂₀DF₂NNaO₅S⁺[M+Na] ⁺ 521.1063, found 521.1032.

To a 10 mL schlenk-tube was charged with 1 (0.2 mmol, 1.0 equiv.), 2 (0.4 mmol, 2.0 equiv.), DABCO·(SO₂)₂ (0.4 mmol, 2.0 equiv.) in CH₃CN/CD₃OD (2 mL, v/v =39:1) under nitrogen atmosphere. The mixture was irradiated with 25 W blue LEDs under vigorous stirring at room temperature for 12 h. After the reaction completed, the reaction mixture was diluted with H₂O (15 mL) and extracted with CH₂Cl₂ (20 mL × 4). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to afford the desired product **11**.

HRMS-ESI (m/z): calcd for $[C_{26}H_{20}DF_2NO_5S-K]^+$ [M-K] + 459.0271 found 459.0273.

(3) UV-vis absorption spectra.

UV/vis absorption spectra between **1a** (0.01 M), **2a** (0.01 M) and DABCO·(SO₂)₂ (0.01 M) in 10 mL CH₃CN were recorded in 1 cm path quartz cuvettes using a Shimadzu UV-2550 UV-vis spectrophotometer.

(4) On/off light experiments.

On/off experiments of model reaction in CH₃CN (left) and DMSO/H₂O (right).

(5) Results for other substrates.

6. References.

- J. Meesin, P. Katrun, C. Pareseecharoen, M. Pohmakotr, V. Reutrakul, D. Soorukram, C. Kuhakarn, J. Org. Chem., 2016, 81, 2744-2752.
- K. Sun, S. N. Wang, R. R. Feng, Y. X. Zhang, X. Wang, Z. G. Zhang, B. Zhang, Org. Lett., 2019, 21, 2052-2055.
- 3. X. Y. Gou, Y. Li, Y. Y. Luan, W. Y. Shi, Y. M. Liang, ACS Catal., 2021, 11, 4263-427.
- (a) P. G. Jessop, *Green Chem.*, 2011, **13**, 1391-1398. (b) S. U. Hong, Y. Wang, L. S. Soh and W. F. Yong, *Green Chem.*, 2023, **25**, 4501-4512. (c) J. Pawlas, B. Antonic, M. Lundqvist, T. Svensson, J. Finnman and J. H. Rasmussen, *Green Chem.*, 2019, **21**, 2594-2600.

7. Characterization data for the products.

(*E*)-phenyl-2-(((4,4-difluoro-5-oxo-1-phenylpyrrolidin-3-yl)methyl)sulfonyl)-3-phenylacrylate (3aa).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 230.3-233.1 °C; 76% yield;

¹**H NMR** (400 MHz, DMSO- d_6) δ 7.67 (d, J = 8.0 Hz, 2H), 7.63 – 7.50 (m, 5H), 7.48 (t, J = 7.8 Hz, 2H), 7.37 (t, J = 8.0 Hz, 2H), 7.34 (s, 1H), 7.29 (t, J = 7.4 Hz, 1H), 7.24 (t, J = 7.4 Hz, 1H), 6.92 (d, J = 8.2 Hz, 2H), 4.10 (t, J = 8.8 Hz, 1H), 3.94 (t, J = 7.8 Hz, 1H), 3.67 (dd, J = 14.8, 9.4 Hz, 1H), 3.61 – 3.52 (m, 2H).

¹³C NMR (101 MHz, DMSO) δ 161.8, 160.5 (t, J_{C-F} = 32.2 Hz), 151.0, 149.6, 137.5, 130.3, 129.5, 129.4, 129.4, 129.2, 129.1, 128.6, 126.2, 126.1, 121.1, 120.2, 116.9 (t, J_{C-F} = 249.4 Hz), 47.4 (d, J_{C-F} = 5.9 Hz), 47.2 (d, J_{C-F} = 7.0 Hz), 33.2 (t, J_{C-F} = 20.2 Hz).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -107.73 (d, J = 262.9 Hz, 1F), -112.34 (d, J = 262.9 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₆H₂₂F₂NO₅S⁺ [M+H] + 498.1181, found 498.1178.

(*E*)-phenyl-2-(((4,4-difluoro-1-(4-fluorophenyl)-5-oxopyrrolidin-3-yl)methyl)sulfonyl)-3-phenyl-acrylate (3ab).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 168.1-169.7 °C; 54% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.78 – 7.65 (m, 2H), 7.61 – 7.53 (m, 5H), 7.44 – 7.29 (m, 5H), 7.24 (t, *J* = 7.4 Hz, 1H), 6.92 (dd, *J* = 7.7, 1.6 Hz, 2H), 4.08 (t, *J* = 8.7 Hz, 1H), 3.93 (ddd, *J* = 9.7, 7.2, 2.1 Hz, 1H), 3.72 – 3.43 (m, 3H).

¹³C NMR (101 MHz, DMSO) δ 161.8, 160.4 (t, J_{C-F} = 31.2 Hz), 158.5, 151.0, 149.5, 133.9 (d, J_{C-F} = 2.9 Hz), 130.3, 129.5, 129.4 (d, J_{C-F} = 5.6 Hz), 129.2, 128.6, 126.2, 122.6, 122.5, 121.1, 116.7 (t,

 J_{C-F} = 252.5 Hz), 115.9 (d, J_{C-F} = 22.7 Hz), 47.7 (d, J_{C-F} = 5.0 Hz), 47.2 (d, J_{C-F} = 6.0 Hz), 33.2 (t, J_{C-F} = 20.2 Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -107.73 (d, *J* = 263.0 Hz, 1F), -112.26 (d, *J* = 263.1 Hz, 1F), -115.44(s, 1F).

HRMS-ESI (m/z): calcd for $C_{26}H_{21}F_3NO_5S^+[M+H] + 516.1087$, found 516.1081.

(*E*)-phenyl-2-(((1-(4-chlorophenyl)-4,4-difluoro-5-oxopyrrolidin-3-yl)methyl)sulfonyl)-3-phenyl-acrylate (3ac).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 179.0-180.7 °C; 58% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.71 (d, *J* = 7.0 Hz, 2H), 7.60 – 7.52 (m, 7H), 7.37 (q, *J* = 7.0, 6.2 Hz, 3H), 7.24 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 7.0 Hz, 2H), 4.09 (t, *J* = 8.6 Hz, 1H), 3.93 (t, *J* = 8.4 Hz, 1H), 3.73 – 3.44 (m, 3H).

¹³C NMR (101 MHz, DMSO) δ 161.8, 160.5 (t, J_{C-F} = 31.2 Hz), 151.0, 149.5, 136.4, 130.3, 130.0, 129.5, 129.4, 129.4, 129.2, 129.0, 128.6, 126.2, 121.8, 121.1, 116.8 (t, J_{C-F} = 250.4 Hz), 47.4 (d, J_{C-F} = 5.0 Hz), 47.2 (d, J_{C-F} = 7.0 Hz), 33.1 (t, J_{C-F} = 20.2 Hz).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -107.77 (d, J = 263.2 Hz, 1F), -112.20 (d, J = 263.2 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₆H₂₁ClF₂NO₅S⁺ [M+H] + 532.0792, found 532.0788.

(*E*)-phenyl-2-(((1-(4-bromophenyl)-4,4-difluoro-5-oxopyrrolidin-3-yl)methyl)sulfonyl)-3-phenyl-acrylate (3ad).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 173.2-175.9 °C; 67% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.71 – 7.62 (m, 4H), 7.63 – 7.50 (m, 5H), 7.37 (dd, *J* = 15.4, 7.2 Hz, 3H), 7.24 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 7.6 Hz, 2H), 4.10 (t, *J* = 9.0 Hz, 1H), 3.93 (t, *J* = 7.4 Hz, 1H), 3.78 – 3.46 (m, 3H).

¹³C NMR (101 MHz, DMSO) δ 161.8, 160.6 (t, J_{C-F} = 32.2 Hz), 151.0, 149.5, 136.8, 131.9, 130.3, 129.5, 129.4, 129.4, 129.2, 128.6, 126.2, 122.1, 121.1, 118.3, 116.7 (t, J_{C-F} = 250.4 Hz), 47.3 (d, J_{C-F} = 7.0 Hz), 47.2 (d, J_{C-F} = 7.0 Hz), 33.1 (t, J_{C-F} = 20.2 Hz).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -107.78 (d, J = 262.9 Hz, 1F), -112.19 (d, J = 262.9 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₆H₂₁BrF₂NO₅S⁺[M+H] + 576.0286, found 576.0280.

(*E*)-phenyl-3-(((4,4-difluoro-5-oxo-1-(p-tolyl)pyrrolidin-3-yl)methyl)sulfonyl)-3-phenylacrylate (3ae).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 183.0-185.1 °C; 61% yield;

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.6 (dd, *J* = 7.0, 2.7 Hz, 2H), 7.5 (d, *J* = 7.9 Hz, 5H), 7.4 (t, *J* = 8.0 Hz, 2H), 7.3 (s, 1H), 7.3 (d, *J* = 8.2 Hz, 2H), 7.2 (t, *J* = 7.4 Hz, 1H), 6.9 (d, *J* = 8.0 Hz, 2H), 4.1 (t, *J* = 9.2 Hz, 1H), 3.9 (t, *J* = 9.6 Hz, 1H), 3.7 (dd, *J* = 14.8, 9.3 Hz, 1H), 3.5 (dd, *J* = 14.9, 4.0 Hz, 2H), 2.3 (s, 3H).

¹³C NMR (151 MHz, DMSO) δ 161.8, 160.4 (t, J_{C-F} = 31.2 Hz), 151.0, 149.6, 135.5, 135.1, 130.3, 129.5, 129.4, 129.4, 129.2, 128.6, 126.2, 121.1, 120.1, 117.0 (t, J_{C-F} = 249.5 Hz), 47.4 (d, J_{C-F} = 5.0 Hz), 47.3 (d, J_{C-F} = 6.8 Hz), 33.2 (t, J_{C-F} = 21.2 Hz), 20.4.

¹⁹**F NMR** (565 MHz, DMSO-*d*₆) δ -107.64 (d, J = 262.8 Hz, 1F), -112.18 (d, J = 262.4 Hz, 1F). **HRMS-ESI (m/z)**: calcd for C₂₇H₂₄F₂NO₅S⁺ [M+H] + 512.1338, found 512.1331.

(*E*)-phenyl-2-(((1-(4-(tert-butyl)phenyl)-4,4-difluoro-5-oxopyrrolidin-3-yl)methyl)sulfonyl)-3-phenylacrylate (3af).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 193.4-194.7 °C; 59% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.63 – 7.50 (m, 7H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.40 – 7.32 (m, 3H), 7.27 – 7.21 (m, 1H), 6.92 (d, *J* = 7.4 Hz, 2H), 4.08 (t, *J* = 9.8 Hz, 1H), 3.91 (ddd, *J* = 9.0, 6.9, 1.9 Hz, 1H), 3.67 (dd, *J* = 14.8, 9.3 Hz, 1H), 3.55 (dd, *J* = 14.9, 4.0 Hz, 2H), 1.29 (s, 9H).

¹³C NMR (101 MHz, DMSO) δ 161.7, 160.3 (t, J_{C-F} = 31.2 Hz), 151.0, 149.5, 148.7, 135.0, 130.2, 129.5, 129.4, 129.4, 129.2, 128.6, 126.2, 125.7, 121.1, 120.0, 116.9 (t, J_{C-F} = 249.4 Hz), 47.4 (d, J_{C-F} = 5.9 Hz), 47.3 (d, J_{C-F} = 7.0 Hz), 34.2, 33.3 (t, J_{C-F} = 20.2 Hz), 31.0. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -107.69 (d, J = 262.9 Hz, 1F), -112.35 (d, J = 262.8 Hz, 1F). HRMS-ESI (m/z): calcd for C₃₀H₃₀F₂NO₅S⁺ [M+H] + 554.1807, found 554.1800.

(*E*)-phenyl-2-(((1-(3-bromophenyl)-4,4-difluoro-5-oxopyrrolidin-3-yl)methyl)sulfonyl)-3-phenyl-acrylate (3ag).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 160.7-164.3 °C; 70% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.9 (s, 1H), 7.6 (d, *J* = 8.2 Hz, 1H), 7.6 – 7.5 (m, 6H), 7.4 (t, *J* = 8.1 Hz, 1H), 7.4 (t, *J* = 7.7 Hz, 2H), 7.3 (s, 1H), 7.2 (t, *J* = 7.5 Hz, 1H), 6.9 (d, *J* = 7.9 Hz, 2H), 4.1 (t, *J* = 9.3 Hz, 1H), 3.9 (t, *J* = 8.9 Hz, 1H), 3.7 – 3.4 (m, 3H).

¹³C NMR (101 MHz, DMSO) δ 161.8, 160.8 (t, J_{C-F} = 33.2 Hz), 150.9, 149.6, 148.5, 139.0, 131.1, 130.3, 129.6, 129.5, 129.2, 128.9, 128.7, 126.3, 122.8, 121.7, 121.1, 119.1, 117.0 (t, J_{C-F} = 249.5 Hz), 47.4, 47.1, 33.2 (t, J_{C-F} = 20.2 Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -107.9 (d, J = 263.2 Hz, 1F), -112.3 (d, J = 263.1 Hz, 1F). **HRMS-ESI (m/z)**: calcd for C₂₆H₂₁BrF₂NO₅S⁺[M+H] + 576.0286, found 576.0280.

(*E*)-phenyl-2-(((1-(3,5-dimethylphenyl)-4,4-difluoro-5-oxopyrrolidin-3-yl)methyl)sulfonyl)-3-phenylacrylate (3ah).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 145.2-148.1 °C; 74% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.6 – 7.5 (m, 5H), 7.4 (t, *J* = 7.7 Hz, 2H), 7.3 (d, *J* = 3.6 Hz, 1H), 7.3 (s, 2H), 7.2 (t, *J* = 8.0 Hz, 1H), 6.9 (d, *J* = 8.4 Hz, 3H), 4.1 (t, *J* = 9.5 Hz, 1H), 3.9 (t, *J* = 8.9 Hz, 1H), 3.7 – 3.6 (m, 1H), 3.6 – 3.5 (m, 2H), 2.3 (s, 6H).

¹³C NMR (101 MHz, DMSO) δ 161.8, 160.4 (t, J_{C-F} = 31.2 Hz), 151.0, 149.6, 147.1, 138.3, 137.5, 130.3, 129.6, 129.5, 129.3, 128.7, 127.6, 126.3, 121.2, 118.0, 117.0 (t, J_{C-F} = 254.5 Hz), 47.6 (d, J_{C-F} = 5.9 Hz), 47.2 (d, J_{C-F} = 7.0 Hz), 33.2 (t, J_{C-F} = 20.2 Hz), 21.0.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -107.8 (d, J = 262.3 Hz, 1F), -112.4 (d, J = 262.5 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₈H₂₆F₂NO₅S⁺ [M+H] + 526.1494, found 526.1488.

(*E*)-phenyl2-(((4,4-difluoro-1-(naphthalen-2-yl)-5-oxopyrrolidin-3-yl)methyl)sulfonyl)-3-phenyl-acrylate (3ai).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 167.3-169.0 °C; 47% yield;

¹**H** NMR (400 MHz, DMSO- d_6) δ 8.1 (s, 1H), 8.1 – 7.9 (m, 4H), 7.7 – 7.5 (m, 7H), 7.4 – 7.3 (m, 3H), 7.2 (t, J = 7.4 Hz, 1H), 6.9 (d, J = 7.9 Hz, 2H), 4.2 (t, J = 9.1 Hz, 1H), 4.1 (t, J = 8.8 Hz, 1H), 3.8 – 3.7 (m, 1H), 3.6 (d, J = 11.9 Hz, 2H).

¹³C NMR (101 MHz, DMSO) δ 161.8, 160.7 (t, J_{C-F} = 31.2 Hz), 151.0, 149.6, 135.3, 133.9, 132.8, 130.9, 130.3, 129.6, 129.5, 129.3, 128.8, 128.7, 127.9, 127.5, 126.9, 126.3, 126.1, 121.2, 119.4, 117.7, 117.0 (t, J_{C-F} = 247.5 Hz), 47.7 (d, J_{C-F} = 6.1 Hz), 47.3 (d, J_{C-F} = 7.1 Hz), 33.3 (t, J_{C-F} = 19.2 Hz).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -107.7 (d, J = 262.9 Hz, 1F), -112.1 (d, J = 262.8 Hz, 1F). HRMS-ESI (m/z): calcd for C₃₀H₂₄F₂NO₅S⁺ [M+H] + 548.1338, found 548.1332.

(*E*)-4-chlorophenyl-2-(((4,4-difluoro-5-oxo-1-phenylpyrrolidin-3-yl)methyl)sulfonyl)-3-phenyl-acrylate (3ba).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 71.2-174.0 °C; 61% yield;

¹**H NMR** (400 MHz, DMSO- d_6) δ 7.7 (d, J = 8.0 Hz, 2H), 7.6 – 7.5 (m, 5H), 7.5 – 7.4 (m, 4H), 7.3 (d, J = 6.3 Hz, 2H), 7.0 (d, J = 8.3 Hz, 2H), 4.1 (t, J = 9.1 Hz, 1H), 3.9 (t, J = 8.6 Hz, 1H), 3.7 (dd, J = 14.9, 9.4 Hz, 1H), 3.6 – 3.5 (m, 2H).

¹³C NMR (101 MHz, DMSO) δ 161.6, 160.5 (t, J_{C-F} = 30.2 Hz), 151.3, 148.3, 137.6, 130.5, 130.4, 130.0, 129.5, 129.5, 129.2, 129.1, 128.7, 126.2, 123.1, 120.2, 116.9 (t, J_{C-F} = 248.5 Hz), 47.4 (d, J_{C-F} = 7.1 Hz), 47.2 (d, J_{C-F} = 6.0 Hz), 33.2 (t, J_{C-F} = 21.2 Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -107.8 (d, J = 262.5 Hz, 1F), -112.3 (d, J = 262.8 Hz, 1F). **HRMS-ESI (m/z)**: calcd for C₂₆H₂₁ClF₂NO₅S⁺ [M+H] + 532.0792, found 532.0788. (*E*)-4-(trifluoromethyl)phenyl-2-(((4,4-difluoro-5-oxo-1-phenylpyrrolidin-3-yl)methyl)sulfonyl)-3-phenylacrylate (3ca).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 273.8-276.3 °C; 53% yield;

¹**H** NMR (400 MHz, DMSO- d_6) δ 7.8 (d, J = 8.3 Hz, 2H), 7.7 (d, J = 8.0 Hz, 2H), 7.6 – 7.5 (m, 5H), 7.5 (t, J = 7.8 Hz, 2H), 7.4 – 7.3 (m, 2H), 7.2 (d, J = 8.3 Hz, 2H), 4.1 (t, J = 9.2 Hz, 1H), 3.9 (t, J = 8.5 Hz, 1H), 3.7 (dd, J = 14.9, 9.5 Hz, 2H), 3.5 (d, J = 15.0 Hz, 2H).

¹³C NMR (101 MHz, DMSO) δ 161.3, 160.5 (t, J_{C-F} = 30.2 Hz), 152.5, 151.6, 137.6, 130.4, 129.5, 129.1, 129.0, 128.7, 127.1, 127.1, 126.2, 122.3, 120.2, 116.9 (t, J_{C-F} = 257.5 Hz), 47.4 (d, J_{C-F} = 6.1 Hz), 47.2 (d, J_{C-F} = 7.1 Hz), 33.2 (t, J_{C-F} = 21.2 Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -60.8 (s, 3F), -107.8 (d, *J* = 262.7 Hz, 1F), -112.3 (d, *J* = 262.7 Hz, 1F).

HRMS-ESI (m/z): calcd for C₂₇H₂₁F₅NO₅S⁺ [M+H] ⁺ 566.1055, found 566.1051.

(*E*)-*p*-tolyl-2-(((4,4-difluoro-5-oxo-1-phenylpyrrolidin-3-yl)methyl)sulfonyl)-3-phenylacrylate (3da).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 251.9-254.5 °C; 48% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.7 (d, *J* = 8.1 Hz, 2H), 7.6 (d, *J* = 8.3 Hz, 5H), 7.5 (t, *J* = 7.9 Hz, 2H), 7.3 (dd, *J* = 14.7, 5.4 Hz, 2H), 7.2 (d, *J* = 8.0 Hz, 2H), 6.8 (d, *J* = 8.3 Hz, 2H), 4.1 (t, *J* = 9.1 Hz, 1H), 3.9 (t, *J* = 8.6 Hz, 1H), 3.7 (dd, *J* = 14.9, 9.5 Hz, 1H), 3.5 (d, *J* = 14.9 Hz, 2H), 2.3 (s, 3H).

¹³C NMR (101 MHz, DMSO) δ 162.0, 160.5 (t, J_{C-F} = 31.2 Hz), 150.8, 147.4, 137.6, 135.6, 130.3, 129.9, 129.6, 129.5, 129.3, 129.1, 128.7, 126.2, 120.8, 120.2, 116.9 (t, J_{C-F} = 254.5 Hz), 47.4 (d, J_{C-F} = 5.6 Hz), 47.2 (d, J_{C-F} = 7.1 Hz), 33.2 (t, J_{C-F} = 20.2 Hz), 20.3.

¹⁹**F** NMR (376 MHz, DMSO- d_6) δ -107.8 (d, J = 262.3 Hz, 1F), -112.3 (d, J = 262.3 Hz, 1F).

HRMS-ESI (m/z): calcd for C₂₇H₂₄F₂NO₅S⁺ [M+H] ⁺ 512.1338, found 512.1331.

(*E*)-4-methoxyphenyl-2-(((4,4-difluoro-5-oxo-1-phenylpyrrolidin-3-yl)methyl)sulfonyl)-3-phenyl-acrylate (3ea).

Н₃СО́

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 179.7-181.1 °C; 49% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.7 (d, *J* = 7.6 Hz, 2H), 7.6 – 7.5 (m, 5H), 7.5 (m, 2H), 7.3 – 7.3 (m, 2H), 6.9 (d, *J* = 9.2 Hz, 2H), 6.8 (d, *J* = 9.1 Hz, 2H), 4.1 (ddd, *J* = 9.9, 8.2, 1.8 Hz, 1H), 3.9 (td, *J* = 7.6, 3.8 Hz, 1H), 3.7 (s, 3H), 3.7 – 3.6 (m, 1H), 3.6 – 3.5 (m, 2H).

¹³C NMR (101 MHz, DMSO) δ 162.2, 160.5 (t, J_{C-F} = 30.2 Hz), 157.1, 150.7, 142.9, 137.6, 130.3, 129.6, 129.5, 129.3, 129.1, 128.7, 126.2, 122.0, 120.2, 117.0 (t, J_{C-F} = 249.5 Hz), 114.5, 55.4, 47.4 (d, J_{C-F} = 6.6 Hz), 47.2 (d, J_{C-F} = 7.4 Hz), 33.2 (t, J_{C-F} = 21.2 Hz).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -107.8 (d, J = 262.8 Hz, 1F), -112.3 (d, J = 262.8 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₇H₂₄F₂NO₆S⁺ [M+H] + 528.1287, found 528.1283.

(*E*)-3-chlorophenyl-2-(((4,4-difluoro-5-oxo-1-phenylpyrrolidin-3-yl)methyl)sulfonyl)-3-phenyl-acrylate (3fa).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). White solid; m.p.: 152.1-154.5 °C; 60% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.7 (d, *J* = 8.0 Hz, 2H), 7.6 – 7.5 (m, 5H), 7.5 (t, *J* = 7.7 Hz, 2H), 7.4 (t, *J* = 8.3 Hz, 1H), 7.4 – 7.2 (m, 3H), 7.1 (s, 1H), 6.9 (d, *J* = 8.1 Hz, 1H), 4.1 (t, *J* = 9.2 Hz, 1H), 3.9 (t, *J* = 8.6 Hz, 1H), 3.7 (dd, *J* = 14.9, 9.4 Hz, 1H), 3.6 (d, *J* = 14.8 Hz, 2H).

¹³C NMR (101 MHz, DMSO) δ 161.5, 160.5 (t, J_{C-F} = 29.2 Hz), 151.5, 150.2, 137.6, 133.3, 131.1, 130.4, 129.5, 129.2, 129.1, 129.0, 128.7, 126.5, 126.2, 122.4, 121.6, 120.2, 116.9 (t, J_{C-F} = 249.5 Hz), 47.4 (d, J_{C-F} = 6.1 Hz), 47.2 (d, J_{C-F} = 7.1 Hz), 33.2 (t, J_{C-F} = 20.2 Hz).

¹⁹**F** NMR (376 MHz, DMSO- d_6) δ -107.7 (d, J = 262.8 Hz, 1F), -112.3 (d, J = 262.4 Hz, 1F).

HRMS-ESI (m/z): calcd for C₂₆H₂₁ClF₂NO₅S⁺[M+H] + 532.0792, found 532.0788.

4-(2-hydrosulfonylpropan-2-yl)-3,3-dimethyl-1-phenylpyrrolidin-2-one (3ap).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). Yellow solid; m.p.: 89.9-92.7 °C; 35% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.7 – 7.7 (m, 2H), 7.4 (dd, *J* = 8.6, 7.3 Hz, 2H), 7.2 – 7.1 (m, 1H), 3.8 (t, *J* = 9.9 Hz, 1H), 3.7 (dd, *J* = 9.7, 7.9 Hz, 1H), 2.1 (dd, *J* = 10.2, 7.9 Hz, 1H), 1.3 (d, *J* = 6.2 Hz, 6H), 1.2 (s, 3H), 1.1 (s, 3H).

¹³C NMR (101 MHz, DMSO) δ 178.4, 139.8, 128.6, 123.8, 119.3, 69.7, 51.7, 46.3, 44.7, 30.3, 29.0, 26.5, 20.4.

HRMS-ESI (m/z): calcd for C₁₅H₂₂NO₃S⁺ [M+H] ⁺296.1315, found 296.1310.

3,3-difluoro-4-(hydrosulfonylmethyl)-1-phenylpyrrolidin-2-one (3ma).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (12:1). Light yellow oil; 43% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.7 (dd, *J* = 8.7, 1.2 Hz, 2H), 7.6 – 7.4 (m, 2H), 7.4 – 7.3 (m, 1H), 4.7 (ddd, *J* = 15.2, 5.8, 4.5 Hz, 1H), 4.5 (dt, *J* = 15.6, 8.1 Hz, 1H), 4.1 (ddd, *J* = 10.3, 8.6, 2.0 Hz, 1H), 3.9 (ddd, *J* = 10.0, 7.7, 2.4 Hz, 1H), 3.7 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 160.5 (t, J_{C-F} = 30.2 Hz), 137.5, 129.2, 126.3, 120.3, 116.6 (t, J_{C-F} = 250.5 Hz), 46.9 (d, J_{C-F} = 6.3 Hz), 46.2 (dd, J_{C-F} = 16.8, 9.1 Hz), 34.2 (t, J_{C-F} = 19.2 Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -107.6 (dd, *J* = 264.5, 3.4 Hz, 1F), -112.5 (dd, *J* = 264.5, 4.3 Hz, 1F).

HRMS-ESI (m/z): calcd for $C_{11}H_{12}F_2NO_3S^+[M+H] + 276.0500$, found 276.0496.

3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-1-phenylpyrrolidin-2-one (4aa).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 203.0-206.7 °C; 90% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (t, *J* = 7.0 Hz, 1H), 7.6 (d, *J* = 7.7 Hz, 3H), 7.6 – 7.4 (m, 5H), 7.4 – 7.3 (m, 3H), 7.3 (t, *J* = 7.4 Hz, 1H), 6.9 (d, *J* = 8.2 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.2 Hz, 1H), 3.9 (t, *J* = 8.4 Hz, 1H), 3.9 – 3.8 (m, 2H), 3.7 – 3.5 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 160.6 (t, J_{C-F} = 30.3 Hz), 160.5, 156.5, 153.2, 137.5, 135.2, 132.2, 129.3, 129.1, 128.9, 128.0, 127.8, 127.6, 127.0, 126.2, 125.2, 123.2, 120.2, 120.2, 117.1 (t, J_{C-F} = 256.5 Hz), 116.7, 50.7 (d, J_{C-F} = 6.0 Hz), 47.6 (d, J_{C-F} = 6.0 Hz), 33.6 (t, J_{C-F} = 21.2 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.3 (d, J = 261.8 Hz, 1F), -112.8 (d, J = 261.8 Hz, 1F).

HRMS-ESI (m/z): calcd for $C_{26}H_{20}F_2NO_5S^+$ [M+H] ⁺496.1025, found 496.1020.

3,3-difluoro-1-(4-fluorophenyl)-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)pyroli -din-2-one (4ab).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 224.2-226.8 °C; 60% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (ddd, *J* = 8.6, 7.3, 1.6 Hz, 1H), 7.7 – 7.6 (m, 3H), 7.6 – 7.4 (m, 3H), 7.4 – 7.3 (m, 5H), 6.9 (dd, *J* = 8.1, 1.5 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.2 Hz, 1H), 4.0 – 3.8 (m, 3H), 3.7 – 3.5 (m, 1H).

¹³**C NMR** (101 MHz, DMSO) δ 160.9, 160.5 (t, J_{C-F} = 29.3 Hz), 160.5, 158.5, 156.4, 153.2, 133.9 (d, J_{C-F} = 3.0 Hz), 133.7 (d, J_{C-F} = 311.1 Hz), 129.3, 128.8, 127.9, 127.8, 127.6, 127.0, 125.2, 123.2, 122.7 (d, J_{C-F} = 8.1 Hz), 120.1, 117.0 (t, J_{C-F} = 246.4 Hz), 116.6, 115.8 (d, J_{C-F} = 23.2 Hz), 50.7 (d, J_{C-F} = 7.0 Hz), 47.9 (d, J_{C-F} = 6.0 Hz), 33.6 (t, J_{C-F} = 21.2 Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -108.3 (d, *J* = 261.9 Hz, 1F), -112.7 (d, *J* = 262.1 Hz, 1F), -115.4 (s, 1F).

HRMS-ESI (m/z): calcd for C₂₆H₁₉F₃NO₅S⁺ [M+H] ⁺ 514.0931, found 514.0928.

1-(4-chlorophenyl)-3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)pyr-rolidin-2-one (4ac).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 261.7-263.8 °C; 71% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (ddd, *J* = 8.6, 7.3, 1.6 Hz, 1H), 7.7 – 7.6 (m, 3H), 7.6 – 7.4 (m, 5H), 7.4 – 7.3 (m, 3H), 6.9 (dd, *J* = 8.2, 1.5 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.2 Hz, 1H), 4.0 – 3.7 (m, 3H), 3.7 – 3.5 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 160.6 (t, J_{C-F} = 30.3 Hz), 160.5, 156.4, 153.2, 136.4, 135.2, 132.1, 130.0, 129.3, 129.0, 128.8, 127.9, 127.8, 127.6, 127.0, 125.2, 123.2, 121.8, 120.1, 117.1 (t, J_{C-F} = 255.4 Hz), 116.6, 50.6 (d, J_{C-F} = 7.0 Hz), 47.5 (d, J_{C-F} = 6.0 Hz), 33.4 (t, J_{C-F} = 21.2 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.3 (d, J = 262.3 Hz, 1F), -112.7 (d, J = 262.2 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₆H₁₉ClF₂NO₅S⁺ [M+H] + 530.0635, found 530.0633.

1-(4-bromophenyl)-3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)pyr-rolidin-2-one (4ad).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 245.3-248.0 °C; 78% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (t, *J* = 7.0 Hz, 1H), 7.7 (d, *J* = 8.9 Hz, 2H), 7.6 (t, *J* = 7.9 Hz, 3H), 7.6 – 7.5 (m, 3H), 7.4 – 7.3 (m, 3H), 6.9 (dd, *J* = 8.1, 1.6 Hz, 1H), 4.2 (dd, *J* = 14.5, 4.1 Hz, 1H), 4.0 – 3.8 (m, 3H), 3.7 – 3.5 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 160.6 (t, J_{C-F} = 31.3 Hz), 160.5, 156.4, 153.2, 136.8, 135.2, 132.1, 131.9, 129.3, 128.8, 127.9, 127.8, 127.6, 127.0, 125.2, 123.2, 122.0, 120.1, 118.3, 117.0 (t, J_{C-F} = 250.4 Hz), 116.6, 50.6 (d, J_{C-F} = 7.0 Hz), 47.4 (d, J_{C-F} = 5.0 Hz), 33.4 (t, J_{C-F} = 20.2 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.3 (d, J = 262.4 Hz, 1F), -112.7 (d, J = 262.3 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₆H₁₉BrF₂NO₅S⁺ [M+H] + 574.0130, found 574.0126.

3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-1-(p-tolyl)pyrrolidin-2-one (4ae).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 205.1-206.7 °C; 68% yield;

¹**H NMR** (400 MHz, DMSO- d_6) δ 7.8 (t, J = 7.9 Hz, 1H), 7.6 (d, J = 8.3 Hz, 1H), 7.5 (dd, J = 11.8, 6.4 Hz, 5H), 7.4 (d, J = 6.9 Hz, 3H), 7.3 (d, J = 8.1 Hz, 2H), 6.9 (d, J = 8.1 Hz, 1H), 4.2 (dd, J = 14.5, 3.9 Hz, 1H), 4.0 – 3.7 (m, 3H), 3.6 – 3.5 (m, 1H), 2.3 (s, 3H).

¹³C NMR (101 MHz, DMSO) δ 160.6, 160.4 (t, J_{C-F} = 31.3 Hz), 156.5, 153.2, 135.5, 135.3, 135.1, 132.2, 129.5, 129.3, 128.9, 128.0, 127.8, 127.7, 127.0, 125.3, 123.1, 120.2, 120.1, 117.2 (t, J_{C-F} = 256.4 Hz), 116.7, 50.6 (d, J_{C-F} = 7.0 Hz), 47.6 (d, J_{C-F} = 6.0 Hz), 33.5 (t, J_{C-F} = 21.2 Hz), 20.5. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.3 (d, J = 261.6 Hz, 1F), -112.7 (d, J = 261.6 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₇H₂₂F₂NO₅S⁺ [M+H] + 510.1181, found 510.1178.

1-(4-(tert-butyl)phenyl)-3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl) pyrrolidin-2-one (4af).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 230.3-232.3 °C; 66% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (ddd, *J* = 8.7, 7.3, 1.6 Hz, 1H), 7.6 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.6 – 7.5 (m, 7H), 7.4 – 7.3 (m, 3H), 6.9 (dd, *J* = 8.2, 1.5 Hz, 1H), 4.2 (dd, *J* = 14.5, 4.2 Hz, 1H), 3.9 (t, *J* = 9.3 Hz, 1H), 3.9 – 3.8 (m, 2H), 3.7 – 3.5 (m, 1H), 1.3 (s, 9H).

¹³C NMR (101 MHz, DMSO) δ 160.5, 160.4 (t, J_{C-F} = 30.3 Hz), 156.4, 153.2, 148.7, 135.2, 135.0, 132.1, 129.3, 128.8, 127.9, 127.8, 127.6, 127.0, 125.7, 125.2, 123.2, 120.1, 120.0, 117.1 (t, J_{C-F} = 249.4 Hz), 116.6, 50.7 (d, J_{C-F} = 7.0 Hz), 47.6 (d, J_{C-F} = 6.0 Hz), 34.2, 33.3 (t, J_{C-F} = 20.2 Hz), 31.0. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.2 (d, J = 261.8 Hz, 1F), -112.7 (d, J = 262.1 Hz, 1F). HRMS-ESI (m/z): calcd for C₃₀H₂₈F₂NO₅S⁺ [M+H] + 552.1651, found 552.1647.

1-(4-(benzyloxy)phenyl)-3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl) pyrrolidin-2-one (4ag).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1). White solid; m.p.: 200.1-202.0 °C; 61% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (t, *J* = 7.8 Hz, 1H), 7.6 (d, *J* = 8.4 Hz, 1H), 7.5 (d, *J* = 7.5 Hz, 4H), 7.5 (d, *J* = 7.2 Hz, 3H), 7.4 – 7.3 (m, 6H), 7.1 (d, *J* = 8.5 Hz, 2H), 6.9 (d, *J* = 8.3 Hz, 1H), 5.1 (s, 2H), 4.2 – 4.0 (m, 1H), 3.9 – 3.7 (m, 2H), 3.6 – 3.4 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 160.6, 160.5 (t, J_{C-F} = 30.3 Hz), 156.5, 156.3, 153.2, 136.8, 135.3, 132.2, 130.7, 129.4, 128.9, 128.4, 128.0, 127.9, 127.8, 127.7, 127.7, 127.0, 125.2, 123.2, 122.1, 120.2, 117.3 (t, J_{C-F} = 251.4 Hz), 116.7, 115.2, 69.4, 50.7, 47.9, 33.6 (t, J_{C-F} = 21.2 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.2 (d, J = 261.6 Hz, 1F), -112.6 (d, J = 261.7 Hz, 1F). HRMS-ESI (m/z): calcd for C₃₃H₂₆F₂NO₆S⁺ [M+H] + 602.1443, found 602.1440.

1-(3-bromophenyl)-3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)pyr-rolidin-2-one (4ah).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 265.7-268.2 °C; 55% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.9 (s, 1H), 7.8 (t, *J* = 7.9 Hz, 1H), 7.6 (t, *J* = 8.2 Hz, 2H), 7.5 – 7.4 (m, 5H), 7.4 (d, *J* = 6.8 Hz, 3H), 6.9 (d, *J* = 8.1 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.2 Hz, 1H), 3.9 (ddd, *J* = 33.2, 14.4, 9.3 Hz, 3H), 3.7 – 3.5 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 160.9 (t, J_{C-F} = 29.3 Hz), 160.6, 156.5, 153.2, 139.0, 135.3, 132.2, 131.1, 129.4, 128.9, 128.9, 128.0, 127.9, 127.7, 127.1, 125.3, 123.2, 122.8, 121.8, 120.2, 119.1, 117.0 (t, J_{C-F} = 258.4 Hz), 116.7, 50.6 (d, J_{C-F} = 7.0 Hz), 47.5 (d, J_{C-F} = 6.0 Hz), 33.5 (t, J_{C-F} = 20.2 Hz).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.4 (d, J = 262.3 Hz, 1F), -112.8 (d, J = 262.3 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₆H₁₉BrF₂NO₅S⁺[M+H] + 574.0130, found 574.0126.

3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-1-(*m*-tolyl)pyrrolidin-2-one (4ai).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1). White solid; m.p.: 210.1-212.8 °C; 68% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (t, *J* = 7.9 Hz, 1H), 7.6 (d, *J* = 8.3 Hz, 1H), 7.5 (t, *J* = 4.2 Hz, 2H), 7.5 – 7.3 (m, 7H), 7.1 (d, *J* = 7.5 Hz, 1H), 6.9 (d, *J* = 8.1 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.1 Hz, 1H), 4.0 – 3.7 (m, 3H), 3.7 – 3.5 (m, 1H), 2.3 (s, 3H).

¹³**C NMR** (101 MHz, DMSO) δ 160.6, 160.6 (t, J_{C-F} = 30.3 Hz), 156.5, 153.2, 138.6, 137.5, 135.3, 132.2, 129.4, 129.0, 128.9, 128.1, 127.8, 127.7, 127.0, 126.9, 125.3, 123.2, 120.7, 120.2, 117.5 (t, J_{C-F} = 256.4 Hz), 117.2, 116.7, 50.6 (d, J_{C-F} = 6.0 Hz), 47.7 (d, J_{C-F} = 6.0 Hz), 33.6 (t, J_{C-F} = 21.2 Hz), 21.1.

¹⁹**F** NMR (376 MHz, DMSO-*d*₆) δ -108.4 (d, J = 261.6 Hz, 1F), -112.9 (d, J = 261.7 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₇H₂₂F₂NO₅S⁺ [M+H] + 510.1181, found 510.1178.

3,3-difluoro-1-(3-methoxyphenyl)-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl) pyrrolidin-2-one (4aj).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 254.1-255.2 °C; 86% yield;

¹**H NMR** (400 MHz, DMSO- d_6) δ 7.8 (t, J = 7.9 Hz, 1H), 7.6 (d, J = 8.3 Hz, 1H), 7.5 – 7.4 (m, 3H), 7.3 (d, J = 7.7 Hz, 4H), 7.2 (s, 1H), 7.1 (d, J = 8.2 Hz, 1H), 6.9 (dd, J = 14.9, 8.3 Hz, 2H), 4.2 (dd, J = 14.8, 4.2 Hz, 1H), 3.9 – 3.8 (m, 3H), 3.7 (s, 3H), 3.6 – 3.4 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 160.7 (t, J_{C-F} = 31.3 Hz), 160.6, 159.6, 156.5, 153.2, 138.7, 135.3, 132.2, 130.0, 129.4, 128.9, 128.0, 127.8, 127.7, 127.1, 125.3, 123.2, 120.2, 117.1 (t, J_{C-F} = 256.4 Hz), 116.7, 112.3, 111.6, 106.4, 55.3, 50.6 (d, J_{C-F} = 7.0 Hz), 47.7 (d, J_{C-F} = 6.0 Hz), 33.5 (t, J_{C-F} = 20.2 Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -108.3 (d, J = 261.8 Hz, 1F), -112.8 (d, J = 261.7 Hz, 1F). **HRMS-ESI (m/z)**: calcd for C₂₇H₂₂F₂NO₆S⁺ [M+H] + 526.1130, found 526.1125.

3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-1-(3-(trifluoromethyl) phenyl)pyrrolidin-2-one (4ak).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 232.8-236.7 °C; 62% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.0 (s, 1H), 7.9 – 7.8 (m, 2H), 7.7 (t, *J* = 8.0 Hz, 1H), 7.7 (d, *J* = 7.8 Hz, 1H), 7.6 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.6 – 7.5 (m, 2H), 7.5 – 7.4 (m, 1H), 7.4 – 7.3 (m, 3H), 6.9 (dd, *J* = 8.1, 1.5 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.3 Hz, 1H), 4.0 – 3.9 (m, 2H), 3.8 (dd, *J* = 14.6, 9.4 Hz, 1H), 3.7 – 3.5 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 161.1 (t, J_{C-F} = 30.3 Hz), 160.6, 156.5, 153.2, 138.2, 135.3, 132.2, 130.5, 129.5 (q, J_{C-F} = 32.3 Hz), 129.4, 128.9, 128.0, 127.8, 127.6, 127.1, 125.3, 125.2, 124.0, 123.2, 122.6 (q, J_{C-F} = 4.0 Hz), 122.4, 120.2, 117.0 (t, J_{C-F} = 246.4 Hz), 116.7 (q, J_{C-F} = 4.0 Hz), 50.6(d, J_{C-F} = 7.0 Hz), 47.6(d, J_{C-F} = 6.0 Hz), 33.6 (t, J_{C-F} = 20.2 Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -61.3 (s, 3F), -108.4 (d, *J* = 262.3 Hz, 1F), -112.8 (d, *J* = 262.6 Hz, 1F).

HRMS-ESI (m/z): calcd for $C_{27}H_{19}F_5NO_5S^+[M+H]^+564.0899$, found 564.0893.

1-(3,5-dimethylphenyl)-3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl) pyrrolidin-2-one (4al).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 198.9-201.6 °C; 87% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (t, *J* = 7.8 Hz, 1H), 7.6 (d, *J* = 8.2 Hz, 1H), 7.5 (t, *J* = 4.2 Hz, 2H), 7.5 (d, *J* = 6.3 Hz, 1H), 7.4 (dd, *J* = 7.5, 4.4 Hz, 3H), 7.2 (s, 2H), 7.0 – 6.9 (m, 2H), 4.2 (dd, *J* = 14.6, 4.2 Hz, 1H), 3.9 (t, *J* = 9.4 Hz, 1H), 3.8 – 3.7 (m, 3H), 2.3 (s, 6H).

¹³C NMR (101 MHz, DMSO) δ 161.1, 160.8 (t, J_{C-F} = 30.3 Hz), 156.9, 153.5, 138.7, 137.7, 135.7, 132.4, 129.7, 129.3, 128.3, 128.2, 128.1, 128.0, 127.3, 125.6, 123.3, 120.4, 118.3, 117.5 (t, J_{C-F} = 251.4 Hz), 117.0, 50.9 (d, J_{C-F} = 7.0 Hz), 48.0 (d, J_{C-F} = 6.0 Hz), 33.7 (t, J_{C-F} = 20.2 Hz), 21.3. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.3 (d, J = 261.6 Hz, 1F), -112.9 (d, J = 261.6 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₈H₂₄F₂NO₅S⁺ [M+H] + 524.1338, found 524.1334.

1-(4-chloro-3-methoxyphenyl)-3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl) methyl)pyrrolidin-2-one (4am).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 281.2-283.0 °C; 64% yield;

¹**H NMR** (400 MHz, CDCl₃) δ 7.6 (ddd, *J* = 8.6, 7.2, 1.6 Hz, 1H), 7.5 (d, *J* = 2.5 Hz, 1H), 7.5 – 7.4 (m, 3H), 7.4 (d, *J* = 8.4 Hz, 1H), 7.3 (dd, *J* = 8.1, 4.3 Hz, 2H), 7.2 – 7.2 (m, 2H), 7.0 (dd, *J* = 8.2, 1.6 Hz, 1H), 6.8 (dd, *J* = 8.6, 2.5 Hz, 1H), 4.0 (t, *J* = 3.3 Hz, 1H), 4.0 (dd, *J* = 14.0, 3.3 Hz, 1H), 3.8 (s, 3H), 3.8 – 3.7 (m, 2H), 3.3 – 3.1 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.4, 160.8 (t, J_{C-F} = 30.3 Hz), 156.7, 155.2, 153.7, 137.1, 135.6, 131.4, 130.1, 130.1, 129.7, 128.3, 128.1, 128.0, 127.0, 125.4, 123.7, 120.1, 119.7, 117.1, 116.4 (t, J_{C-F} = 251.4 Hz), 111.8, 104.7, 56.3, 51.8 (d, J_{C-F} = 7.0 Hz), 48.0 (d, J_{C-F} = 6.0 Hz), 34.5 (t, J_{C-F} = 21.2 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -109.9 (d, J = 266.4 Hz, 1F), -114.5 (d, J = 266.4 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₇H₂₁ClF₂NO₆S⁺[M+H] + 560.0741, found 560.0738.

3,3-difluoro-1-(naphthalen-2-yl)-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl) pyrrolidin-2-one (4an).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 259.6-261.4 °C; 47% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.0 (d, *J* = 7.2 Hz, 2H), 8.0 (t, *J* = 8.4 Hz, 2H), 7.9 (d, *J* = 9.2 Hz, 1H), 7.8 (t, *J* = 7.9 Hz, 1H), 7.6 (d, *J* = 8.4 Hz, 1H), 7.5 (dd, *J* = 15.4, 7.2 Hz, 4H), 7.5 (d, *J* = 4.1 Hz, 1H), 7.4 (t, *J* = 6.7 Hz, 2H), 6.9 (d, *J* = 8.1 Hz, 2H), 4.2 (dd, *J* = 14.5, 4.0 Hz, 1H), 4.1 (t, *J* = 9.4 Hz, 1H), 4.0 (t, *J* = 9.0 Hz, 1H), 3.9 (dd, *J* = 14.5, 9.6 Hz, 1H), 3.7 – 3.6 (m, 1H). ¹³**C NMR** (101 MHz, DMSO) δ 161.1, 160.6, 156.5, 153.2, 135.3, 135.3, 132.8, 132.2, 130.9, 129.4, 128.9, 128.9, 128.0, 127.9, 127.8, 127.7, 127.6, 127.1, 127.0, 126.2, 125.3, 123.2, 120.2, 119.4, 117.8, 117.3 (t, *J*_{C-F}= 258.4 Hz), 116.7, 50.6, 47.9, 33.4 (t, *J*_{C-F}= 20.2 Hz).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.2 (d, J = 261.8 Hz, 1F), -112.6 (d, J = 261.8 Hz, 1F). HRMS-ESI (m/z): calcd for C₃₀H₂₂F₂NO₅S⁺ [M+H] + 546.1181, found 546.1177.

1-cyclopentyl-3,3-difluoro-4-(((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)pyrrolidin-2-one (4ao).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 192.1-193.4 °C; 51% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (t, *J* = 7.8 Hz, 1H), 7.6 (d, *J* = 8.3 Hz, 1H), 7.5 (d, *J* = 4.6 Hz, 3H), 7.4 (t, *J* = 6.7 Hz, 3H), 6.9 (d, *J* = 8.1 Hz, 1H), 4.3 (t, *J* = 7.5 Hz, 1H), 4.1 (d, *J* = 14.4 Hz, 1H), 3.7 (dd, *J* = 14.6, 9.2 Hz, 1H), 3.4 (d, *J* = 7.7 Hz, 2H), 3.3 (d, *J* = 6.9 Hz, 1H), 1.9 – 1.7 (m, 2H), 1.7 – 1.4 (m, 6H).

¹³C NMR (101 MHz, DMSO) δ 161.1 (t, J_{C-F} = 30.3 Hz), 160.7, 156.5, 153.2, 135.2, 132.3, 129.4, 128.8, 128.1, 127.8, 127.5, 126.8, 125.2, 122.9, 120.3, 117.7 (t, J_{C-F} = 255.4 Hz), 116.7, 52.7, 50.5, (d, J_{C-F} = 7.0 Hz), 42.7 (d, J_{C-F} = 7.0 Hz), 34.0 (t, J_{C-F} = 21.2 Hz), 28.4, 28.3, 24.2, 24.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -110.1 (d, J = 260.7 Hz, 1F), -113.5 (d, J = 260.3 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₅H₂₄F₂NO₅S⁺ [M+H] + 488.1338, found 488.1335.

3,3-difluoro-4-(((7-fluoro-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-1-phenylpyr-rolidin-2-one (4ba).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1). White solid; m.p.: 293.7-297.0 °C; 52% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.7 (d, *J* = 8.0 Hz, 1H), 7.6 (s, 1H), 7.5 (t, *J* = 7.6 Hz, 1H), 7.3 – 7.3 (m, 1H), 7.2 (t, *J* = 8.8 Hz, 1H), 7.0 – 6.9 (m, 1H), 4.1 (t, *J* = 8.9 Hz, 1H), 3.9 (t, *J* = 8.4 Hz, 1H), 3.7 (dd, *J* = 14.8, 9.4 Hz, 1H), 3.5 (d, *J* = 14.2 Hz, 1H).

¹³C NMR (101 MHz, DMSO) δ 162.3, 161.5, 151.6, 146.1 (d, $J_{C-F}=2.0$ Hz), 139.9, 138.0, 130.8, 129.9, 129.7, 129.7, 129.6, 129.2, 126.6, 123.6, 123.5, 120.7, 117.4 (t, $J_{C-F}=255.5$ Hz), 116.9, 116.6, 47.9, 47.6, 33.9 (t, $J_{C-F}=21.2$ Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -107.8 (d, *J* = 263.0 Hz, 1F), -112.3 (d, *J* = 262.6 Hz, 1F), -116.4 (s, 1F).

HRMS-ESI (m/z): calcd for $C_{26}H_{19}F_3NO_5S^+[M+H] + 514.0931$, found 514.0928.

4-(((7-chloro-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-3,3-difluoro-1-phenylpyr-rolidin-2-one (4ca).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 259.1-261.3 °C; 65% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.9 (s, 1H), 7.6 (d, *J* = 8.1 Hz, 2H), 7.6 – 7.4 (m, 6H), 7.4 (s, 2H), 7.3 (t, *J* = 7.5 Hz, 1H), 6.9 (d, *J* = 8.7 Hz, 1H), 4.2 (dd, *J* = 14.5, 4.1 Hz, 1H), 3.9 (ddd, *J* = 23.0, 14.9, 9.6 Hz, 3H), 3.7 – 3.4 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 160.6 (t, J_{C-F} = 31.3 Hz), 159.9, 156.2, 153.5, 139.6, 137.5, 131.9, 130.7, 129.1, 129.0, 128.0, 127.9, 127.8, 127.0, 126.2, 125.6, 123.3, 120.2, 119.4, 117.1 (t, J_{C-F} = 256.5 Hz), 116.8, 50.7 (d, J_{C-F} = 6.0 Hz), 47.6 (d, J_{C-F} = 6.0 Hz), 33.5 (t, J_{C-F} = 20.2 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.2 (d, J = 262.0 Hz, 1F), -112.8 (d, J = 261.8 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₆H₁₉ClF₂NO₅S⁺ [M+H] + 530.0635, found 530.0633.

3,3-difluoro-4-(((2-oxo-4-phenyl-7-(trifluoromethyl)-2*H*-chromen-3-yl)sulfonyl)methyl)-1-phenylpyrrolidin-2-one (4da).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 203.7-206.4 °C; 69% yield;

¹**H NMR** (400 MHz, DMSO- d_6) δ 8.1 (s, 1H), 7.7 (d, J = 8.6 Hz, 1H), 7.6 (d, J = 8.1 Hz, 2H), 7.6 – 7.4 (m, 5H), 7.4 (d, J = 7.7 Hz, 2H), 7.3 (t, J = 7.5 Hz, 1H), 7.1 (d, J = 8.4 Hz, 1H), 4.2 (dd, J = 14.7, 4.1 Hz, 1H), 4.0 – 3.8 (m, 3H), 3.7 – 3.5 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 160.6 (t, J_{C-F} = 29.3 Hz), 159.2, 156.1, 153.0, 137.5, 133.8 (q, J_{C-F} = 33.3 Hz), 131.7, 130.7, 129.2, 129.1, 128.1, 128.0, 127.9, 127.1, 126.2, 125.4, 124.4, 123.6, 121.4, 120.2, 117.1 (t, J_{C-F} = 241.5 Hz), 114.2, 50.7 (d, J_{C-F} = 7.0 Hz), 47.5 (d, J_{C-F} = 6.0 Hz), 33.5 (t, J_{C-F} = 20.2 Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -61.6 (s, 3F), -108.2 (d, *J* = 262.2 Hz, 1F), -112.8 (d, *J* = 261.9 Hz, 1F).

HRMS-ESI (m/z): calcd for $C_{27}H_{19}F_5NO_5S^+[M+H]^+564.0899$, found 564.0893.

3,3-difluoro-4-(((7-methyl-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-1-phenylpyr-rolidin-2-one (4ea).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 261.4-261.7 °C; 87% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.6 (d, J = 8.1 Hz, 2H), 7.5 – 7.4 (m, 6H), 7.3 (d, J = 6.7 Hz, 2H), 7.3 (t, J = 7.5 Hz, 1H), 7.2 (d, J = 8.4 Hz, 1H), 6.8 (d, J = 8.3 Hz, 1H), 4.2 (dd, J = 14.5, 3.9 Hz, 1H), 3.9 (ddd, J = 29.6, 21.5, 12.3 Hz, 3H), 3.7 – 3.4 (m, 1H), 2.4 (s, 3H). ¹³**C NMR** (101 MHz, DMSO) δ160.6, 160.6 (t, $J_{C-F}= 31.3$ Hz), 156.7, 153.3, 147.0, 137.6, 132.3, 129.1, 128.8, 128.0, 127.8, 127.6, 127.0, 126.4, 126.2, 121.9, 120.2, 117.8, 117.2 (t, $J_{C-F}= 252.5$ Hz), 116.6, 50.6 (d, $J_{C-F}= 7.0$ Hz), 47.6 (d, $J_{C-F}= 6.0$ Hz), 33.6 (t, $J_{C-F}= 20.2$ Hz), 21.3. ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -108.3 (d, J = 261.9 Hz, 1F), -112.8 (d, J = 261.8 Hz, 1F). **HRMS-ESI (m/z)**: calcd for C₂₇H₂₂F₂NO₅S⁺ [M+H] + 510.1181, found 510.1178.

3,3-difluoro-4-(((7-methoxy-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-1-phenylpyr-rolidin-2-one (4fa).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 248.3-251.8 °C; 80% yield;

¹**H NMR** (400 MHz, DMSO- d_6) δ 7.6 (d, J = 7.4 Hz, 1H), 7.5 (m, 5H), 7.4 – 7.3 (m, 2H), 7.3 (t, J = 7.4 Hz, 1H), 7.2 (d, J = 2.5 Hz, 1H), 7.0 (dd, J = 9.1, 2.5 Hz, 1H), 6.8 (d, J = 9.1 Hz, 1H), 4.2 (dd, J = 14.5, 4.2 Hz, 1H), 3.9 (s, 3H), 3.9 – 3.7 (m, 2H), 3.6 – 3.4 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 165.2, 160.8, 160.6 (t, J_{C-F} = 30.3 Hz), 156.9, 155.6, 137.6, 132.6, 130.7, 129.1, 128.8, 127.9, 127.8, 127.6, 127.0, 126.1, 120.2, 119.4, 117.2 (t, J_{C-F} = 249.5 Hz), 113.8, 113.5, 100.6, 56.5, 50.4 (d, J_{C-F} = 7.0 Hz), 47.6 (d, J_{C-F} = 6.0 Hz), 33.7 (t, J_{C-F} = 21.2 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.4 (d, J = 261.8 Hz, 1F), -112.8 (d, J = 261.9 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₇H₂₂F₂NO₆S⁺ [M+H] + 526.1130, found 526.1125.

4-(((7-(tert-butyl)-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-3,3-difluoro-1-phenyl-pyrrolidin-2-one (4ga).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 263.8-265.3 °C; 88% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.6 (d, *J* = 8.5 Hz, 3H), 7.5 – 7.4 (m, 6H), 7.4 (d, *J* = 7.6 Hz, 2H), 7.3 (t, *J* = 7.4 Hz, 1H), 6.8 (d, *J* = 8.5 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.0 Hz, 1H), 3.8 (ddd, *J* = 34.4, 14.9, 9.3 Hz, 3H), 3.7 – 3.4 (m, 1H), 1.3 (s, 9H).

¹³C NMR (101 MHz, DMSO) δ 160.6, 160.6 (t, J_{C-F} = 30.3 Hz), 159.6, 156.7, 153.3, 137.6, 132.4, 129.1, 129.0, 128.8, 128.0, 127.8, 127.6, 126.9, 126.1, 122.8, 122.0, 120.2, 117.8, 117.1 (t, J_{C-F} = 253.5 Hz), 113.4, 50.5 (d, J_{C-F} = 7.0 Hz), 47.6 (d, J_{C-F} = 6.0 Hz), 35.3, 33.7 (t, J_{C-F} = 21.2 Hz), 30.5. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.4 (d, J= 261.7 Hz, 1F), -112.9 (d, J= 261.8 Hz, 1F). HRMS-ESI (m/z): calcd for C₃₀H₂₈F₂NO₅S⁺ [M+H] + 552.1651, found 552.1647.

3,3-difluoro-4-(((2-oxo-4,7-diphenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-1-phenylpyrrolidin-2-one (4ha).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 305.2-306.7 °C; 51% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.0 (s, 1H), 7.8 (d, *J* = 7.4 Hz, 2H), 7.7 (d, *J* = 8.6 Hz, 1H), 7.6 (d, *J* = 8.1 Hz, 2H), 7.6 – 7.4 (m, 8H), 7.4 (d, *J* = 6.8 Hz, 2H), 7.3 (t, *J* = 7.5 Hz, 1H), 7.0 (d, *J* = 8.4 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.0 Hz, 1H), 3.9 (ddd, *J* = 24.5, 16.1, 9.4 Hz, 3H), 3.7 – 3.5 (m, 1H).

¹³**C NMR** (101 MHz, DMSO) δ 160.6 (t, J_{C-F} = 30.3 Hz), 160.4, 156.7, 153.8, 146.7, 137.6, 137.4, 132.3, 129.9, 129.4, 129.2, 129.1, 128.9, 128.0, 127.9, 127.7, 127.3, 127.0, 126.2, 123.5, 122.5, 120.2, 119.2, 117.1 (t, J_{C-F} = 253.5 Hz), 114.1, 50.6 (d, J_{C-F} = 7.0 Hz), 47.6 (d, J_{C-F} = 6.0 Hz), 33.6 (t, J_{C-F} = 21.2 Hz).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.3 (d, J = 262.0 Hz, 1F), -112.8 (d, J = 261.9 Hz, 1F). HRMS-ESI (m/z): calcd for C₃₂H₂₄F₂NO₅S⁺ [M+H] + 572.1338, found 572.1338.

3,3-difluoro-4-(((4-(4-fluorophenyl)-2-oxo-2*H*-chromen-3-yl)sulfonyl)methyl)-1-phenylpyr-rolidin-2-one (4ia).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1). White solid; m.p.: 188.1-190.6 °C; 66% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (t, *J* = 7.9 Hz, 1H), 7.6 (d, *J* = 8.1 Hz, 3H), 7.5 – 7.2 (m, 8H), 7.0 (d, *J* = 8.1 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.1 Hz, 1H), 3.9 (ddd, *J* = 21.4, 17.2, 9.9 Hz, 3H), 3.7 – 3.4 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 163.6, 161.2, 160.6 (t, J_{C-F} = 30.2 Hz), 159.8, 156.5, 153.2, 137.6, 135.3, 130.4 (d, J_{C-F} = 8.6 Hz), 129.5 (d, J_{C-F} = 8.3 Hz), 129.4, 129.3, 129.1, 128.4 (d, J_{C-F} = 3.2 Hz), 126.2, 125.3, 123.6, 120.2, 120.2, 117.2 (t, J_{C-F} = 249.5 Hz), 116.7, 115.0 (dd, J_{C-F} = 22.0, 11.9 Hz), 50.6 (d, J_{C-F} = 7.0 Hz), 47.6 (d, J_{C-F} = 6.3 Hz), 33.5 (t, J_{C-F} = 21.2 Hz).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -108.1 (d, J = 262.0 Hz, 1F), -112.7 (d, J = 261.7 Hz, 1F), -112.8(s, 1F).

HRMS-ESI (m/z): calcd for $C_{26}H_{19}F_3NO_5S^+[M+H] + 514.0931$, found 514.0928.

4-(((4-(4-chlorophenyl)-2-oxo-2*H*-chromen-3-yl)sulfonyl)methyl)-3,3-difluoro-1-phenylpyr-rolidin-2-one (4ja).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1). White solid; m.p.: 297.3-299.9 °C; 65% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.8 (t, *J* = 7.9 Hz, 1H), 7.6 (d, *J* = 7.9 Hz, 4H), 7.5 (d, *J* = 8.4 Hz, 1H), 7.5 (t, *J* = 7.8 Hz, 2H), 7.4 (d, *J* = 8.1 Hz, 2H), 7.4 (d, *J* = 7.7 Hz, 1H), 7.3 (t, *J* = 7.5 Hz, 1H), 7.0 (d, *J* = 8.1 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.2 Hz, 1H), 4.0 – 3.8 (m, 3H), 3.7 – 3.5 (m, 1H). ¹³**C NMR** (101 MHz, DMSO) δ 160.6 (t, *J* _{C-F}= 30.2 Hz), 159.5, 156.4, 153.2, 137.5, 135.4, 133.8, 131.1, 130.0, 129.3, 129.1, 129.1, 128.0, 127.9, 126.2, 125.4, 123.5, 120.2, 120.0, 117.1 (t, *J* _{C-F}= 253.5 Hz), 116.7, 50.6 (d, *J* _{C-F}= 7.1 Hz), 47.6 (d, *J* _{C-F}= 6.0 Hz), 33.5 (t, *J* _{C-F}= 20.2 Hz). ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -108.1 (d, *J* = 261.6 Hz, 1F), -112.7 (d, *J* = 261.9 Hz, 1F). **HRMS-ESI (m/z)**: calcd for C₂₆H₁₉ClF₂NO₅S⁺ [M+H] + 530.0635, found 530.0633.

3,3-difluoro-4-(((2-oxo-4-(p-tolyl)-2*H*-chromen-3-yl)sulfonyl)methyl)-1-phenylpyrrolidin-2-one (4ka).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 210.2-212.7 °C; 48% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.6 (d, *J* = 8.0 Hz, 2H), 7.5 (dd, *J* = 15.6, 6.7 Hz, 6H), 7.3 (d, *J* = 6.7 Hz, 2H), 7.3 (t, *J* = 7.5 Hz, 1H), 7.2 (d, *J* = 8.4 Hz, 1H), 6.8 (d, *J* = 8.2 Hz, 1H), 4.2 (dd, *J* = 14.6, 4.1 Hz, 1H), 3.9 (t, *J* = 9.4 Hz, 1H), 3.8 (dd, *J* = 14.4, 9.0 Hz, 1H), 3.8 (d, *J* = 10.3 Hz, 1H), 3.6 – 3.4 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 161.4, 161.1, 157.2, 153.8, 147.5, 138.1, 132.8, 129.6, 129.6, 129.3, 128.3 (t, J_{C-F} = 19.2 Hz), 127.5, 126.9, 126.7, 122.4, 120.7, 118.3, 117.7 (t, J_{C-F} = 246.4 Hz), 117.1, 51.0 (d, J_{C-F} = 7.0 Hz), 48.1 (d, J_{C-F} = 6.3 Hz), 34.1 (t, J_{C-F} = 20.2 Hz), 21.8. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.3 (d, J = 261.6 Hz, 1F), -112.8 (d, J = 261.9 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₇H₂₂F₂NO₅S⁺ [M+H] + 510.1181, found 510.1178.

4-(((6-chloro-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-3,3-difluoro-1-phenylpyrrolidin-2-one (4la) and 4-(((8-chloro-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)methyl)-3,3difluoro-1-phenylpyrrolidin-2-one (4l'a).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1). White solid; m.p.: 211.9-213.4 °C; 75% yield;

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.0 (d, *J* = 8.0 Hz, 0.27H), 7.9 (d, *J* = 9.0 Hz, 0.73H), 7.7 (d, *J* = 8.9 Hz, 1H), 7.6 (d, *J* = 8.1 Hz, 2H), 7.6 – 7.4 (m, 5H), 7.4 (d, *J* = 6.7 Hz, 2H), 7.3 (t, *J* = 7.5 Hz, 1H), 6.9 (d, *J* = 8.2 Hz, 0.27H), 6.8 (d, *J* = 2.4 Hz, 0.73H), 4.2 (dd, *J* = 14.8, 4.5 Hz, 1H), 4.0 – 3.8 (m, 3H), 3.7 – 3.5 (m, 1H).

¹³C NMR (101 MHz, DMSO) δ 160.6 (t, J_{C-F} = 31.3 Hz), 160.2, 159.2, 156.2, 155.8, 151.9, 148.7, 137.5, 134.8, 134.7, 132.0, 131.6, 129.2, 129.1, 129.1, 129.0, 128.4, 128.0, 127.9, 127.7, 127.1, 127.0, 126.2, 125.5, 124.4, 124.0, 122.0, 121.8, 120.2, 119.0, 117.1 (t, J_{C-F} = 253.5 Hz), 50.7 (d, J_{C-F} = 7.0 Hz), 47.6 (d, J_{C-F} = 5.0 Hz), 33.5 (t, J_{C-F} = 20.2 Hz).

¹⁹**F** NMR (376 MHz, DMSO-*d*₆) δ -108.2 (d, J = 261.6 Hz, 1F), -112.8 (d, J = 261.9 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₆H₁₉ClF₂NO₅S⁺ [M+H] + 530.0635, found 530.0633.

3,3-difluoro-4-(((4-methyl-2-oxo-2*H*-chromen-3-yl)sulfonyl)methyl)-1-phenylpyrrolidin-2-one (4ma).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1). White solid; m.p.: 197.1-199.5 °C; 33% yield;

¹**H** NMR (400 MHz, DMSO- d_6) δ 8.1 (dd, J = 8.1, 1.5 Hz, 1H), 7.8 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H), 7.7 (d, J = 7.6 Hz, 2H), 7.5 (d, J = 8.6 Hz, 1H), 7.5 (t, J = 8.0 Hz, 2H), 7.3 (t, J = 7.4 Hz, 1H), 4.2 (dd, J = 14.6, 5.0 Hz, 1H), 4.1 (ddd, J = 10.2, 8.6, 1.7 Hz, 1H), 4.0 – 4.0 (m, 1H), 3.9 (dd, J = 14.6, 8.4 Hz, 1H), 3.7 – 3.5 (m, 1H), 3.0 (s, 3H).

¹³**C NMR** (101 MHz, DMSO) δ 160.9, 160.7 (t, J_{C-F} = 30.2 Hz), 156.2, 152.6, 137.6, 135.2, 129.1, 127.6, 126.2, 125.3, 123.1, 120.3, 119.5, 117.2 (t, J_{C-F} = 249.5 Hz), 116.7, 51.1 (d, J_{C-F} = 7.0 Hz), 47.6 (d, J_{C-F} = 7.0 Hz), 33.7 (t, J_{C-F} = 21.2 Hz), 14.7.

¹⁹**F** NMR (376 MHz, DMSO-*d*₆) δ -107.8 (d, J = 262.3 Hz, 1F), -112.6 (d, J = 262.2 Hz, 1F). HRMS-ESI (m/z): calcd for C₂₁H₁₈F₂NO₅S⁺ [M+H] + 434.0868, found 434.0864.

8. ¹H, ¹³C and ¹⁹F NMR spectra for products.

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3aa**

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **3ab**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3ab**

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **3ac**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3ac**

-82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 fl (pm)

¹H NMR-spectrum (400 MHz, DMSO- d_6) of **3ad**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3ad**

¹⁹F NMR-spectrum (565 MHz, DMSO-*d*₆) of **3ae**

-65 -70 -75 -85 -95 -100 -105 -110 f1 (ppm) -115 -120 -125 -130 -135 -140 -145 -150 -80 -90

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3af**

¹³C NMR-spectrum (101 MHz, DMSO-*d*₆) of **3ag**

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **3ah**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3ah**

¹⁹F NMR-spectrum (101 MHz, DMSO-*d*₆) of **3ai**

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **3ba**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3ba**

S50

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3ca**

¹H NMR-spectrum (400 MHz, DMSO- d_6) of **3da**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3da**

-105 -110 f1 (ppm) 50 -65 -70 -75 -80 -85 -90 -95 -100 -115 -120 -125 -130 -135 -140 -145 -150 -155

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **3fa**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3fa**

¹³C NMR-spectrum (101 MHz, DMSO-*d*₆) of **3ap**

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **3ma**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **3ma**

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **4ab**

¹⁹F NMR-spectrum (376 MHz, DMSO-d₆) of 4ab

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of 4ac

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of 4ad

¹⁹F NMR-spectrum (376 MHz, DMSO-d₆) of 4ad

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of 4ae

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4ae

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of 4af

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4af

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **4ah**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4ah

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of 4aj

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4aj

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **4ak**

S74

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4ak

-25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 fl (ppm)

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4al

¹³C NMR-spectrum (101 MHz, CDCl₃) of 4am

¹⁹F NMR-spectrum (376 MHz, CDCl₃) of 4am

-110 -115 -120 -125 -130 -135 -140 f1 (ppm) -65 -70 -75 -80 -85 -90 -95 -100 -105 -145 -150 -155 -160 -165

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of 4an

¹⁹F NMR-spectrum (376 MHz, DMSO-d₆) of 4an

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **4ao**

¹³C NMR-spectrum (101 MHz, DMSO-d₆) of 4ao

¹⁹F NMR-spectrum (376 MHz, DMSO-d₆) of 4ao

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of 4ba

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4ba

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of 4da

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4da

¹³C NMR-spectrum (101 MHz, DMSO-*d*₆) of **4ea**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4ea

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4fa

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4ga

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of **4ha**

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4ia

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4ka

¹H NMR-spectrum (400 MHz, DMSO-*d*₆) of **4la and 4l'a**

¹³C NMR-spectrum (101 MHz, DMSO-*d*₆) of **4la and 4l'a**

¹⁹F NMR-spectrum (376 MHz, DMSO-d₆) of 4la and 4l'a

¹⁹F NMR-spectrum (376 MHz, DMSO-*d*₆) of 4ma

9.1 X-ray crystallography date of 3ac.

Crystal structure determination of 3ac.

Crystal Data for C₂₆H₂₀ClF₂NO₅S (M=531.94 g/mol): triclinic, space group P-1 (no. 2), a = 6.3919(4) Å, b = 10.6731(6) Å, c = 18.7577(11) Å, $a = 73.689(2)^{\circ}$, $\beta = 87.428(2)^{\circ}$, $\gamma = 75.023(2)^{\circ}$, V = 1185.92(12) Å³, Z = 2, T = 170.00 K, μ (GaK α) = 1.799 mm⁻¹, Dcalc = 1.490 g/cm³, 37998 reflections measured (7.752° $\leq 2\Theta \leq 114.212^{\circ}$), 4772 unique ($R_{int} = 0.0554$, $R_{sigma} = 0.0415$) which

were used in all calculations. The final R_1 was 0.0798 (I > 2 σ (I)) and wR_2 was 0.2236 (all data).

ment for Sac.
3ac
$C_{26}H_{20}ClF_2NO_5S$
531.94
170.00
triclinic
P-1
6.3919(4)
10.6731(6)
18.7577(11)
73.689(2)
87.428(2)
75.023(2)
1185.92(12)
2
1.490
1.799
548.0
0.2 imes 0.03 imes 0.02
$GaK\alpha \ (\lambda = 1.34139)$
7.752 to 114.212
$\textbf{-7} \leq h \leq \textbf{7}, \textbf{-13} \leq k \leq \textbf{13}, \textbf{-23} \leq \textbf{l} \leq \textbf{23}$
37998
$4772 \; [R_{int} = 0.0554, R_{sigma} = 0.0415]$
4772/0/325
1.125
$R_1 = 0.0798, wR_2 = 0.2190$
$R_1 = 0.0859, wR_2 = 0.2236$
1.54/-0.52

Table 1	Crystal	data and	l structure	refinemen	t for 3ac.

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3ac. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
Cl1	-1142.0(18)	9783.9(9)	7618.8(5)	45.8(3)
S1	4539.8(13)	5374.5(8)	3097.4(4)	25.4(2)
F1	-535(4)	7536(3)	3387.0(12)	42.0(6)
01	-2901(5)	7259(5)	4781(2)	71.7(12)
N1	420(4)	7589(3)	5008.1(16)	27.1(6)
C1	-1845(6)	8048(4)	6043(2)	34.8(8)
F2	-332(4)	5482(3)	4048.8(14)	47.4(6)
O2	2566(4)	5384(3)	2768.9(15)	39.3(6)
C2	-2183(7)	8576(4)	6648(2)	39.3(9)
03	5682(5)	4151(3)	3627.2(15)	40.8(7)
C3	-713(7)	9184(4)	6830(2)	36.3(8)
O4	9744(4)	5952(2)	1221.0(13)	33.1(6)
C4	1093(6)	9305(4)	6411(2)	35.4(8)
05	11074(4)	3747(2)	1836.1(13)	28.9(5)
C5	1422(6)	8801(4)	5795(2)	31.4(7)

C6	-26(5)	8166(3)	5610.2(18)	27.9(7)
C7	2556(5)	7424(4)	4670.3(18)	25.8(7)
C8	2583(5)	6440(4)	4203.0(19)	27.4(7)
C9	220(6)	6629(4)	4058(2)	34.2(8)
C10	-993(6)	7189(5)	4668(2)	39.7(9)
C11	4025(5)	6705(3)	3530.9(17)	25.3(7)
C12	6321(5)	5858(3)	2360.9(17)	25.0(7)
C13	5509(6)	7223(3)	1837.7(18)	27.3(7)
C14	6736(7)	8166(4)	1751(2)	39.0(9)
C15	5992(9)	9445(4)	1274(3)	50.9(12)
C16	4068(9)	9793(4)	885(2)	54.6(13)
C17	2832(8)	8884(4)	966(2)	47.0(11)
C18	3548(6)	7588(4)	1444.5(19)	34.5(8)
C19	8150(5)	4915(3)	2351.9(18)	26.0(7)
C20	9699(5)	4990(3)	1733.7(18)	26.2(7)
C21	12755(6)	3582(3)	1330.2(19)	27.5(7)
C22	14842(6)	3265(4)	1606(2)	31.6(8)
C23	16558(6)	3020(4)	1137(2)	33.9(8)
C24	16149(6)	3092(4)	406(2)	36.2(8)
C25	14038(6)	3411(4)	140(2)	35.3(8)
C26	12313(6)	3655(4)	605(2)	31.1(7)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3ac. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

		1		L 11	1	
Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cl1	71.2(7)	34.2(5)	24.8(4)	-14.0(4)	9.5(4)	4.2(4)
S1	31.0(5)	24.4(4)	21.8(4)	-8.5(3)	8.3(3)	-8.0(3)
F1	35.7(12)	56.7(14)	32.8(11)	-16.3(10)	-3.1(9)	-5.6(10)
01	29.7(16)	149(4)	68(2)	-69(2)	21.8(15)	-39(2)
N1	20.9(13)	35.8(15)	26.4(14)	-11.8(12)	7.4(11)	-8.0(11)
C1	31.4(18)	40(2)	32.3(18)	-12.0(16)	10.6(14)	-7.6(15)
F2	49.1(14)	55.4(15)	55.5(15)	-28.3(12)	13.3(11)	-32.4(12)
O2	40.3(15)	51.6(16)	37.6(14)	-22.0(13)	12.7(11)	-23.6(13)
C2	41(2)	39(2)	29.1(18)	-5.9(16)	15.5(15)	-1.0(16)
O3	49.0(16)	27.6(13)	33.0(14)	1.0(11)	16.1(12)	-0.3(11)
C3	47(2)	29.4(18)	24.7(17)	-8.7(14)	6.0(15)	4.8(15)
O4	39.9(14)	30.2(13)	25.1(12)	-5.5(10)	9.1(10)	-5.5(10)
C4	43(2)	30.7(18)	30.8(18)	-11.8(15)	1.9(15)	-3.5(15)
05	33.2(13)	27.4(12)	26.7(12)	-10.6(10)	10.8(9)	-6.8(10)
C5	30.4(18)	33.2(18)	29.7(17)	-11.2(14)	6.8(13)	-5.0(14)
C6	28.3(17)	29.2(17)	22.0(15)	-6.5(13)	4.5(12)	-1.6(13)
C7	19.9(15)	36.2(18)	25.4(16)	-13.6(14)	7.1(12)	-9.9(13)
C8	27.4(17)	32.6(17)	25.8(16)	-12.5(13)	7.9(13)	-10.2(13)
C9	34.1(19)	46(2)	30.8(18)	-17.6(16)	7.4(14)	-18.3(16)
C10	30.4(19)	63(3)	35(2)	-24.5(19)	10.8(15)	-18.6(18)
C11	27.6(16)	31.0(17)	20.8(15)	-11.6(13)	6.6(12)	-9.9(13)
C12	32.0(17)	27.8(16)	19.5(14)	-11.2(12)	7.2(12)	-11.2(13)
C13	37.1(18)	25.8(16)	20.7(15)	-11.7(13)	11.4(13)	-7.3(13)
C14	55(2)	34.2(19)	34.5(19)	-16.5(16)	16.8(17)	-17.2(17)
C15	79(3)	30(2)	46(2)	-12.6(18)	26(2)	-20(2)
C16	91(4)	25.6(19)	34(2)	-5.5(16)	25(2)	1(2)

	-				
U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
66(3)	37(2)	22.5(17)	-7.2(15)	4.5(17)	11.1(19)
42(2)	32.9(18)	25.1(17)	-10.6(14)	6.2(14)	-2.6(15)
30.6(17)	27.7(16)	20.4(15)	-7.4(12)	4.6(12)	-8.5(13)
27.8(17)	29.5(16)	24.1(16)	-11.7(13)	3.7(12)	-7.9(13)
32.0(18)	24.0(16)	29.5(17)	-12.2(13)	11.6(13)	-9.2(13)
37.6(19)	29.9(17)	31.4(18)	-13.5(14)	6.2(14)	-11.3(14)
29.5(18)	32.8(18)	43(2)	-15.2(16)	7.0(15)	-10.0(14)
38(2)	32.8(19)	42(2)	-19.0(16)	17.9(16)	-10.9(15)
45(2)	35.7(19)	28.9(18)	-16.1(15)	9.1(15)	-9.9(16)
32.3(18)	30.5(18)	31.2(18)	-11.8(14)	5.5(14)	-6.4(14)
	U ₁₁ 66(3) 42(2) 30.6(17) 27.8(17) 32.0(18) 37.6(19) 29.5(18) 38(2) 45(2) 32.3(18)	$\begin{array}{c cccc} U_{11} & U_{22} \\ 66(3) & 37(2) \\ 42(2) & 32.9(18) \\ 30.6(17) & 27.7(16) \\ 27.8(17) & 29.5(16) \\ 32.0(18) & 24.0(16) \\ 37.6(19) & 29.9(17) \\ 29.5(18) & 32.8(18) \\ 38(2) & 32.8(19) \\ 45(2) & 35.7(19) \\ 32.3(18) & 30.5(18) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3ac. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 4 Bond Lengths for 3ac.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C3	1.756(4)	C7	C8	1.541(5)
S1	O2	1.426(3)	C8	C9	1.498(5)
S1	03	1.438(3)	C8	C11	1.533(4)
S 1	C11	1.780(3)	С9	C10	1.528(5)
S 1	C12	1.798(3)	C12	C13	1.486(5)
F1	C9	1.372(4)	C12	C19	1.334(5)
01	C10	1.215(5)	C13	C14	1.399(5)
N1	C6	1.417(4)	C13	C18	1.391(5)
N1	C7	1.469(4)	C14	C15	1.381(6)
N1	C10	1.345(5)	C15	C16	1.370(8)
C1	C2	1.389(5)	C16	C17	1.376(7)
C1	C6	1.400(5)	C17	C18	1.393(5)
F2	С9	1.363(4)	C19	C20	1.489(4)
C2	C3	1.374(6)	C21	C22	1.376(5)
C3	C4	1.380(6)	C21	C26	1.379(5)
O4	C20	1.199(4)	C22	C23	1.392(5)
C4	C5	1.391(5)	C23	C24	1.385(6)
05	C20	1.356(4)	C24	C25	1.383(6)
05	C21	1.411(4)	C25	C26	1.392(5)
C5	C6	1.386(5)			

Table 5 Bond Angles for 3ac.

Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
S1	O3	118.11(18)	C8	C9	C10	106.6(3)
S1	C11	108.77(16)	01	C10	N1	129.5(4)
S1	C12	108.00(15)	01	C10	C9	123.3(4)
S1	C11	108.15(16)	N1	C10	C9	107.2(3)
S1	C12	109.11(16)	C8	C11	S1	111.5(2)
S1	C12	103.78(15)	C13	C12	S1	115.5(2)
N1	C7	121.0(3)	C19	C12	S1	114.9(2)
N1	C6	126.1(3)	C19	C12	C13	129.6(3)
N1	C7	112.9(3)	C14	C13	C12	118.9(3)
C1	C6	119.6(4)	C18	C13	C12	121.5(3)
	Atom S1 S1 S1 S1 S1 S1 S1 N1 N1 N1 C1	AtomS1O3S1C11S1C12S1C11S1C12S1C12N1C7N1C7C1C6	AtomAngle/°S1O3118.11(18)S1C11108.77(16)S1C12108.00(15)S1C11108.15(16)S1C12109.11(16)S1C12103.78(15)N1C7121.0(3)N1C7112.9(3)C1C6119.6(4)	AtomAngle/°AtomS1O3118.11(18)C8S1C11108.77(16)O1S1C12108.00(15)O1S1C11108.15(16)N1S1C12109.11(16)C8S1C12103.78(15)C13N1C7121.0(3)C19N1C7112.9(3)C14C1C6119.6(4)C18	AtomAngle/°AtomAtomS1O3118.11(18)C8C9S1C11108.77(16)O1C10S1C12108.00(15)O1C10S1C11108.15(16)N1C10S1C12109.11(16)C8C11S1C12103.78(15)C13C12N1C7121.0(3)C19C12N1C7112.9(3)C14C13C1C6119.6(4)C18C13	AtomAngle/°AtomAtomAtomS1O3 $118.11(18)$ C8C9C10S1C11 $108.77(16)$ O1C10N1S1C12 $108.00(15)$ O1C10C9S1C11 $108.15(16)$ N1C10C9S1C12 $109.11(16)$ C8C11S1S1C12 $103.78(15)$ C13C12S1N1C7 $121.0(3)$ C19C12S1N1C7 $112.9(3)$ C14C13C12C1C6 $119.6(4)$ C18C13C12

Table 5 Bond Angles for 3ac.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3	C2	C1	120.0(3)	C18	C13	C14	119.6(3)
C2	C3	Cl1	118.7(3)	C15	C14	C13	119.6(4)
C2	C3	C4	121.1(3)	C16	C15	C14	120.4(4)
C4	C3	Cl1	120.1(3)	C15	C16	C17	120.8(4)
C3	C4	C5	119.2(4)	C16	C17	C18	119.8(4)
C20	05	C21	118.2(3)	C13	C18	C17	119.7(4)
C6	C5	C4	120.5(3)	C12	C19	C20	124.6(3)
C1	C6	N1	121.1(3)	O4	C20	05	124.6(3)
C5	C6	N1	119.3(3)	O4	C20	C19	127.6(3)
C5	C6	C1	119.5(3)	05	C20	C19	107.8(3)
N1	C7	C8	104.5(3)	C22	C21	05	117.0(3)
C9	C8	C7	102.6(3)	C22	C21	C26	121.9(3)
C9	C8	C11	117.8(3)	C26	C21	05	121.0(3)
C11	C8	C7	110.8(3)	C21	C22	C23	119.0(3)
F1	C9	C8	113.2(3)	C24	C23	C22	120.0(4)
F1	C9	C10	107.7(3)	C25	C24	C23	120.1(3)
F2	C9	F1	104.9(3)	C24	C25	C26	120.3(3)
F2	C9	C8	114.6(3)	C21	C26	C25	118.7(3)
F2	C9	C10	109.7(3)				

Table 6 Torsion Angles for 3ac.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
Cl1	C3	C4	C5	178.8(3)	C7	C8	C11	S 1	167.7(2)
S 1	C12	C13	C14	121.7(3)	C8	C9	C10	01	-168.2(5)
S 1	C12	C13	C18	-57.3(4)	C8	C9	C10	N1	13.4(4)
S 1	C12	C19	C20	169.7(3)	C9	C8	C11	S 1	-74.7(3)
F1	C9	C10	01	70.1(6)	C10	N1	C6	C1	17.5(6)
F1	C9	C10	N1	-108.4(3)	C10	N1	C6	C5	-165.7(4)
N1	C7	C8	C9	23.9(3)	C10	N1	C7	C8	-17.2(4)
N1	C7	C8	C11	150.5(3)	C11	S 1	C12	C13	-54.8(3)
C1	C2	C3	Cl1	-177.7(3)	C11	S 1	C12	C19	127.3(3)
C1	C2	C3	C4	1.2(6)	C11	C8	C9	F1	-26.5(4)
F2	C9	C10	01	-43.6(6)	C11	C8	C9	F2	93.8(4)
F2	C9	C10	N1	138.0(3)	C11	C8	C9	C10	-144.7(3)
02	S 1	C11	C8	67.5(3)	C12	S 1	C11	C8	-177.7(2)
02	S 1	C12	C13	60.5(3)	C12	C13	C14	C15	-179.2(3)
02	S 1	C12	C19	-117.3(3)	C12	C13	C18	C17	179.3(3)
C2	C1	C6	N1	177.2(3)	C12	C19	C20	04	12.3(6)
C2	C1	C6	C5	0.4(5)	C12	C19	C20	05	-166.3(3)
C2	C3	C4	C5	0.0(6)	C13	C12	C19	C20	-7.8(6)
03	S 1	C11	C8	-61.9(3)	C13	C14	C15	C16	-0.2(6)
03	S 1	C12	C13	-169.9(2)	C14	C13	C18	C17	0.3(5)
03	S 1	C12	C19	12.2(3)	C14	C15	C16	C17	0.6(6)
C3	C4	C5	C6	-1.0(5)	C15	C16	C17	C18	-0.4(6)
C4	C5	C6	N1	-176.1(3)	C16	C17	C18	C13	0.0(5)
C4	C5	C6	C1	0.8(5)	C18	C13	C14	C15	-0.2(5)
05	C21	C22	C23	176.5(3)	C19	C12	C13	C14	-60.9(5)

Table 6 Torsion Angles for 3ac.

Α	В	С	Ď	Angle/°	Α	В	С	D	Angle/°
05	C21	C26	C25	-176.5(3)	C19	C12	C13	C18	120.2(4)
C6	N1	C7	C8	165.1(3)	C20	05	C21	C22	114.5(3)
C6	N1	C10	01	2.0(8)	C20	05	C21	C26	-69.4(4)
C6	N1	C10	C9	-179.7(3)	C21	05	C20	O4	3.8(5)
C6	C1	C2	C3	-1.3(6)	C21	05	C20	C19	-177.6(3)
C7	N1	C6	C1	-165.2(3)	C21	C22	C23	C24	-0.2(5)
C7	N1	C6	C5	11.7(5)	C22	C21	C26	C25	-0.6(5)
C7	N1	C10	01	-175.6(5)	C22	C23	C24	C25	0.2(5)
C7	N1	C10	C9	2.7(5)	C23	C24	C25	C26	-0.3(6)
C7	C8	C9	F1	95.5(3)	C24	C25	C26	C21	0.5(5)
C7	C8	C9	F2	-144.2(3)	C26	C21	C22	C23	0.4(5)
C7	C8	C9	C10	-22.7(4)					

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 3ac.

Atom	x	у	Z	U(eq)
H1	-2843.49	7610.57	5922.46	42
H2	-3430.26	8515.76	6937.49	47
H4	2098.41	9727.83	6541.24	42
H5	2648.78	8892.56	5499.33	38
H7A	3729.4	7041.39	5057.29	31
H7B	2735.01	8300.31	4352.06	31
H8	3189.91	5498.15	4521.05	33
H11A	5417.04	6795.64	3693.93	30
H11B	3306.68	7566	3166.16	30
H14	8074.32	7926.48	2018.64	47
H15	6820.68	10087.25	1215.63	61
H16	3579.72	10674.06	555.52	65
H17	1495.08	9138.17	695.74	56
H18	2700.93	6955.42	1502.28	41
H19	8487.3	4139.82	2769.27	31
H22	15109.78	3214.2	2108.7	38
H23	18008.3	2802.91	1318.5	41
H24	17319.85	2922.55	86.41	43
H25	13764.12	3464.2	-362.72	42
H26	10860.55	3867.93	425.83	37

9.2 X-ray crystallography date of 4fa.

Crystal structure determination of 4fa.

Crystal Data for C₂₇H₂₁F₂NO₆S (M =525.51 g/mol): monoclinic, space group P2₁/c (no. 14), a = 10.2939(4) Å, b = 9.7381(4) Å, c = 25.5602(11) Å, $\beta = 91.730(2)^\circ$, V = 2561.06(18) Å³, Z = 4, T = 170.00 K, μ (MoK α) = 0.183 mm⁻¹, *Dcalc* = 1.363 g/cm³, 61885 reflections measured (5.008° $\leq 2\Theta \leq 55.026^\circ$), 5903 unique ($R_{int} = 0.0797$, $R_{sigma} = 0.0343$) which were used in all calculations. The final R_1 was 0.0441 (I > 2 σ (I)) and wR_2 was 0.1095 (all data).

Table 1 Crystal data and structure refinement for 4fa.

Identification code	4af
Empirical formula	$C_{27}H_{21}F_2NO_6S$
Formula weight	525.51
Temperature/K	170.00
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	10.2939(4)
b/Å	9.7381(4)
c/Å	25.5602(11)
a/°	90
β/°	91.730(2)

$\gamma^{\prime \circ}$	90
Volume/Å ³	2561.06(18)
Ζ	4
$\rho_{cale}g/cm^3$	1.363
µ/mm ⁻¹	0.183
F(000)	1088.0
Crystal size/mm ³	0.4 imes 0.23 imes 0.16
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.008 to 55.026
Index ranges	$-13 \le h \le 12, -12 \le k \le 12, -33 \le l \le 33$
Reflections collected	61885
Independent reflections	5903 [$R_{int} = 0.0797, R_{sigma} = 0.0343$]
Data/restraints/parameters	5903/207/390
Goodness-of-fit on F ²	1.021
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0441, wR_2 = 0.0998$
Final R indexes [all data]	$R_1 = 0.0658, wR_2 = 0.1095$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.31

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3fa. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
S1	8832.0(4)	2251.7(5)	7517.4(2)	26.53(12)
F1	9550.2(10)	6029.7(11)	8688.7(4)	35.4(3)
F2	9107.7(11)	4164.0(12)	9110.2(4)	36.4(3)
01	11106.9(16)	6836.3(16)	5087.3(6)	46.6(4)
O2	11295.3(11)	4051.7(13)	6561.6(5)	28.7(3)
O3	11572.7(12)	2909.8(14)	7294.9(5)	34.7(3)
O4	7448.7(12)	2113.4(14)	7471.2(5)	32.9(3)
O5	9601.3(13)	1021.0(13)	7512.3(5)	34.2(3)
06	7280.0(15)	6520.0(18)	9258.7(6)	52.7(4)
N1	6400.1(15)	4910.8(18)	8679.8(6)	33.4(4)
C1	8484.0(19)	5726(2)	5925.8(7)	33.6(4)
C2	9085(2)	6387(2)	5524.2(8)	38.1(5)
C3	10423(2)	6241(2)	5470.9(7)	35.2(4)
C4	11149.9(19)	5441(2)	5820.2(7)	32.7(4)
C5	10523.7(17)	4796.5(18)	6221.0(7)	26.4(4)
C6	9183.9(17)	4902.5(18)	6287.3(7)	26.2(4)
C7	8592.7(16)	4142.8(17)	6701.9(7)	24.8(4)
C8	9380.5(16)	3348.8(17)	7017.2(7)	23.4(3)
C9	10799.3(17)	3393.2(18)	6984.7(7)	26.5(4)
C10	10426(3)	7708(2)	4725.3(9)	53.8(6)
C11	7163.9(16)	4347.5(18)	6768.4(7)	26.2(4)
C12	6765.2(17)	5514.4(19)	7029.6(7)	29.2(4)
C13	5446.2(19)	5743(2)	7101.1(8)	37.1(5)
C14	4539(2)	4830(2)	6900.2(9)	45.0(5)
C15	4934(2)	3699(2)	6624.4(10)	48.2(6)
C16	6244.9(19)	3443(2)	6557.6(9)	38.3(5)
C17	9225.0(17)	3138.1(19)	8111.6(7)	28.0(4)
C18	8299.6(16)	4314.9(18)	8225.6(7)	25.8(4)
C19	8633.0(17)	5046.9(19)	8730.4(7)	28.6(4)
C20	7353.9(19)	5628(2)	8931.0(7)	34.9(4)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	6874.1(17)	3904(2)	8300.5(7)	32.2(4)
C234152(6)4400(7)8488(3)52.9(15)C242870(6)4315(7)8632(3)60.1(15)C252495(7)4756(10)9108(3)50.7(15)C263398(4)5414(6)9425.6(15)56.0(11)C274686(3)5514(6)9293.1(14)48.8(10)C22A5023(11)4820(40)8780(5)39(2)C23A4101(11)4765(12)8387(4)33.7(18)C24A2802(11)4623(12)8492(4)37.6(17)C25A2441(14)4550(20)8994(5)49(2)C26A3360(7)4456(12)9411(3)57.6(18)C27A4669(7)4577(12)9292(3)54.4(17)	C22	5070(6)	4932(17)	8828(3)	36.5(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	4152(6)	4400(7)	8488(3)	52.9(15)
C252495(7)4756(10)9108(3)50.7(15)C263398(4)5414(6)9425.6(15)56.0(11)C274686(3)5514(6)9293.1(14)48.8(10)C22A5023(11)4820(40)8780(5)39(2)C23A4101(11)4765(12)8387(4)33.7(18)C24A2802(11)4623(12)8492(4)37.6(17)C25A2441(14)4550(20)8994(5)49(2)C26A3360(7)4456(12)9411(3)57.6(18)C27A4669(7)4577(12)9292(3)54.4(17)	C24	2870(6)	4315(7)	8632(3)	60.1(15)
C263398(4)5414(6)9425.6(15)56.0(11)C274686(3)5514(6)9293.1(14)48.8(10)C22A5023(11)4820(40)8780(5)39(2)C23A4101(11)4765(12)8387(4)33.7(18)C24A2802(11)4623(12)8492(4)37.6(17)C25A2441(14)4550(20)8994(5)49(2)C26A3360(7)4456(12)9411(3)57.6(18)C27A4669(7)4577(12)9292(3)54.4(17)	C25	2495(7)	4756(10)	9108(3)	50.7(15)
C274686(3)5514(6)9293.1(14)48.8(10)C22A5023(11)4820(40)8780(5)39(2)C23A4101(11)4765(12)8387(4)33.7(18)C24A2802(11)4623(12)8492(4)37.6(17)C25A2441(14)4550(20)8994(5)49(2)C26A3360(7)4456(12)9411(3)57.6(18)C27A4669(7)4577(12)9292(3)54.4(17)	C26	3398(4)	5414(6)	9425.6(15)	56.0(11)
C22A5023(11)4820(40)8780(5)39(2)C23A4101(11)4765(12)8387(4)33.7(18)C24A2802(11)4623(12)8492(4)37.6(17)C25A2441(14)4550(20)8994(5)49(2)C26A3360(7)4456(12)9411(3)57.6(18)C27A4669(7)4577(12)9292(3)54.4(17)	C27	4686(3)	5514(6)	9293.1(14)	48.8(10)
C23A4101(11)4765(12)8387(4)33.7(18)C24A2802(11)4623(12)8492(4)37.6(17)C25A2441(14)4550(20)8994(5)49(2)C26A3360(7)4456(12)9411(3)57.6(18)C27A4669(7)4577(12)9292(3)54.4(17)	C22A	5023(11)	4820(40)	8780(5)	39(2)
C24A2802(11)4623(12)8492(4)37.6(17)C25A2441(14)4550(20)8994(5)49(2)C26A3360(7)4456(12)9411(3)57.6(18)C27A4669(7)4577(12)9292(3)54.4(17)	C23A	4101(11)	4765(12)	8387(4)	33.7(18)
C25A2441(14)4550(20)8994(5)49(2)C26A3360(7)4456(12)9411(3)57.6(18)C27A4669(7)4577(12)9292(3)54.4(17)	C24A	2802(11)	4623(12)	8492(4)	37.6(17)
C26A 3360(7)4456(12)9411(3)57.6(18)C27A 4669(7)4577(12)9292(3)54.4(17)	C25A	2441(14)	4550(20)	8994(5)	49(2)
C27A 4669(7) 4577(12) 9292(3) 54.4(17)	C26A	3360(7)	4456(12)	9411(3)	57.6(18)
	C27A	4669(7)	4577(12)	9292(3)	54.4(17)

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 3fa. T	he Anisotropic displacement
factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$.	

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S 1	26.4(2)	20.9(2)	32.4(2)	2.25(18)	4.15(17)	-0.52(17)
F1	34.9(6)	33.6(6)	37.7(6)	-1.7(5)	2.3(5)	-5.5(5)
F2	38.5(6)	40.2(7)	30.3(6)	9.0(5)	-3.6(5)	5.8(5)
01	65.9(10)	40.2(9)	34.2(8)	8.4(7)	9.7(7)	-4.7(7)
O2	23.3(6)	29.0(7)	34.0(7)	4.5(5)	4.3(5)	1.5(5)
O3	25.4(7)	34.5(8)	44.1(8)	10.4(6)	-1.5(6)	5.1(6)
O4	27.5(7)	31.1(7)	40.3(7)	0.1(6)	4.9(5)	-6.9(5)
05	41.9(8)	19.9(7)	41.2(8)	3.9(6)	9.1(6)	5.0(6)
06	45.7(9)	66.5(11)	45.9(9)	-22.1(8)	4.4(7)	11.5(8)
N1	23.8(8)	43.0(10)	33.7(8)	0.1(7)	5.6(6)	5.6(7)
C1	35.5(10)	30.5(10)	34.5(10)	0.5(8)	-2.9(8)	3.1(8)
C2	52.3(13)	30.5(11)	31.2(10)	3.0(8)	-5.0(9)	1.2(9)
C3	52.4(12)	25.9(10)	27.5(9)	-0.6(8)	6.4(9)	-6.1(9)
C4	37.1(10)	28.6(10)	32.6(10)	-3.9(8)	6.5(8)	-2.7(8)
C5	31.1(9)	19.4(9)	28.8(9)	-1.5(7)	2.0(7)	-0.2(7)
C6	29.2(9)	21.0(9)	28.3(9)	-1.4(7)	0.7(7)	0.1(7)
C7	24.3(9)	19.6(9)	30.3(9)	-5.7(7)	-1.1(7)	-1.2(7)
C8	23.8(8)	17.9(8)	28.7(9)	-1.2(7)	2.3(7)	0.2(7)
C9	26.0(9)	19.7(9)	34.0(9)	0.4(7)	4.2(7)	1.8(7)
C10	85.0(18)	42.2(13)	33.9(11)	8.6(10)	-3.1(11)	-10.6(13)
C11	22.9(9)	23.0(9)	32.6(9)	0.7(7)	-1.8(7)	0.6(7)
C12	25.9(9)	26.1(9)	35.4(10)	0.3(8)	-3.4(7)	1.2(7)
C13	31.6(10)	35.1(11)	44.8(11)	-2.5(9)	0.4(8)	9.5(9)
C14	23.1(10)	46.5(13)	65.2(14)	0.2(11)	0.1(9)	4.9(9)
C15	26.5(10)	43.9(13)	73.5(16)	-6.8(12)	-8.3(10)	-6.9(9)
C16	29.1(10)	30.3(11)	55.2(13)	-9.4(9)	-2.8(9)	-0.4(8)
C17	24.4(9)	29.2(10)	30.4(9)	1.2(7)	1.5(7)	3.4(7)
C18	23.2(9)	26.9(9)	27.5(9)	3.4(7)	2.2(7)	1.8(7)
C19	26.1(9)	30.1(10)	29.6(9)	4.8(7)	-0.9(7)	1.5(7)
C20	31.1(10)	43.8(12)	30.0(10)	1.1(9)	2.3(8)	6.9(9)
C21	24.8(9)	37.2(11)	34.8(10)	-2.1(8)	3.9(8)	1.2(8)
C22	27(2)	44(3)	38(2)	6(2)	2.6(18)	5.4(18)
C23	37(2)	61(4)	61(3)	-22(2)	12(2)	-5(2)
C24	33(2)	72(4)	76(4)	-18(3)	9(3)	-11(2)
C25	27(2)	68(3)	58(3)	7(3)	17(2)	10(2)
------	----------	-------	----------	----------	---------	----------
C26	35.3(18)	90(3)	43.5(18)	-1(2)	9.6(14)	15(2)
C27	29.7(16)	81(3)	35.4(16)	-5.8(19)	0.3(13)	10.8(19)
C22A	27(3)	56(4)	33(3)	0(3)	8(3)	12(3)
C23A	25(3)	44(4)	31(3)	13(3)	-1(2)	-6(3)
C24A	29(3)	47(4)	37(3)	21(3)	-3(3)	-3(3)
C25A	29(3)	75(5)	45(4)	-4(4)	1(3)	0(3)
C26A	39(3)	97(4)	38(3)	-7(3)	13(3)	-7(4)
C27A	33(3)	93(4)	37(3)	-3(3)	1(2)	0(3)

Table 4 Bond Lengths for 4fa.

1 abit	i Dona	Dengens for ma.			
Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	O4	1.4317(13)	C7	C11	1.499(2)
S1	O5	1.4367(13)	C8	C9	1.466(2)
S1	C8	1.7716(18)	C11	C12	1.386(3)
S1	C17	1.7828(18)	C11	C16	1.389(3)
F1	C19	1.351(2)	C12	C13	1.393(3)
F2	C19	1.375(2)	C13	C14	1.378(3)
O1	C3	1.354(2)	C14	C15	1.376(3)
O1	C10	1.425(3)	C15	C16	1.388(3)
02	C5	1.369(2)	C17	C18	1.524(2)
02	C9	1.369(2)	C18	C19	1.505(3)
O3	C9	1.203(2)	C18	C21	1.538(2)
O6	C20	1.211(2)	C19	C20	1.535(3)
N1	C20	1.351(3)	C22	C23	1.366(8)
N1	C21	1.472(2)	C22	C27	1.385(9)
N1	C22	1.431(6)	C23	C24	1.383(6)
N1	C22A	1.451(11)	C24	C25	1.357(7)
C1	C2	1.374(3)	C25	C26	1.375(7)
C1	C6	1.405(3)	C26	C27	1.382(5)
C2	C3	1.396(3)	C22A	C23A	1.362(12)
C3	C4	1.387(3)	C22A	C27A	1.388(14)
C4	C5	1.378(3)	C23A	C24A	1.379(11)
C5	C6	1.399(2)	C24A	C25A	1.347(12)
C6	C7	1.442(2)	C25A	C26A	1.407(13)
C7	C8	1.366(2)	C26A	C27A	1.395(9)

Table 5 Bond Angles for 4fa.Atom Atom Angle/°

Atom	Atom	Atom	Angle/
O4	S1	05	117.90(8)
04	S1	C8	109.57(8)
04	S1	C17	108.38(8)
O5	S1	C8	107.98(8)
O5	S1	C17	107.50(8)
C8	S1	C17	104.70(9)
C3	01	C10	117.95(19)
C5	02	C9	121.84(14)
C20	N1	C21	113.97(15)
C20	N1	C22	123.6(4)
C20	N1	C22A	130.4(9)
C22	N1	C21	121.5(5)

Atom Atom Atom Angle/°

C16	C11	C7	122.06(16)
C11	C12	C13	119.86(17)
C14	C13	C12	120.02(19)
C15	C14	C13	120.02(19)
C14	C15	C16	120.7(2)
C15	C16	C11	119.47(19)
C18	C17	S 1	113.58(12)
C17	C18	C21	115.62(15)
C19	C18	C17	113.11(14)
C19	C18	C21	102.13(14)
F1	C19	F2	105.33(14)
F1	C19	C18	114.20(15)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22A	N1	C21	114.8(11)	F1	C19	C20	111.95(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	C1	C6	121.66(19)	F2	C19	C18	112.09(15)
O1C3C2 $124.30(19)$ C18C19C20 $106.57(15)$ O1C3C4 $115.10(19)$ O6C20N1 $129.76(18)$ C4C3C2 $120.60(18)$ O6C20C19 $124.60(18)$ C5C4C3 $118.62(18)$ N1C20C19 $105.62(16)$ O2C5C4 $116.02(16)$ N1C21C18 $104.20(15)$ O2C5C6 $121.16(15)$ C23C22N1 $118.4(6)$ C4C5C6 $122.81(17)$ C23C22C27 $119.4(5)$ C1C6C7 $123.81(17)$ C27C22N1 $122.2(5)$ C5C6C1 $116.76(16)$ C25C24C23 $121.3(6)$ C6C7C11 $116.90(15)$ C24C25C26 $118.1(6)$ C8C7C6 $117.89(16)$ C25C26C27 $122.3(10)$ C7C8S1 $124.81(13)$ C23AC22AN1 $122.3(10)$ C7C8S1 $113.48(12)$ C27AC22AN1 $122.3(10)$ C7C8S1 $113.48(12)$ C27AC22AN1 $117.6(11)$ O2C9C8 $117.03(15)$ C22AC23AC24A $121.2(9)$ O3C9O2 $116.68(16)$ C25AC24AC25AC26A $121.8(11)$ C12C11C7 $17.99(15)$ C27AC26AC25A $117.4(9)$ <	C1	C2	C3	119.55(19)	F2	C19	C20	106.54(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1	C3	C2	124.30(19)	C18	C19	C20	106.57(15)
C4C3C2120.60(18)O6C20C19124.60(18)C5C4C3118.62(18)N1C20C19105.62(16)O2C5C4116.02(16)N1C21C18104.20(15)O2C5C6121.16(15)C23C22N1118.4(6)C4C5C6122.81(17)C23C22C27119.4(5)C1C6C7123.81(17)C27C22N1122.2(5)C5C6C1116.76(16)C25C24C23121.3(6)C6C7C11116.90(15)C24C25C26118.1(6)C8C7C6117.89(16)C25C26C27121.7(4)C8C7C11125.13(16)C26C27C22118.8(4)C7C8S1124.81(13)C23AC22AN1122.3(10)C7C8S1113.48(12)C27AC22AN1117.6(11)O2C9C8117.03(15)C24AC23AC24A121.2(9)O3C9O2116.68(16)C25AC24AC23A119.1(10)O3C9C8126.29(17)C24AC25AC26A121.8(11)C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C24AC25AC26A120.1(8)	01	C3	C4	115.10(19)	06	C20	N1	129.76(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	C3	C2	120.60(18)	06	C20	C19	124.60(18)
O2 $C5$ $C4$ $116.02(16)$ $N1$ $C21$ $C18$ $104.20(15)$ $O2$ $C5$ $C6$ $121.16(15)$ $C23$ $C22$ $N1$ $118.4(6)$ $C4$ $C5$ $C6$ $122.81(17)$ $C23$ $C22$ $C27$ $119.4(5)$ $C1$ $C6$ $C7$ $123.81(17)$ $C27$ $C22$ $N1$ $122.2(5)$ $C5$ $C6$ $C1$ $116.76(16)$ $C22$ $C23$ $C24$ $120.1(6)$ $C5$ $C6$ $C7$ $119.40(16)$ $C25$ $C24$ $C23$ $121.3(6)$ $C6$ $C7$ $C11$ $116.90(15)$ $C24$ $C25$ $C26$ $118.1(6)$ $C8$ $C7$ $C6$ $117.89(16)$ $C25$ $C26$ $C27$ $121.7(4)$ $C8$ $C7$ $C11$ $125.13(16)$ $C26$ $C27$ $C22$ $118.8(4)$ $C7$ $C8$ $S1$ $124.81(13)$ $C23A$ $C22A$ $N1$ $122.3(10)$ $C7$ $C8$ $S1$ $113.48(12)$ $C27A$ $C22A$ $N1$ $117.6(11)$ $O2$ $C9$ $C8$ $117.03(15)$ $C22A$ $C23A$ $C24A$ $121.2(9)$ $O3$ $C9$ $O2$ $116.68(16)$ $C25A$ $C24A$ $C23A$ $121.8(11)$ $C12$ $C11$ $C7$ $117.99(15)$ $C27A$ $C26A$ $C25A$ $121.8(11)$ $C12$ $C11$ $C16$ $119.89(17)$ $C22A$ $C27A$ $C26A$ $120.1(8)$	C5	C4	C3	118.62(18)	N1	C20	C19	105.62(16)
O2 $C5$ $C6$ $121.16(15)$ $C23$ $C22$ $N1$ $118.4(6)$ $C4$ $C5$ $C6$ $122.81(17)$ $C23$ $C22$ $C27$ $119.4(5)$ $C1$ $C6$ $C7$ $123.81(17)$ $C27$ $C22$ $N1$ $122.2(5)$ $C5$ $C6$ $C1$ $116.76(16)$ $C22$ $C23$ $C24$ $120.1(6)$ $C5$ $C6$ $C7$ $119.40(16)$ $C25$ $C24$ $C23$ $121.3(6)$ $C6$ $C7$ $C11$ $116.90(15)$ $C24$ $C25$ $C26$ $118.1(6)$ $C8$ $C7$ $C6$ $117.89(16)$ $C25$ $C26$ $C27$ $121.7(4)$ $C8$ $C7$ $C11$ $125.13(16)$ $C26$ $C27$ $C22$ $118.8(4)$ $C7$ $C8$ $S1$ $124.81(13)$ $C23A$ $C22A$ $C27A$ $119.5(10)$ $C9$ $C8$ $S1$ $113.48(12)$ $C27A$ $C22A$ $N1$ $117.6(11)$ $O2$ $C9$ $C8$ $117.03(15)$ $C22A$ $C23A$ $C24A$ $121.2(9)$ $O3$ $C9$ $O2$ $116.68(16)$ $C25A$ $C24A$ $C23A$ $119.1(10)$ $O3$ $C9$ $C8$ $126.29(17)$ $C24A$ $C25A$ $C26A$ $121.8(11)$ $C12$ $C11$ $C16$ $119.89(17)$ $C22A$ $C27A$ $C26A$ $120.1(8)$	O2	C5	C4	116.02(16)	N1	C21	C18	104.20(15)
C4C5C6 $122.81(17)$ C23C22C27 $119.4(5)$ C1C6C7 $123.81(17)$ C27C22N1 $122.2(5)$ C5C6C1 $116.76(16)$ C22C23C24 $120.1(6)$ C5C6C7 $119.40(16)$ C25C24C23 $121.3(6)$ C6C7C11 $116.90(15)$ C24C25C26 $118.1(6)$ C8C7C6 $117.89(16)$ C25C26C27 $121.7(4)$ C8C7C11 $125.13(16)$ C26C27C22 $118.8(4)$ C7C8S1 $124.81(13)$ C23AC22AC27A $119.5(10)$ C9C8S1 $113.48(12)$ C27AC22AN1 $117.6(11)$ O2C9C8 $117.03(15)$ C25AC24AC23A $119.1(10)$ O3C9C8 $126.29(17)$ C24AC25AC26A $121.8(11)$ C12C11C7 $117.99(15)$ C27AC26AC25A $117.4(9)$ C12C11C16 $119.89(17)$ C22AC27AC26A $120.1(8)$	O2	C5	C6	121.16(15)	C23	C22	N1	118.4(6)
C1C6C7 $123.81(17)$ C27C22N1 $122.2(5)$ C5C6C1 $116.76(16)$ C22C23C24 $120.1(6)$ C5C6C7 $119.40(16)$ C25C24C23 $121.3(6)$ C6C7C11 $116.90(15)$ C24C25C26 $118.1(6)$ C8C7C6 $117.89(16)$ C25C26C27 $121.7(4)$ C8C7C11 $125.13(16)$ C26C27C22 $118.8(4)$ C7C8S1 $124.81(13)$ C23AC22AN1 $122.3(10)$ C7C8C9 $121.64(16)$ C23AC22AC27A $119.5(10)$ C9C8S1 $113.48(12)$ C27AC22AN1 $117.6(11)$ O2C9C8 $117.03(15)$ C22AC23AC24A $121.2(9)$ O3C9O2 $116.68(16)$ C25AC24AC23A $119.1(10)$ O3C9C8 $126.29(17)$ C24AC25AC26A $121.8(11)$ C12C11C7 $117.99(15)$ C27AC26AC25A $117.4(9)$ C12C11C16 $119.89(17)$ C22AC27AC26A $120.1(8)$	C4	C5	C6	122.81(17)	C23	C22	C27	119.4(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	C6	C7	123.81(17)	C27	C22	N1	122.2(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	C6	C1	116.76(16)	C22	C23	C24	120.1(6)
C6C7C11116.90(15)C24C25C26118.1(6)C8C7C6117.89(16)C25C26C27121.7(4)C8C7C11125.13(16)C26C27C22118.8(4)C7C8S1124.81(13)C23AC22AN1122.3(10)C7C8C9121.64(16)C23AC22AC27A119.5(10)C9C8S1113.48(12)C27AC22AN1117.6(11)O2C9C8117.03(15)C22AC23AC24A121.2(9)O3C9O2116.68(16)C25AC24AC23A119.1(10)O3C9C8126.29(17)C24AC25AC26A121.8(11)C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C22AC27AC26A120.1(8)	C5	C6	C7	119.40(16)	C25	C24	C23	121.3(6)
C8C7C6117.89(16)C25C26C27121.7(4)C8C7C11125.13(16)C26C27C22118.8(4)C7C8S1124.81(13)C23AC22AN1122.3(10)C7C8C9121.64(16)C23AC22AC27A119.5(10)C9C8S1113.48(12)C27AC22AN1117.6(11)O2C9C8117.03(15)C22AC23AC24A121.2(9)O3C9O2116.68(16)C25AC24AC23A119.1(10)O3C9C8126.29(17)C24AC25AC26A121.8(11)C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C22AC27AC26A120.1(8)	C6	C7	C11	116.90(15)	C24	C25	C26	118.1(6)
C8C7C11125.13(16)C26C27C22118.8(4)C7C8S1124.81(13)C23AC22AN1122.3(10)C7C8C9121.64(16)C23AC22AC27A119.5(10)C9C8S1113.48(12)C27AC22AN1117.6(11)O2C9C8117.03(15)C22AC23AC24A121.2(9)O3C9O2116.68(16)C25AC24AC23A119.1(10)O3C9C8126.29(17)C24AC25AC26A121.8(11)C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C22AC27AC26A120.1(8)	C8	C7	C6	117.89(16)	C25	C26	C27	121.7(4)
C7C8S1124.81(13)C23AC22AN1122.3(10)C7C8C9121.64(16)C23AC22AC27A119.5(10)C9C8S1113.48(12)C27AC22AN1117.6(11)O2C9C8117.03(15)C22AC23AC24A121.2(9)O3C9O2116.68(16)C25AC24AC23A119.1(10)O3C9C8126.29(17)C24AC25AC26A121.8(11)C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C22AC27AC26A120.1(8)	C8	C7	C11	125.13(16)	C26	C27	C22	118.8(4)
C7C8C9121.64(16)C23AC22AC27A119.5(10)C9C8S1113.48(12)C27AC22AN1117.6(11)O2C9C8117.03(15)C22AC23AC24A121.2(9)O3C9O2116.68(16)C25AC24AC23A119.1(10)O3C9C8126.29(17)C24AC25AC26A121.8(11)C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C22AC27AC26A120.1(8)	C7	C8	S 1	124.81(13)	C23A	C22A	N1	122.3(10)
C9C8S1113.48(12)C27AC22AN1117.6(11)O2C9C8117.03(15)C22AC23AC24A121.2(9)O3C9O2116.68(16)C25AC24AC23A119.1(10)O3C9C8126.29(17)C24AC25AC26A121.8(11)C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C22AC27AC26A120.1(8)	C7	C8	C9	121.64(16)	C23A	C22A	C27A	119.5(10)
O2C9C8117.03(15)C22AC23AC24A121.2(9)O3C9O2116.68(16)C25AC24AC23A119.1(10)O3C9C8126.29(17)C24AC25AC26A121.8(11)C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C22AC27AC26A120.1(8)	C9	C8	S 1	113.48(12)	C27A	C22A	N1	117.6(11)
O3C9O2116.68(16)C25AC24AC23A119.1(10)O3C9C8126.29(17)C24AC25AC26A121.8(11)C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C22AC27AC26A120.1(8)	O2	C9	C8	117.03(15)	C22A	C23A	C24A	121.2(9)
O3C9C8126.29(17)C24AC25AC26A121.8(11)C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C22AC27AC26A120.1(8)	O3	C9	O2	116.68(16)	C25A	C24A	C23A	119.1(10)
C12C11C7117.99(15)C27AC26AC25A117.4(9)C12C11C16119.89(17)C22AC27AC26A120.1(8)	O3	C9	C8	126.29(17)	C24A	C25A	C26A	121.8(11)
C12 C11 C16 119.89(17) C22A C27A C26A 120.1(8)	C12	C11	C7	117.99(15)	C27A	C26A	C25A	117.4(9)
	C12	C11	C16	119.89(17)	C22A	C27A	C26A	120.1(8)

Table 6 Torsion Angles for 4fa.

Α	В	С	D	Angle/°	Α	B	С	D	Angle/°
S 1	C8	C9	02	170.56(12)	C10	01	C3	C4	-178.01(18)
S 1	C8	C9	03	-9.7(2)	C11	C7	C8	S 1	7.8(3)
S 1	C17	C18	C19	179.46(12)	C11	C7	C8	C9	-168.90(16)
S 1	C17	C18	C21	62.19(18)	C11	C12	C13	C14	-1.7(3)
F1	C19	C20	06	-37.3(3)	C12	C11	C16	C15	-1.9(3)
F1	C19	C20	N1	144.53(16)	C12	C13	C14	C15	-0.7(3)
F2	C19	C20	06	77.3(2)	C13	C14	C15	C16	1.8(4)
F2	C19	C20	N1	-100.82(17)	C14	C15	C16	C11	-0.5(4)
01	C3	C4	C5	-179.80(17)	C16	C11	C12	C13	3.0(3)
O2	C5	C6	C1	178.09(16)	C17	S 1	C8	C7	-104.52(16)
O2	C5	C6	C7	-4.0(3)	C17	S1	C8	C9	72.43(14)
04	S 1	C8	C7	11.54(18)	C17	C18	C19	F1	84.14(19)
O4	S1	C8	C9	-171.51(12)	C17	C18	C19	F2	-35.5(2)
O4	S 1	C17	C18	-40.07(15)	C17	C18	C19	C20	-151.72(15)
05	S 1	C8	C7	141.15(15)	C17	C18	C21	N1	148.10(15)
05	S 1	C8	C9	-41.91(15)	C18	C19	C20	06	-162.8(2)
05	S 1	C17	C18	-168.52(12)	C18	C19	C20	N1	19.0(2)
N1	C22	C23	C24	175.6(8)	C19	C18	C21	N1	24.84(18)
N1	C22	C27	C26	-175.8(9)	C20	N1	C21	C18	-14.6(2)
N1	C22A	C23A	C24A	177.4(18)	C20	N1	C22	C23	167.0(8)
N1	C22A	C27A	C26A	-179.0(16)	C20	N1	C22	C27	-10.7(16)
C1	C2	C3	01	179.37(18)	C20	N1	C22A	C23A	141.5(19)
C1	C2	C3	C4	-0.2(3)	C20	N1	C22A	C27A	-48(3)
C1	C6	C7	C8	178.09(17)	C21	N1	C20	06	179.6(2)

C1	C6	C7	C11	-4.9(3)	C21	N1	C20	C19	-2.3(2)
C2	C1	C6	C5	0.5(3)	C21	N1	C22	C23	-24.6(15)
C2	C1	C6	C7	-177.32(18)	C21	N1	C22	C27	157.8(9)
C2	C3	C4	C5	-0.2(3)	C21	N1	C22A	C23A	-50(3)
C3	C4	C5	02	-178.27(16)	C21	N1	C22A	C27A	121(2)
C3	C4	C5	C6	0.7(3)	C21	C18	C19	F1	-150.92(15)
C4	C5	C6	C1	-0.9(3)	C21	C18	C19	F2	89.40(17)
C4	C5	C6	C7	177.01(17)	C21	C18	C19	C20	-26.78(18)
C5	O2	C9	03	-171.13(16)	C22	N1	C20	06	-11.1(8)
C5	O2	C9	C8	8.7(2)	C22	N1	C20	C19	166.9(7)
C5	C6	C7	C8	0.4(2)	C22	N1	C21	C18	175.8(6)
C5	C6	C7	C11	177.33(16)	C22	C23	C24	C25	0.2(12)
C6	C1	C2	C3	0.1(3)	C23	C22	C27	C26	6.6(16)
C6	C7	C8	S 1	-175.48(13)	C23	C24	C25	C26	6.3(12)
C6	C7	C8	C9	7.8(2)	C24	C25	C26	C27	-6.3(12)
C6	C7	C11	C12	-79.7(2)	C25	C26	C27	C22	-0.1(11)
C6	C7	C11	C16	97.4(2)	C27	C22	C23	C24	-6.7(17)
C7	C8	C9	02	-12.4(2)	C22A	N1	C20	06	-11.3(17)
C7	C8	C9	03	167.39(18)	C22A	N1	C20	C19	166.7(16)
C7	C11	C12	C13	-179.85(17)	C22A	N1	C21	C18	174.5(12)
C7	C11	C16	C15	-178.90(19)	C22A	C23A	C24A	C25A	1(3)
C8	S 1	C17	C18	76.81(14)	C23A	C22A	C27A	C26A	-8(4)
C8	C7	C11	C12	97.1(2)	C23A	C24A	C25A	C26A	-8(3)
C8	C7	C11	C16	-85.8(2)	C24A	C25A	C26A	C27A	6(3)
C9	O2	C5	C4	178.19(16)	C25A	C26A	C27A	C22A	2(2)
C9	02	C5	C6	-0.8(2)	C27A	C22A	C23A	C24A	7(4)
C1(01	C3	C2	2.4(3)					