Supplemental Information

[3+2] Radical Sulfuration of Alkenes by Organic Photocatalysis

Na Yang, Gefei Duan and Yunbo Zhu*

Table of Contents

1.	General Information	S3
2.	General Experimental Procedure	S3
3.	Light On-off Experiments	S4
4.	Stern-Volmer Fluorescence Quenching	S4
5.	¹³ C NMR Experiments	S5
6.	Uv-vis Absorption Spectrum	S 6
7.	Characterization of Products	S7
8.	NMR Spectral Data	S22

1. General Information

If no special indicated, commercially available reagents and dry solvents were used without further purification. Column chromatographic purification of all products was conducted using 200-300 dry mesh silica gel. ¹H and ¹³C NMR spectra were measured on a JEOL JNM-ECZ400S/L1 spectrometers, NMR (400 MHz for ¹H NMR, 101 MHz for ¹³C NMR). Multiplicity (s = singlet, D = doublet, t = triplet, m = multiplet, Q = quartet, Coupling Constant (J) in Hz). CHCl₃ (δ = 7.26 ppm) served as the internal standard for ¹H NMR, and CDCl₃ (δ = 77.16 ppm) served as the internal standard for ¹³C NMR. Infrared spectra were collected on a Thermo Fisher Nicolet 6700 FT-IR spectrometer using ATR (Attenuated Total Reflectance) method. High-resolution mass spectra (HRSM) were obtained on a Waters I-Class VION IMS QTof and are reported as m/z (relative intensity). UV-vis spectra experiments were measured on an Ultraviolet-visible Spectrophotometer (YOKE T2600). Fluorescence emission spectrums were recorded using an Edinburgh FLS9 Fluorescence Spectrometer.

2. General Experimental Procedure

A 10 mL of Schlenk tube equipped with magnetic bar was added rhodamine 6G (5.8 mg, 6% equiv.), the tube was evacuated and backfilled with N₂ (3 times). Then, 4methylstyrene (0.2 mmol, 1 equiv.), 2,4,6-trimethylbenzenethiol (0.4 mmol, 2 equiv.), carbon disulfide (1 mmol, 5 equiv.), *N*,*N*-diisopropylethylamine (0.05 mmol, 0.25 equiv.), 1.0 mL CH₂Cl₂ as a solvent were added. The Schlenk tube was sealed with a Teflon lined cap and degassed by three freeze-pump-thaw cycles. The reaction mixture was irradiated with green light (520-530 nm) for 12 h at room temperature. The solvent was removed under reduced pressure and purified by column chromatography (petroleum ether/CH₂Cl₂ = 20/1) to afford the title product.

3. Light On-off Experiments

A 10 mL of Schlenk tube equipped with magnetic bar was added rhodamine 6G (5.8 mg, 6% equiv.), the tube was evacuated and backfilled with N₂ (3 times). Then, 4methylstyrene (0.2 mmol, 1 equiv.), 2,4,6-trimethylbenzenethiol (0.4 mmol, 2 equiv.), carbon disulfide (1 mmol, 5 equiv.), *N*,*N*-diisopropylethylamine (0.05 mmol, 0.25 equiv.), 1.0 mL CH₂Cl₂ as a solvent were added. The Schlenk tube was sealed with a Teflon lined cap and degassed by three freeze-pump-thaw cycles. Six reactions were setup in parallel under green light. After 1 h, the light was turned off, one reaction was isolated by flash column chromatography to give the desired product, the remaining five were kept stirring for another 1 h without irradiation. The experiments were cycled as above. Finally, the sixth reaction was ended after stirring for 2h without irradiation.

Figure S1: Light on-off experiments of the standard reaction. All yields are isolated.4. Stern-Volmer Fluorescence Quenching

In a typical experiment, a 20 μ M solution of rhodamine 6G in CH₂Cl₂ was added to variable concentrations of quenchers in a screw-top 1.0 cm quartz cuvette, after degassing by bubbling a stream of nitrogen, the emission spectrum of the sample was collected. All solutions were excited at $\lambda = 490$ nm and their maximum emission intensity were recorded. The ratio of I_0/I was plotted as a function of the quencher concentration (I_0 = emission intensity of the Rhodamine 6G; I = observed emission intensity of the mixed solution).

5. ¹³C NMR Experiments

A 10 mL of Schlenk tube equipped with magnetic bar was evacuated and backfilled with N₂ (3 times). Then, 2,4,6-trimethylbenzenethiol (0.2 mmol, 1 equiv.), carbon disulfide (0.2 mmol, 1 equiv.), *N*,*N*-diisopropylethylamine (0.1 mmol, 0.5 equiv.), CDCl₃ as a solvent (0.6 mL) were added subsequently. The Schlenk tube was then sealed with a Teflon lined cap, and was degassed by three freeze-pump-thaw cycles. After stirring in room temperature for 12 h, the products were analyzed by ¹³C NMR (Fig. S2). According to the same procedure, 2,4,6-trimethylbenzenethiol (0.2 mmol, 1 equiv.), carbon disulfide (0.2 mmol, 1 equiv.), CDCl₃ as a solvent (0.6 mL) were added to a 10 mL of Schlenk tube. After stirring in room temperature for 12 h, the products were analyzed by ¹³C NMR (Fig. S3).

128.92, 127.19, 22.10, 20.81), *N*,*N*-diisopropylethylamine (δ 48.86, 39.36, 20.67, 17.01), and no new peaks appeared.

Figure S2: The ¹³C NMR of the reaction mixture 2,4,6-trimethylbenzenethiol, carbon disulfide and N,N-diisopropylethylamine in CDCl₃.

Note: ¹³C NMR: CS₂ (δ 192.68), 2,4,6-trimethylbenzenethiol (δ 136.37, 134.83, 128.94, 127.20, 22.12, 20.84), and no new peaks appeared.

Figure S3: The ¹³C NMR of the reaction mixture 2,4,6-trimethylbenzenethiol, carbon disulfide in CDCl₃.

6. Uv-vis Absorption Spectrum

In order to detect EDA complex, Uv-vis absorption spectra were recorded using the mixed solution in CH₂Cl₂ at room temperature. ([Rh-6G⁺] = 1.6×10^{-5} M, [15] = 3.2×10^{-4} M, [14] = 3.2×10^{-4} M, [CS₂] = 3.2×10^{-4} M, [DIPEA] = 3.2×10^{-4} M)

In order to detect Rh-6G[•], Uv-vis absorption spectra were recorded using the mixed solution ([Rh-6G⁺] = 1.6×10^{-5} M, [DIPEA] = 3.2×10^{-4} M) in CH₂Cl₂ at different times using green light irradiation.

7. Characterization of Products

According to the general procedure, the title product was obtained in 86% yield as a yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.44 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.17 (dd, *J* = 10.3, 8.1 Hz, 2H), 6.97 and 6.96 (s, 1H), 5.73 (s, 0.46), 5.65 (s, 0.48), 5.04 (dd, *J* = 8.7, 5.3 Hz, 0.52H), 4.88 (dd, *J* = 11.1, 4.9 Hz, 0.49), 3.74 – 3.58 (m, 1H), 3.43 – 3.34 (m, 1H), 2.59 and 2.58 (s, 6H), 2.37 and 2.35 (s, 3H), 2.29 and 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.18, 139.36, 138.12, 138.03, 134.46, 134.29, 129.51, 129.48, 129.26, 128.07, 127.85, 62.33, 62.20, 61.36, 57.13, 45.52, 43.83, 22.34, 22.31, 21.23.

HRMS (ESI) m/z Calcd. for C₁₉H₂₃S₃ [M+H]⁺ 347.0956, found: 347.0974.

IR (film) v_{max} (cm⁻¹) 2917, 1599, 1511, 1455, 1425, 1374, 1174, 1021, 854, 816, 731, 552, 515.

According to the general procedure, the title product was obtained in 81% yield as a yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 – 7.54 (m, 1H), 7.49 – 7.44 (m, 1H), 7.40 – 7.30 (m, 3H), 6.98 and 6.97 (s, 2H), 5.75 (s, 0.45H), 5.66 (s, 0.46H), 5.10 – 5.01 (m, 0.53H), 4.92 – 4.88 (m, 0.50H), 3.77 – 3.60 (m, 1H), 3.45 – 3.38 (m, 1H), 2.60 and 2.59 (s, 6H), 2.30 and 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.19, 139.40, 137.66, 137.47, 130.70, 130.65, 129.29, 129.27, 128.86, 128.82, 128.31, 128.22, 128.00, 62.48, 62.26, 61.42, 57.35, 45.49, 43.88, 22.35, 22.32, 21.25.

HRMS (ESI) m/z Calcd. for C₁₈H₂₀S₃ [M]⁺ 332.0722, found: 332.0685.

IR (film) v_{max} (cm⁻¹) 2916, 1599, 1453, 1372, 1028, 852, 769, 723, 698, 596, 511.

According to the general procedure, the title product was obtained in 61% yield as a yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.49 (d, *J* = 8.4 Hz, 1H), 7.42 – 7.35 (m, 3H), 6.98 and 6.97 (s, 2H), 5.73 (s, 0.47H), 5.65 (s, 0.48H), 5.08 – 5.02 (m, 0.52H), 4.90 (dd, *J* = 11.1, 4.9 Hz, 0.51H), 3.75 – 3.61 (m, 1H), 3.41 (ddd, *J* = 10.8, 7.0, 4.0 Hz, 1H), 2.59 (s, 6H), 2.30 and 2.28 (s, 3H), 1.34 and 1.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 151.35, 151.26, 143.19, 139.35, 134.50, 134.20, 130.76, 130.71, 129.27, 129.25, 127.89, 127.68, 125.78, 125.76, 62.23, 62.17, 61.37, 57.01, 45.45, 43.79, 34.71, 34.68, 31.41, 31.40, 22.36, 22.33, 21.25.

HRMS (ESI) m/z Calcd. for C₂₂H₃₂NS₃ [M+NH₄]⁺ 406.1691, found: 406.1701.
IR (film) v_{max} (cm⁻¹) 2962, 2919, 1601, 1501, 1458, 1363, 1269, 1019, 850, 826, 732, 708, 563, 553.

According to the general procedure, the title product was obtained in 41% yield as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.35 (m, 4H), 6.97 and 6.96 (s, 2H), 5.73 (s, 0.46H), 5.64 (s, 0.44H), 5.03 (dd, *J* = 8.2, 5.3 Hz, 0.49H), 4.86 (dd, *J* = 10.9, 5.0 Hz, 0.50H), 3.72 (dd, *J* = 11.2, 5.3 Hz, 0.51H), 3.59 (dd, *J* = 12.1, 11.1 Hz, 0.54H), 3.42 – 3.32 (m, 1H), 2.58 and 2.57 (s, 6H), 2.29 and 2.28 (s, 3H), 0.27 and 0.25 (s, 9H).
¹³C NMR (101 MHz, CDCl₃) δ 143.19, 139.48, 138.21, 132.40, 132.31, 130.59, 129.32, 128.11, 127.89, 123.15, 123.07, 104.73, 104.64, 95.00, 62.35, 62.12, 61.54, 57.23, 45.32, 43.80, 22.35, 21.25, 0.09.

HRMS (ESI) m/z Calcd. for C₂₃H₂₈LiS₃Si [M+Li]⁺ 435.1277, found: 435.1295.
IR (film) v_{max} (cm⁻¹) 2954, 2920, 2160, 1601, 1501, 1410, 1247, 838, 759, 641, 551.

According to the general procedure, the title product was obtained in 80% yield as a light yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.57 – 7.43 (m, 4H), 6.98 and 6.96 (s, 2H), 5.74 (s, 0.48H), 5.67 (s, 0.50H), 5.09 – 5.02 (m, 0.58H), 4.90 (dd, *J* = 11.0, 5.0 Hz, 0.52H), 3.77 – 3.61 (m, 1H), 3.47 – 3.35 (m, 1H), 2.60 and 2.59 (s, 6H), 2.30 and 2.29 (s, 3H), 0.30 and 0.28 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 143.21, 140.82, 140.72, 139.42, 139.40, 138.25, 137.98, 133.89, 133.85, 130.73, 130.68, 129.30, 129.28, 127.57, 127.36, 62.47, 62.28, 61.48, 57.36, 45.42, 43.87, 22.36, 22.34, 21.26, -1.02, -1.04.

HRMS (ESI) m/z Calcd. for C₂₁H₂₈NaS₃Si [M+Na]⁺ 427.1015, found: 427.1005. **IR (film)** v_{max} (cm⁻¹) 2953, 2919, 1600, 1247, 1110, 908, 836, 816, 729, 552, 527.

According to the general procedure, the title product was obtained in 72% yield as a yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.37 – 7.34 (m, 1H), 7.29 – 7.21 (m, 2H), 7.13 (dd, *J* = 10.0, 3.4 Hz, 1H), 6.98 and 6.96 (s, 2H), 5.74 (s, 0.50H), 5.66 (s, 0.51H), 5.07 – 5.00 (m, 0.50H), 4.87 (dd, *J* = 11.1, 4.9 Hz, 0.54H), 3.75 – 3.60 (m, 1H), 3.44 – 3.36 (m, 1H), 2.60 and 2.59 (s, 6H), 2.39 and 2.36 (s, 3H), 2.30 and 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.20, 139.38, 138.55, 137.43, 137.26, 130.68, 129.29, 129.26, 129.09, 129.00, 128.82, 128.75, 128.71, 128.67, 125.28, 125.05, 62.54, 62.22, 61.38, 57.34, 45.50, 43.80, 22.36, 22.33, 21.53, 21.25.

HRMS (ESI) m/z Calcd. for C₁₉H₂₃S₃ [M+H]⁺ 347.0956, found: 347.0953.

IR (film) v_{max} (cm⁻¹) 2916, 2851, 1600, 1455, 1434, 1374, 1032, 852, 768, 727, 711, 693, 551.

According to the general procedure, the title product was obtained in 43% yield as a yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.87 – 7.81 (m, 0.46H), 7.56 – 7.50 (m, 0.52H), 7.30 – 7.13 (m, 3H), 6.97 and 6.96 (s, 2H), 5.75 (s, 0.50H), 5.66 (s, 0.44H), 5.26 (dd, J = 9.0, 5.1 Hz, 0.51H), 5.15 (dd, J = 11.0, 4.7 Hz, 0.45H), 3.74 – 3.59 (m, 1H), 3.44 – 3.33 (m, 1H), 2.58 (s, 6H), 2.50 and 2.40 (s, 3H), 2.29 and 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.21, 143.17, 139.40, 136.26, 136.20, 135.42, 135.16, 130.82, 130.74, 130.69, 130.62, 129.29, 127.95, 127.53, 127.31, 126.73, 126.52, 61.99, 61.30, 58.18, 53.23, 44.59, 42.44, 22.34, 21.25, 19.81, 19.75.

HRMS (ESI) m/z Calcd. for C₁₉H₂₃S₃ [M+H]⁺ 347.0956, found: 347.0946.

IR (film) v_{max} (cm⁻¹) 2920, 1601, 1459, 1374, 1032, 906, 850, 757, 726, 648, 552.

According to the general procedure, the title product was obtained in 78% yield as a light yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 7.7, 1.6 Hz, 0.39H), 7.51 (dd, J = 7.6, 1.6 Hz, 0.47H), 7.32 – 7.23 (m, 1H), 7.06 – 6.86 (m, 4H), 5.76 (s, 0.47 H), 5.66 (s, 0.44H), 5.55 (dd, J = 7.2, 5.3 Hz, 0.45H), 5.41 (dd, J = 10.5, 5.0 Hz, 0.44H), 3.89 and 3.86 (s, 3H), 3.77 (dd, J = 11.2, 5.3 Hz, 0.48H), 3.53 (ddd, J = 17.1, 12.0, 7.8 Hz, 1H), 3.37 (dd, J = 11.2, 7.3 Hz, 0.44H), 2.60 and 2.59 (s, 6H), 2.30 and 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.19, 156.85, 143.24, 143.20, 139.29, 130.84, 129.25, 129.21, 129.06, 128.98, 128.59, 128.42, 126.22, 125.93, 120.88, 120.55, 110.68, 110.59, 61.83, 61.20, 55.60, 55.57, 54.89, 50.70, 43.81, 42.11, 22.33, 22.27,

21.23.

HRMS (ESI) m/z Calcd. for C₁₉H₂₂OS₃ [M]⁺ 362.0827, found: 362.0780.

IR (film) v_{max} (cm⁻¹) 2921, 2836, 1735, 1560, 1490, 1461, 1437, 1242, 1103, 1049, 1028, 850, 751, 735, 705, 552.

According to the general procedure, the title product was obtained in 91% yield as a yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.40 – 7.29 (m, 1.5H), 7.21 (s, 0.49H), 7.05 (t, *J* = 6.9 Hz, 1H), 7.00 and 6.98 (s, 2H), 5.75 (s, 0.45H), 5.67 (s, 0.48H), 5.10 – 5.02 (m, 0.52H), 4.89 (dd, *J* = 11.1, 4.9 Hz, 0.50H), 3.76 – 3.60 (m, 1H), 3.45 – 3.36 (m, 1H), 3.21 and 3.19 (s, 4H), 2.62 and 2.61 (s, 6H), 2.32 and 2.30 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.30, 146.04, 145.94, 143.16, 139.32, 135.93, 135.72, 130.73, 130.68, 129.24, 126.96, 126.69, 122.83, 122.29, 122.13, 63.36, 62.23, 61.35, 58.05, 45.75, 44.00, 29.50, 22.33, 22.30, 21.22.

HRMS (ESI) m/z Calcd. for C₂₀H₂₆NS₃ [M+NH₄]⁺ 376.1222, found: 376.1229.

IR (film) v_{max} (cm⁻¹) 2917, 1600, 1470, 1456, 1432, 1418, 1373, 1032, 843, 817, 725, 706, 550.

According to the general procedure, the title product was obtained in 66% yield as a light brown oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.37 – 7.28 (m, 1H), 7.26 – 7.19 (m, 1H), 7.13 (dd, *J* = 10.2, 7.8 Hz, 1H), 6.99 and 6.97 (s, 2H), 5.74 (s, 0.38H), 5.66 (s, 0.42H), 5.03 (dd, *J* = 9.2, 5.2 Hz, 0.45H), 4.86 (dd, *J* = 11.1, 4.8 Hz, 0.44H), 3.75 – 3.61 (m, 1H), 3.44 – 3.36 (m, 1H), 2.61 and 2.60 (s, 6H), 2.34 – 2.25 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 143.19, 139.33, 137.07, 136.78, 136.70, 134.73,

134.59, 130.71, 130.05, 130.02, 129.27, 129.14, 125.55, 125.33, 62.41, 62.18, 61.37, 57.16, 45.55, 43.80, 22.35, 22.32, 21.23, 19.90, 19.59, 19.55.

HRMS (ESI) m/z Calcd. for C₂₀H₂₈NS₃ [M+NH₄]⁺ 378.1378, found: 378.1356. **IR (film)** v_{max} (cm⁻¹) 2919, 1600, 1499, 1451, 1374, 1029, 851, 823, 725, 712, 552.

According to the general procedure, the title product was obtained in 51% yield as a white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.50 – 7.45 (m, 1H), 7.41 – 7.36 (m, 1H), 6.98 and 6.96 (s, 2H), 6.93 – 6.85 (m, 2H), 5.72 (s, 0.50H), 5.64 (s, 0.47H), 5.04 (dd, *J* = 8.9, 5.1 Hz, 0.50H), 4.88 (dd, *J* = 11.0, 4.9 Hz, 0.49H), 3.82 and 3.80 (s, 3H), 3.69 (dd, *J* = 11.0, 5.2 Hz, 0.51H), 3.61 (dd, *J* = 12.0, 11.3 Hz, 0.50H), 3.41 – 3.33 (m, 1H), 2.594 and 2.586 (s, 6H), 2.30 and 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.56, 159.50, 143.18, 139.37, 130.72, 130.69, 129.28, 129.07, 114.21, 114.18, 62.13, 61.32, 56.90, 55.43, 55.42, 45.57, 43.83, 22.34, 22.31, 21.23.

HRMS (ESI) m/z Calcd. for C₁₉H₂₂NaOS₃ [M+Na]⁺ 385.5532, found: 385.0743.
IR (film) v_{max} (cm⁻¹) 2910, 1612, 1511, 1253, 1172, 1033, 856, 825, 735, 547, 528.

According to the general procedure, the title product was obtained in 54% yield as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 – 7.32 (m, 7H), 7.02 – 6.91 (m, 4H), 5.73 (s, 0.49H), 5.64 (s, 0.46H), 5.09 and 5.07 (s, 2H), 5.04 (dd, J = 8.9, 5.2 Hz, 0.54H), 4.88 (dd, J = 11.0, 4.9 Hz, 0.48H), 3.75 – 3.56 (m, 1H), 3.43 – 3.33 (m, 1H), 2.60 and 2.59 (s, 6H), 2.30 and 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.77, 158.71, 143.19, 139.38, 136.94, 136.91,

130.73, 130.69, 129.62, 129.54, 129.34, 129.27, 129.11, 128.72, 128.13, 127.55, 115.15, 115.11, 77.48, 62.15, 62.12, 61.34, 56.90, 45.56, 43.81, 22.35, 22.32, 21.24. **HRMS (ESI)** m/z Calcd. for $C_{25}H_{26}OS_3$ [M]⁺ 438.1140, found: 438.1121.

IR (film) v_{max} (cm⁻¹) 2917, 1608, 1509, 1455, 1379, 1294, 1239, 1174, 1007, 854, 824, 739, 727, 528.

According to the general procedure, the title product was obtained in 75% yield as a white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.55 – 7.49 (m, 1H), 7.45 – 7.40 (m, 1H), 7.40 – 7.33 (m, 2H), 7.18 – 7.11 (m, 1H), 7.08 – 6.95 (m, 6H), 5.75 (s, 0.50H), 5.66 (s, 0.46H), 5.06 (dd, J = 8.7, 5.2 Hz, 0.50H), 4.90 (dd, J = 11.0, 4.9 Hz, 0.47H), 3.73 (dd, J = 11.1, 5.2 Hz, 0.51H), 3.68 – 3.60 (m, 0.47H), 3.46 – 3.34 (m, 1H), 2.600 and 2.596 (s, 6H), 2.301 and 2.293 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.34, 157.33, 156.95, 156.89, 143.16, 139.40, 132.14, 132.03, 130.65, 129.90, 129.56, 129.33, 129.28, 123.64, 123.63, 119.22, 119.21, 118.91, 118.83, 62.19, 61.92, 61.39, 56.83, 45.52, 43.88, 22.34, 22.31, 21.23.
HRMS (ESI) m/z Calcd. for C₂₄H₂₄OS₃ [M]⁺ 424.0984, found: 424.0955.

IR (film) v_{max} (cm⁻¹) 2918, 1586, 1504, 1488, 1237, 1165, 873, 847, 749, 731, 690, 517.

According to the general procedure, the title product was obtained in 86% yield as a yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.44 – 7.38 (m, 0.78H), 7.34 – 7.28 (m, 1.22H), 6.96 and 6.94 (s, 2H), 6.70 (t, *J* = 9.9 Hz, 2H), 5.69 (s, 0.56H), 5.61 (s, 0.35H), 5.01 (dd, *J* = 9.4, 5.1 Hz, 0.58H), 4.86 (dd, *J* = 11.2, 4.8 Hz, 0.36H), 3.67 – 3.57 (m, 1H), 3.40 –

3.29 (m, 1H), 2.96 and 2.94 (s, 3H), 2.58 and 2.57 (s, 3H), 2.28 and 2.26 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 150.56, 150.48, 143.24, 143.21, 139.32, 130.84, 130.80, 129.25, 129.23, 128.94, 128.72, 112.61, 112.58, 62.65, 62.02, 61.21, 57.17, 45.55, 43.67, 40.66, 40.63, 22.37, 22.34, 21.25.

HRMS (ESI) m/z Calcd. for C₂₀H₂₆NS₃ [M+H]⁺ 376.1222, found: 376.1230.

IR (film) v_{max} (cm⁻¹) 2918, 2851, 1613, 1520, 1444, 1349, 1166, 1059, 1046, 948, 853, 811, 709, 544, 527.

According to the general procedure, the title product was obtained in 65% yield as a yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.56 – 7.23 (m, 4H), 6.96 and 6.95 (s, 2 H), 5.73 (s, 0.42H), 5.64 (s, 0.51H), 5.00 (dd, *J* = 8.1, 5.7 Hz, 0.52H), 4.82 (dd, *J* = 10.8, 5.0 Hz, 0.54H), 3.74 (dd, *J* = 11.1, 5.2 Hz, 0.45H), 3.62 – 3.52 (m, 0.55H), 3.46 – 3.29 (m, 1H), 2.57 and 2.56 (s, 3H), 2.28 and 2.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.22, 143.20, 140.20, 140.00, 139.53, 134.64, 134.60, 130.51, 130.13, 130.02, 129.35, 129.33, 128.51, 128.37, 128.36, 128.20, 126.47, 126.22, 62.31, 61.66, 61.54, 56.87, 45.33, 43.88, 22.37, 22.33, 21.26.

HRMS (ESI) m/z Calcd. for C₁₈H₁₉ClLiS₃ [M+Li]⁺ 373.0492, found: 373.0487.

IR (film) v_{max} (cm⁻¹) 2920, 1594, 1572, 1474, 1430, 1032, 906, 851, 788, 729, 691, 552.

According to the general procedure, the title product was obtained in 64% yield as a light yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.49 (m, 1H), 7.47 – 7.39 (m, 1H), 7.09 – 6.99 (m, 2H), 6.98 and 6.96 (s, 2H), 5.73 (s, 0.48H), 5.65 (s, 0.46H), 5.10 – 5.00 (m,

0.55H), 4.88 (dd, *J* = 10.9, 5.0 Hz, 0.48H), 3.73 (dd, *J* = 11.2, 5.3 Hz, 0.51H), 3.59 (dd, *J* = 12.2, 11.0 Hz, 0.49H), 3.38 (ddd, *J* = 19.5, 11.7, 6.7 Hz, 1H), 2.59 and 2.58 (s, 6H), 2.29 and 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.76, 161.27, 143.16, 139.46, 133.56, 130.58, 129.87, 129.79, 129.64, 129.56, 129.30, 115.84, 115.79, 115.63, 115.57, 62.25, 61.61, 61.44, 56.67, 45.55, 43.99, 22.32, 21.23.

HRMS (ESI) m/z Calcd. for C₁₈H₁₉FNaS₃ [M+Na]⁺ 373.0525, found: 373.0517.
IR (film) v_{max} (cm⁻¹) 2919, 1599, 1506, 1457, 1223, 1157, 837, 820, 792, 724, 710, 528.

According to the general procedure, the title product was obtained in 56% yield as a light yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.5 Hz, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.36 – 7.27 (m, 2H), 6.97 and 6.96 (s, 2H), 5.73 (s, 0.48H), 5.65 (s, 0.46H), 5.06 – 5.00 (m, 0.57H), 4.86 (dd, J = 10.8, 5.0 Hz, 0.48H), 3.73 (dd, J = 11.2, 5.3 Hz, 0.50H), 3.64 – 3.54 (m, 0.48H), 3.38 (ddd, J = 19.3, 11.8, 6.5 Hz, 1H), 2.58 and 2.57 (s, 6H), 2.29 and 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.18, 139.51, 136.51, 136.40, 133.99, 130.55, 129.57, 129.33, 129.01, 128.94, 62.33, 61.59, 61.53, 56.76, 45.41, 43.94, 22.34, 22.31, 21.25.

HRMS (ESI) m/z Calcd. for C₁₈H₁₉ClLiS₃ [M+Li]⁺ 373.0492, found: 373.0459.

IR (film) v_{max} (cm⁻¹) 2917, 2850, 1600, 1488, 1456, 1374, 1086, 1040, 1014, 851, 814, 725, 710, 552, 518.

According to the general procedure, the title product was obtained in 54% yield as a

light yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.40 (m, 3H), 7.36 – 7.30 (m, 1H), 6.97 and 6.96 (s, 2H), 5.73 (s, 0.46H), 5.64 (s, 0.49H), 5.04 – 4.98 (m, 0.54H), 4.84 (dd, J = 10.8, 5.0 Hz, 0.49H), 3.73 (dd, J = 11.2, 5.3 Hz, 0.49H), 3.62 – 3.51 (m, 0.52H), 3.37 (ddd, J = 19.2, 11.8, 6.5 Hz, 1H), 2.574 and 2.566 (s, 6H), 2.29 and 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.16, 139.49, 137.07, 136.95, 131.96, 131.88,

130.53, 130.52, 129.89, 129.65, 129.31, 122.08, 62.33, 61.61, 61.55, 56.80, 45.34, 43.90, 22.34, 22.30, 21.25.

HRMS (ESI) m/z Calcd. for C₁₈H₁₉BrLiS₃ [M+Li]⁺ 416.9987, found: 417.0104.

IR (film) v_{max} (cm⁻¹) 2954, 2919, 2850, 1598, 1487, 1456, 1431, 1402, 1376, 1074, 1008, 852, 816, 721, 551, 508.

According to the general procedure, the title product was obtained in 57% yield as a white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 – 7.79 (m, 4H), 7.74 (dd, *J* = 8.5, 1.8 Hz, 0.55H), 7.58 (dd, *J* = 8.6, 1.8 Hz, 0.46H), 7.53 – 7.46 (m, 2H), 6.99 and 6.97 (s, 2H), 5.80 (s, 0.43H), 5.71 (s, 0.53H), 5.24 (dd, *J* = 8.4, 5.3 Hz, 0.44H), 5.08 (dd, *J* = 11.0, 5.0 Hz, 0.55H), 3.86 – 3.70 (m, 1H), 3.55 – 3.43 (m, 1H), 2.62 and 2.61 (s, 6H), 2.30 and 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.24, 139.46, 135.01, 134.97, 133.38, 133.30, 133.16, 130.70, 130.66, 129.33, 128.75, 128.64, 127.98, 127.92, 127.84, 127.78, 127.32, 126.99, 126.53, 126.39, 125.71, 62.75, 62.44, 61.62, 57.69, 45.45, 43.77, 22.39, 22.37, 21.27.

HRMS (ESI) m/z Calcd. for C₂₂H₂₆NS₃ [M+NH₄]⁺ 400.1222, found: 400.1237.

IR (film) v_{max} (cm⁻¹) 2918, 1598, 1508, 1455, 1430, 1373, 1173, 1125, 1030, 1014, 854, 823, 748, 711, 551, 479.

According to the general procedure, the title product was obtained in 75% yield as a yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 – 7.12 (m, 3H), 6.97 (s, 2H), 5.72 (s, 0.44H), 5.63 (s, 0.51H), 5.17 (dd, *J* = 8.0, 5.2 Hz, 0.45H), 5.04 – 4.97 (m, 0.57H), 3.73 (dd, *J* = 11.1, 5.2 Hz, 0.46H), 3.63 (dd, *J* = 12.0, 10.9 Hz, 0.54H), 3.41 (ddd, *J* = 19.2, 11.6, 6.5 Hz, 1H), 2.58 (s, 6H), 2.291 and 2.286 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.17, 139.42, 139.40, 138.60, 138.57, 130.61, 130.59, 129.27, 127.05, 127.03, 126.51, 126.43, 123.02, 122.70, 61.93, 61.28, 57.13, 52.69, 44.82, 43.15, 22.33, 22.31, 21.24.

HRMS (ESI) m/z Calcd. for C₁₆H₁₈KS₃ [M+K]⁺ 376.9923, found: 377.0135.

IR (film) v_{max} (cm⁻¹) 2917, 2849, 1599, 1455, 1372, 1031, 849, 840, 784, 753, 726, 689, 626, 552.

According to the general procedure, the title product was obtained in 52% yield as a light yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.95 – 7.90 (m, 0.62H), 7.73 (s, 0.6H), 7.72 – 7.67 (m, 0.43H), 7.65 (s, 0.31H), 7.54 – 7.47 (m, 1H), 7.32 (tdd, *J* = 14.8, 7.4, 1.3 Hz, 2H), 6.97 (s, 2H), 5.76 (s, 0.31H), 5.69 (s, 0.51H), 5.28 (dd, *J* = 7.2, 5.3 Hz, 0.31H), 5.09 (dd, *J* = 10.6, 4.9 Hz, 0.57H), 3.81 (ddd, *J* = 10.5, 8.4, 3.1 Hz, 1H), 3.52 (ddd, *J* = 12.2, 7.5, 6.1 Hz, 1H), 2.59 and 2.58 (s, 6H), 2.29 and 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.89, 155.73, 143.22, 142.96, 142.92, 139.51, 130.61, 129.34, 126.28, 124.92, 122.89, 120.70, 120.06, 118.34, 117.65, 111.94, 61.97, 61.35, 52.41, 48.28, 43.44, 41.63, 22.34, 21.26.

HRMS (ESI) m/z Calcd. for C₂₀H₂₄NOS₃ [M+NH₄]⁺ 390.1015, found: 390.1022. IR (film) v_{max} (cm⁻¹) 2918, 1600, 1451, 1176, 1099, 854, 743, 552.

According to the general procedure, the title product was obtained in 42% yield as a brown oil.

¹**H NMR (400 MHz, CDCl₃)** δ 6.96 and 6.95 (s, 2H), 5.64 (s, 0.40H), 5.53 (s, 0.52H), 4.92 (dd, *J* = 8.1, 5.2 Hz, 0.43H), 4.77 (dd, *J* = 10.8, 4.9 Hz, 0.56H), 4.55 – 4.11 (m, 9H), 3.64 (dd, *J* = 11.0, 5.2 Hz, 0.42H), 3.44 – 3.35 (m, 0.58H), 3.30 – 3.18 (m, 1H), 2.58 and 2.56 (s, 6H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.17, 143.16, 139.35, 139.30, 130.76, 130.72, 129.25, 85.61, 84.67, 69.12, 68.54, 68.26, 68.22, 68.20, 68.09, 67.76, 67.66, 67.30, 61.32, 61.10, 59.15, 54.21, 44.87, 42.85, 22.34, 21.25.

HRMS (ESI) m/z Calcd. for C₂₂H₂₄FeS₃ [M]⁺, 440.0384, found: 440.0384.

IR (film) v_{max} (cm⁻¹) 2952, 2919, 2851, 1658, 1601, 1456, 1374, 1105, 1025, 1000, 850, 816, 734, 707, 552, 484.

According to the general procedure, the title product was obtained in 43% yield as a light yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.66 (d, *J* = 7.5 Hz, 0.72H), 7.55 – 7.49 (m, 1.22H), 7.40 – 7.21 (m, 3H), 6.95 (s, 2H), 5.65 (s, 0.34H), 5.61 (s, 0.57H), 3.93 (d, *J* = 12.2 Hz, 0.37H), 3.64 – 3.59 (m, 1.22H), 3.19 (d, *J* = 12.2 Hz, 0.35H), 2.57 and 2.54 (s, 6H), 2.28 and 2.27 (s, 3), 2.05 (s, 2H), 1.91 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 144.27, 143.65, 143.28, 143.25, 139.41, 139.36, 130.57, 130.32, 129.30, 129.27, 128.53, 128.44, 127.45, 127.27, 127.14, 126.50, 68.63, 67.95, 62.05, 61.77, 50.73, 49.95, 30.29, 30.09, 22.39, 22.32, 21.25.

HRMS (ESI) m/z Calcd. for C₁₉H₂₃S₃ [M+H]⁺ 347.0956, found: 347.0953.

IR (film) v_{max} (cm⁻¹) 2920, 1600, 1493, 1443, 1374, 1058, 1028, 907, 850, 763, 729, 695, 552.

According to the general procedure, the title product was obtained in 50% yield as a yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.08 (d, *J* = 8.0 Hz, 0.21H), 7.78 – 7.71 (m, 0.78H), 7.30 –7.12 (m, 2H), 7.11 – 7.02 (m, 1H), 6.98 and 6.97 (s, 2H), 5.81 (s, 0.74H), 5.63 (s, 0.20H), 3.96 (d, *J* = 12.7 Hz, 0.21H), 3.67 (d, *J* = 12.0 Hz, 0.79H), 3.52 (d, *J* = 12.0 Hz, 0.78H), 3.24 (d, *J* = 12.7 Hz, 0.21H), 2.93 – 2.78 (m, 2H), 2.75 – 2.66 (m, 1H), 2.60 and 2.59 (s, 6H), 2.50 – 2.39 (m, 1H), 2.30 and 2.29 (s, 3H), 2.13 – 2.01 (m, 1H), 2.01 – 1.90 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.27, 143.22, 139.36, 139.34, 138.46, 137.68, 137.54, 136.75, 130.69, 130.46, 129.79, 129.70, 129.39, 129.29, 128.70, 127.39, 127.36, 126.48, 126.25, 68.80, 66.78, 62.12, 62.07, 52.43, 49.34, 38.81, 38.55, 30.34, 30.07, 22.34, 21.78, 21.26, 21.22.

HRMS (ESI) m/z Calcd. for C₂₁H₂₅S₃ [M+H]⁺ 373.1113, found: 373.1139.

IR (film) v_{max} (cm⁻¹) 2919, 2854, 1599, 1483, 1445, 1435, 1372, 1188, 1040, 852, 751, 717, 712, 658, 552.

According to the general procedure, the title product was obtained in 66% yield as a light green oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 – 7.43 (m, 1H), 7.33 – 7.17 (m, 3H), 6.96 (s, 2H), 5.77 (s, 0.70H), 5.67 (s, 0.24H), 3.74 (dd, *J* = 12.2, 0.8 Hz, 0.27H), 3.51 (s, 1.47H), 3.14 (d, *J* = 12.2 Hz, 0.28H), 3.10 – 2.86 (m, 3H), 2.64 – 2.56 (m, 7H), 2.29 and 2.28

(s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.93, 143.34, 143.22, 139.36, 139.33, 130.45, 129.78, 129.30, 128.44, 128.39, 127.16, 126.92, 125.04, 124.91, 124.34, 124.04, 75.21, 73.13, 62.02, 61.93, 50.28, 47.61, 42.90, 41.14, 30.64, 30.02, 22.35, 21.23.
HRMS (ESI) m/z Calcd. for C₂₀H₂₂LiS₃ [M+Li]⁺ 365.1038, found: 365.1076.
IR (film) v_{max} (cm⁻¹) 2916, 2848, 1601, 1458, 1373, 1174, 1031, 850, 758, 735, 552.

According to the general procedure, the title product was obtained in 60% yield as a white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 (d, *J* = 8.1 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.25 – 7.12 (m, 5H), 5.77 (s, 0.39H), 5.69 (s, 0.36H), 5.05 (dd, *J* = 8.9, 5.1 Hz, 0.49H), 4.89 (dd, *J* = 11.0, 4.9 Hz, 0.46H), 3.68 (ddd, *J* = 23.3, 11.5, 8.2 Hz, 1H), 3.48 – 3.33 (m, 1H), 2.64 and 2.63 (s, 6H), 2.37 and 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.39, 138.17, 138.09, 134.38, 134.21, 133.93, 133.88, 129.54, 129.50, 129.39, 129.38, 128.42, 128.40, 128.07, 127.86, 62.39, 62.07, 61.25, 57.20, 45.57, 43.88, 22.48, 22.45, 21.28, 21.24.

HRMS (ESI) m/z Calcd. for C₁₈H₂₄NS₃ [M+NH₄]⁺ 350.1065, found: 350.1070.
IR (film) v_{max} (cm⁻¹) 2953, 2919, 2851, 1514, 1457, 1425, 1376, 1163, 1022, 816, 769, 731, 714, 514.

According to the general procedure, the title product was obtained in 53% yield as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, *J* = 8.1, 1.9 Hz, 1.11H), 7.36 (dd, *J* = 8.1, 2.0 Hz, 0.81H), 7.17 (dd, *J* = 13.7, 4.7 Hz, 2H), 7.07 (dd, *J* = 5.5, 2.5 Hz, 2H), 5.66 –

5.61 (m, 0.37H), 5.57 – 5.52 (m, 0.54H), 5.04 – 4.97 (m, 0.37H), 4.88 (ddd, *J* = 10.9, 4.7, 2.1 Hz, 0.54H), 4.10 – 3.94 (m, 2H), 3.69 (ddd, *J* = 11.1, 5.1, 1.7 Hz, 0.38H), 3.63 – 3.53 (m, 0.58H), 3.45 – 3.34 (m, 1H), 2.98 – 2.85 (m, 1H), 2.38 and 2.35 (s, 3H), 1.33 – 1.24 (m, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 153.36, 150.65, 138.15, 138.04, 134.39, 134.25, 129.52, 128.69, 128.63, 128.08, 127.86, 122.02, 63.92, 63.22, 62.36, 57.35, 45.64, 44.09, 34.44, 31.72, 24.76, 24.53, 24.48, 23.99, 21.29, 21.25.

HRMS (ESI) m/z Calcd. for C₂₅H₃₄LiS₃ [M+Li]⁺ 437.1977, found: 437.1944.

IR (film) v_{max} (cm⁻¹) 2959, 2924, 2866, 1597, 1513, 1461, 1425, 1382, 1361, 1102, 1059, 908, 878, 816, 734, 648, 516.

8. NMR Spectral Data

All and a second second

(157.19)
(15.7.19)
(15.7.19)
(15.7.19)
(15.7.19)
(15.9.25)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.59)
(110.5

90 80 70 fl (ppm)

90 80 fl (ppm)

Rest of the second seco

41.22.1 41.

(155.89) (155.73) (155.89) (155.89) (142.26) (139.61) (139.61) (120.62) (124.92) (124.92) (124.92) (124.92) (122.24)

L 143.17 143.16 143.16 139.30 139.30 139.30 L 139.25 L 129.25

144.27 143.65 143.65 143.65 143.65 143.65 143.65 143.65 143.65 144.75 145.75

90 80 fl (ppm) Ó

-153.36-153.36-190.65-190.65-194.95-134.95-134.25-134.25-134.25-134.25-134.25-134.25-34.56-34.56-34.56-34.56-34.56-34.56-34.55-57.35-57.35-34.46-34.57-34.57-34.55-24.56-24.56-24.56-24.56-24.56-24.55

