Supporting Information

Palladium-catalyzed conversion of phenols into tetrahydroacridines

Jianjin Yu, Renqin Zhan, Chao-Jun Li and Huiying Zeng*

List of Contents

I. General Information	S2
II. Optimization of the Reaction Conditions	S2
III. General Procedures for Preparation and the Analytica	l Data of the
2-Aminoarylketones	S5
IV. General procedure for the Synthesis of 1,2,3,4-Tetrahy	droacridine
Derivatives	S11
V. Analytical Data	S11
VI. References	S23
VII. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S24

I. General Information

All reagents were purchased from commercial sources and used without further purification unless otherwise stated. All reactions were monitored by thin-layer chromatography (TLC). All reactions were carried out in argon atmosphere unless otherwise stated. Column chromatography was performed on silica gel (200-300 mesh) and visualized with ultraviolet light. Ethyl acetate and petroleum ether were used as eluents (unless otherwise stated). ¹H, ¹³C NMR and ¹⁹F NMR spectra were recorded on 400 MHz and 600 MHz NMR spectrometers in CDCl₃ (unless otherwise stated) at room temperature. The chemical shifts are referenced to internal TMS. HRMS analyses were made by Lanzhou University by means of ESI. Melting points were measured on micro melting point apparatus and uncorrected. All solvents were purified and dried by standard techniques.

II. Optimization of the Reaction Conditions

NH ₂ 1a, 0.2 mmol	+ HO Cat. 2 eq HCO ₂ H 1 mL toluene, Ar 160 °C, 12 h 2a, 0.4 mmol	- N 3aa	NH ₂ 1a _{red}
Entry	Catalyst	3aa /% ^b	1a _{red} /% ^b
1	10 wt% Pd/C	15	50
2	5 wt% Pd(OH) ₂ /C	4	67
3	10 wt% Pd(OH) ₂ /C	38	26
4	20 wt% Pd(OH) ₂ /C	29	30
5	Pd(OAc) ₂	trace	19
6	PdCl ₂	n.p.	n.p.
7	3.5 mol%10 wt% Pd/C	12	49
8	10 mol%10 wt% Pd/C	3	65
9	1.75 mol%10 wt% Pd(OH) ₂ /C	24	30
10	3.5 mol%10 wt% Pd(OH) ₂ /C	42	13
11	10 mol%10 wt% Pd(OH) ₂ /C	25	28

1) Optimizing the type and the amount of catalysts^a

[[]a] General conditions: 1a (0.2 mmol), 2a (0.4 mmol), catalyst (7 mol%), HCO₂H (2 equiv.) in toluene (1 mL) were stirred at 160 °C in the pre-heated oil bath for 12 h under Ar atmosphere. $1a_{red}$ represented that the carbonyl group of 1a was reduced to methylene. [b] Yields were determined by ¹H NMR with dibromomethane as internal standard.

2) Screening the type of solvents^a

+ NH ₂ 1a, 0.2 mmol	HO HO 3.5 mol% Pd(OH) ₂ /C 2 eq HCO ₂ H 1 mL solvent, Ar 160 °C, 12 h 2a, 0.4 mmol	N Saa	NH ₂ 1a _{red}
Entry ^a	Solvent	3aa /% ^b	$1a_{\rm red}$ /% ^b
1	toluene	42	20
2	1,4-dioxane	6	
3	t-BuOH	2	50
4	DMSO	n.p.	
5	heptane	43	22
6	cyclohexane	42	20
7	H_2O	trace	79
8	<i>m</i> -xylene	34	20
9	<i>p</i> -xylene	2	27

[a] General conditions: 1a (0.2 mmol), 2a (0.4 mmol), 10 wt% Pd(OH)₂/C (3.5 mol%), HCO₂H (2 equiv.) in solvent (1 mL) were stirred at 160 °C in the pre-heated oil bath for 12 h under Ar atmosphere. $1a_{red}$ represented that the carbonyl group of 1a was reduced to methylene. [b] Yields were determined by ¹H NMR with dibromomethane as internal standard.

3)	Screening th	e type of hydrogen	sources ^a
----	--------------	--------------------	----------------------

+ NH ₂ 1a, 0.2 mmol	HO HO HO HO HO HO HO HO HO HO HO HO HO H	- - - - - - - - - -	NH ₂ 1a _{red}
Entry ^a	Н	3aa /% ^b	$1a_{\rm red}$ /% ^b
1	HCO ₂ H (2eq)	43	22
2	HCO ₂ Na	12	3
3	HCO ₂ Li·H ₂ O	48	8
4	HCO ₂ Cs	trace	4
5	HCO ₂ K	6	6
6	HCO ₂ NH ₄ (2eq)	40	18

[a] General conditions: 1a (0.2 mmol), 2a (0.4 mmol), 10 wt% Pd(OH)₂/C (3.5 mol%), H source in heptane (1 mL) were stirred at 160 °C in the pre-heated oil bath for 12 h under Ar atmosphere. $1a_{red}$ represented that the carbonyl group of 1a was reduced to methylene. [b] Yields were determined by ¹H NMR with dibromomethane as internal standard.

+ NH ₂ 1a, 0.2 mmol	HO 2a, 0.4 mmol	3.5 mol% Pd(OH)₂/C <u>HCO₂Li·H₂O</u> 1 mL heptane, Ar 160 °C, 12 h	- N 3aa	NH ₂ 1a _{red}
Entry ^a	НСО	2Li∙H2O	3aa /% ^b	$1a_{\rm red}$ /% ^b
1		3eq	42	3
2		4eq	48	8
3		5eq	44	6
4		6eq	37	7

4) Screening the amount of HCO₂Li·H₂O^a

[a] General conditions: 1a (0.2 mmol), 2a (0.4 mmol), 10 wt% Pd(OH)₂/C (3.5 mol%), HCO₂Li·H₂O (x equiv.) in heptane (1 mL) were stirred at 160 °C in the pre-heated oil bath for 12 h under Ar atmosphere. $1a_{red}$ represented that the carbonyl group of 1a was reduced to methylene. [b] Yields were determined by ¹H NMR with dibromomethane as internal standard.

5) Screening the amount of heptane^a

+ NH ₂ 1a, 0.2 mmol	HO HO 3.5 mol% Pd(OH <u>4 eq HCO₂Li·H₂ heptane, Ar 160 °C, 12 h 2a, 0.4 mmol</u>	D_2/C O N Saa	NH ₂ 1a _{red}
Entry ^a	Heptane	3aa /% ^b	$1a_{\rm red}$ /% ^b
1	1 mL	48	8
2	0.5 mL	73	13
3	0.2 mL	79	12
4	0.1 mL	60	28

[a] General conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), 10 wt% Pd(OH)₂/C (3.5 mol%), HCO₂Li·H₂O (4 equiv.) in heptane (x mL) were stirred at 160 °C in the pre-heated oil bath for 12 h under Ar atmosphere. **1a**_{red} represented that the carbonyl group of **1a** was reduced to methylene. [b] Yields were determined by ¹H NMR with dibromomethane as internal standard.

6) Screening the amount of $2a^{a}$

1	0.3	68	12
2	0.4	79	12
3	0.5	83	6
4	0.6	93	4

[a] General conditions: 1a (0.2 mmol), 2a (x mmol), 10 wt% Pd(OH)₂/C (3.5 mol%), HCO₂Li·H₂O (4 equiv.) in heptane (0.2 mL) were stirred at 160 °C in the pre-heated oil bath for 12 h under Ar atmosphere. $1a_{red}$ represented that the carbonyl group of 1a was reduced to methylene. [b] Yields were determined by ¹H NMR with dibromomethane as internal standard.

7) Changing the condition^a 3.5 mol% Pd(OH)₂/C 4 eq HCO₂Li·H₂O 0.2 mL heptane, Ar 160 °C, 12 h NH_2 NH_2 1a, 0.2 mmol 2a, 0.6 mmol 3aa 1a_{red} Entry^a Condition 3aa /%^b $1a_{\rm red}$ /%^b 1 93 4 2 2 mol% Pd(OH)₂/C 73 3 3 150 °C 91 5 4 8 h 83 4 5 3 24 h 93

[a] General conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), 10 wt% Pd(OH)₂/C (3.5 mol%), HCO₂Li·H₂O (4 equiv.) in heptane (0.2 mL) were stirred at 160 °C in the pre-heated oil bath for 12 h under Ar atmosphere. **1a**_{red} represented that the carbonyl group of **1a** was reduced to methylene. [b] Yields were determined by ¹H NMR with dibromomethane as internal standard.

III. General Procedures for Preparation and the Analytical Data of the

2-Aminoarylketones

Method A:

Step 1: To a stirred solution of 2-aminobenzoic acid **S1** (10.0 mmol) in anhydrous THF (40 mL) was added 1,1'-carbonyldiimidazole CDI (10.0 mmol) at 0 $^{\circ}$ C under argon atmosphere. The reaction mixture was allowed to warm to room temperature and stirred for 2 h, then a suspension of N,O-dimethylhydroxylamine hydrochloride (10.0 mmol) and Et₃N (10.0 mmol) in THF (10 mL) was added,

and the reaction mixture was stirred overnight. When the reaction was completed as determined by TLC, the volatile solvent was removed under reduced pressure. The residue was poured into water (100 mL). The pH was adjusted to neutral with 5% NaOH solution. The mixture was extracted with ethyl acetate $(3 \times 50 \text{ mL})$. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography to yield Weinreb amide **S2**.

Step 2: Weinreb amide **S2** (5.0 mmol) and the corresponding aryl bromide (5.0 mmol) were dissolved in anhydrous THF (30 mL). This solution was cooled to -78 °C, remain at that temperature with stirring and *n*-butyl lithium hexane solution (1.6 N, 10.0 mmol) was added dropwise over 1 h. After the dropwise addition, the 1 N HCl (10 mL) was added. The mixture was extracted with ethyl acetate (3 × 20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography to yield the desired 2-aminoaryl ketones **1**.

1n^[1] were synthesized according to method A.

Method B:

Step 1: To a solution of N,O-dimethylhydroxylamine hydrochloride (21.0 mmol, 1.5 equiv.) in EtOH (10 mL) was added NEt₃ (21.0 mmol, 1.5 equiv.) and after stirred at rt for 10 min, **S3** (14.0 mmol) was added in portions. The reaction system was then heated and refluxed for 1.5 h and poured onto an equal volume of ice and saturated Na₂CO₃. To remove ethanol by rotary evaporation, and the resulting aqueous mixture was extracted with ethyl acetate (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography to yield Weinreb amide **S2**.

Step 2: The method was the same as the Step 2 of method A to yield the desired 2-aminoaryl ketones 1.

1c^[1], 1h, 1j, 1l^[2] were synthesized according to method B.

Method C:

Grignard reagents (4 equiv.) were added slowly to a solution of the 2-cyanoaniline **S4** (7.0 mmol) in anhydrous THF (20 mL) at -80 °C. After 12 hours of stirring at room temperature, the reaction mixture

was poured onto ice, then added 4 N HCl (20 mL) and stirred for 30 min. The mixture finally was added Na_2CO_3 aqueous solution to pH>10, and then extracted with ether (3 × 20 mL). The organic layers were dried over anhydrous Na_2SO_4 , filtered, and concentrated. The residue was purified by column chromatography on silica gel.

1b^[1], 1e^[3], 1i^[1], 1f^[1], 1g^[4], 1m^[1], 1o, 1p^[1], 1r, 1s were synthesized according to method C.

(2-Aminophenyl)(p-tolyl)methanone 1b

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.1 Hz, 2H), 7.46 (dd, J = 8.0, 1.6 Hz, 1H), 7.31 – 7.21 (m, 3H), 6.73 (d, J = 8.2 Hz, 1H), 6.60 (t, J = 7.5 Hz, 1H), 5.99 (s, 2H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 199.0, 150.8, 141.8, 137.4, 134.5, 134.1, 129.6, 128.9, 118.7, 117.1, 115.6, 21.7.

(2-Aminophenyl)(*m*-tolyl)methanone 1c

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 2H), 7.44 – 7.37 (m, 1H), 7.36 – 7.31 (m, 2H), 7.32 – 7.22 (m, 1H), 6.72 (dd, *J* = 8.3, 1.1 Hz, 1H), 6.59 (ddd, *J* = 8.1, 7.0, 1.2 Hz, 1H), 6.08 (s, 2H), 2.40 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 199.4, 151.0, 140.2, 138.0, 134.7, 134.3, 131.9, 129.7, 128.0, 126.4, 118.4, 117.1, 115.6, 21.5.

[1,1'-Biphenyl]-4-yl(2-aminophenyl)methanone 1e

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.60 (m, 6H), 7.52 (dt, J = 8.1, 1.5 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.43 – 7.36 (m, 1H), 7.30 (ddd, J = 8.6, 7.1, 1.6 Hz, 1H), 6.74 (dd, J = 8.3, 1.1 Hz, 1H), 6.63 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 6.07 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 198.8, 151.0, 144.1, 140.3, 138.9, 134.6, 134.3, 130.0, 129.1, 128.1, 127.4, 126.9, 118.5, 117.2, 115.7.

(2-Aminophenyl)(4-methoxyphenyl)methanone 1f

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.7 Hz, 2H), 7.46 (d, J = 7.4 Hz, 1H), 7.27 (d, J = 6.7 Hz, 1H), 6.95 (d, J = 8.7 Hz, 2H), 6.73 (d, J = 8.2 Hz, 1H), 6.62 (t, J = 7.5 Hz, 1H), 5.85 (s, 2H), 3.87 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 197.9, 162.5, 150.5, 134.1, 133.8, 132.5, 131.9, 119.1, 117.1, 115.7, 113.5, 55.6.

(2-Aminophenyl)(4-methoxyphenyl)methanone 1g

¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.66 (m, 2H), 7.47 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.28 – 7.22 (m, 1H), 6.76 – 6.59 (m, 4H), 5.56 (s, 2H), 3.06 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 197.2, 153.0, 149.7, 133.5, 132.9, 132.4, 126.8, 120.5, 117.0, 115.8, 110.7, 40.2.

(2-Aminophenyl)(4-morpholinophenyl)methanone 1h

¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.62 (m, 2H), 7.47 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.31 – 7.21 (m, 1H), 6.94 – 6.85 (m, 2H), 6.73 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.63 (ddd, *J* = 8.1, 7.1, 1.2 Hz, 1H), 5.75 (s, 2H), 3.94 – 3.78 (m, 4H), 3.36 – 3.23 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 197.5, 153.6, 150.2, 133.8, 133.4, 131.9, 130.2, 119.6, 117.0, 115.7, 113.5, 66.8, 48.0.

(2-Aminophenyl)(naphthalen-2-yl)methanone 1i

¹H NMR (600 MHz, CDCl₃) δ 8.11 (s, 1H), 7.90 (q, *J* = 7.5, 6.7 Hz, 3H), 7.77 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.55 (dq, *J* = 24.6, 8.4, 7.8 Hz, 3H), 7.34 – 7.28 (m, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 6.61 (t, *J* = 7.6 Hz, 1H), 6.08 (s, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 199.0, 151.1, 137.5, 134.8, 134.7, 134.3, 132.5, 130.2, 129.2, 128.1, 127.9, 127.8, 126.8, 125.9, 118.7, 117.2, 115.8.

(2-Aminophenyl)(6-methoxypyridin-3-yl)methanone 1j

¹H NMR (400 MHz, CDCl₃) δ 8.50 (dd, J = 2.4, 0.7 Hz, 1H), 7.93 (dd, J = 8.6, 2.4 Hz, 1H), 7.46 (dd, J = 8.1, 1.6 Hz, 1H), 7.30 (ddd, J = 8.4, 7.1, 1.6 Hz, 1H), 6.82 (dd, J = 8.6, 0.8 Hz, 1H), 6.74 (dd, J = 8.3, 1.1 Hz, 1H), 6.63 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 6.00 (s, 2H), 4.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.1, 165.9, 150.8, 149.5, 139.8, 134.4, 133.9, 129.2, 118.4, 117.2, 115.9, 110.7, 54.0.

(2-Aminophenyl)(4-(trifluoromethyl)phenyl)methanone 11

¹H NMR (600 MHz, CDCl₃) δ 7.72 (s, 4H), 7.35 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.31 (ddd, *J* = 8.5, 7.1, 1.6 Hz, 1H), 6.75 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.60 (ddd, *J* = 8.2, 7.0, 1.2 Hz, 1H), 6.21 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 197.8, 151.4, 143.6, 135.0, 134.5, 132.6 (q, *J* = 32.6 Hz), 129.3, 125.3(q, *J* = 3.8 Hz), 123.9 (q, *J* = 272.6 Hz), 117.4, 117.3, 115.8.

 ^{19}F NMR (376 MHz, CDCl₃) δ -62.84 (s).

(2-Amino-4-methylphenyl)(phenyl)methanone 1m

¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 2H), 7.53 – 7.47 (m, 1H), 7.44 (dd, *J* = 8.1, 6.5 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 1H), 6.54 (s, 1H), 6.41 (dd, *J* = 8.2, 1.6 Hz, 1H), 6.11 (s, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.8, 151.3, 145.5, 140.5, 134.9, 130.9, 129.1, 128.2, 117.2, 117.1, 116.1, 21.8.

(2-Amino-5-methylphenyl)(phenyl)methanone 1n

¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.61 (m, 2H), 7.56 – 7.49 (m, 1H), 7.46 (tt, *J* = 6.6, 1.1 Hz, 2H), 7.23 (d, *J* = 2.1 Hz, 1H), 7.12 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.67 (d, *J* = 8.3 Hz, 1H), 5.91 (s, 2H), 2.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 199.2, 148.9, 140.3, 135.5, 134.2, 131.1, 129.3, 128.2, 124.7, 118.4, 117.3, 20.4.

(2-Amino-4-(trifluoromethyl)phenyl)(phenyl)methanone 10

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.59 – 7.52 (m, 2H), 7.51 – 7.44 (m, 2H), 6.98 (d, J = 1.8 Hz, 1H), 6.81 (dd, J = 8.4, 1.8 Hz, 1H), 6.18 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 198.6, 150.6, 139.4, 135.4 (q, J = 32.4 Hz), 135.1, 131.9, 129.4, 128.4, 123.6 (q, J = 273.0 Hz), 120.2, 113.9 (q, J = 4.0 Hz), 111.7 (q, J = 3.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.87 (s).

(2-Amino-5-fluorophenyl)(phenyl)methanone 1p

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 2H), 7.58 – 7.51 (m, 1H), 7.51 – 7.43 (m, 2H), 7.14 (dd, J = 9.6, 3.0 Hz, 1H), 7.06 (ddd, J = 9.0, 7.7, 3.0 Hz, 1H), 6.69 (dd, J = 9.0, 4.5 Hz, 1H), 5.92 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 198.1 (d, J = 2.4 Hz), 153.3 (d, J = 234.8 Hz), 147.5, 139.5, 131.6, 129.2, 128.4, 122.3 (d, J = 23.5 Hz), 119.1 (d, J = 22.6 Hz), 118.3 (d, J = 7.0 Hz), 117.9 (d, J = 5.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -128.36 – -128.42 (m).

1-(2-Aminophenyl)-2-methylpropan-1-one 1r

¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.73 (m, 1H), 7.25 (td, *J* = 7.5, 1.5 Hz, 1H), 6.65 (td, *J* = 7.3, 6.9, 1.1 Hz, 2H), 6.29 (s, 2H), 3.59 (hept, *J* = 6.8 Hz, 1H), 1.20 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 207.2, 151.0, 134.2, 131.1, 117.7, 117.0, 115.8, 35.4, 19.7.

1-(2-Aminophenyl)heptan-1-one 1s

¹H NMR (600 MHz, CDCl₃) δ 7.78 – 7.72 (m, 1H), 7.28 – 7.21 (m, 1H), 6.64 (d, J = 7.7 Hz, 2H), 6.27 (s, 2H), 2.96 – 2.88 (m, 2H), 1.71 (p, J = 7.8 Hz, 2H), 1.41 – 1.27 (m, 6H), 0.89 (td, J = 7.0, 2.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 203.3, 150.5, 134.2, 131.3, 118.2, 117.5, 115.8, 39.5, 31.8, 29.3, 25.1, 22.7, 14.2.

IV. General procedure for the Synthesis of 1,2,3,4-Tetrahydroacridine

Derivatives

An oven-dried microwave reacting tube (10.0 mL) was charged with a magnetic stir-bar, $Pd(OH)_2/C$ (10 wt%, 10.0 mg, 3.5 mol% based on Pd contents, vacuum drying under reduced pressure for six hours), $HCO_2Li \cdot H_2O$ (56.0 mg, 0.8 mmol, 4 equiv.), 2-aminoarylketone (0.2 mmol) and phenol (0.6 mmol) were added. The tube was sealed with rubber plug and after three cycles of evacuation/backfilling sequence with argon, heptane (0.2 mL) was added. Replace the rubber plug with an aluminum cover having a teflon pad. The tube was stirred at 160 °C in the pre-heated oil bath for 12 h. After completion, the reaction mixture was cooled to room temperature, diluted with EtOAc and filtered through the pad of celite. The filtrate was concentrated in vacuo and the resulting residue was purified via the column chromatography.

V. Analytical Data of the 1,2,3,4-Tetrahydroacridine Derivatives

9-Phenyl-1,2,3,4-tetrahydroacridine 3aa^[5]

¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 1H), 7.59 (ddd, *J* = 8.4, 5.7, 2.5 Hz, 1H), 7.54 – 7.42 (m, 3H), 7.34 – 7.27 (m, 2H), 7.25 – 7.19 (m, 2H), 3.20 (t, *J* = 6.6 Hz, 2H), 2.60 (t, *J* = 6.5 Hz, 2H), 2.00 – 1.91 (m, 2H), 1.82 – 1.74 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.2, 146.6, 146.4, 137.2, 129.2, 128.7, 128.46, 128.45, 128.43, 127.8, 126.8, 125.9, 125.5, 34.4, 28.2, 23.1, 23.0.

9-(p-Tolyl)-1,2,3,4-tetrahydroacridine 3ba^[6]

¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.11 (d, *J* = 7.7 Hz, 2H), 3.19 (t, *J* = 6.6 Hz, 2H), 2.61 (t, *J* = 6.5 Hz, 2H), 2.45 (s, 3H), 1.99 – 1.90 (m, 2H), 1.81 – 1.73 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 159.2, 146.7, 146.5, 137.5, 134.2, 129.4, 129.2, 128.6, 128.5, 128.3, 127.0, 126.0, 125.4, 34.4, 28.2, 23.2, 23.1, 21.4.

9-(*m*-Tolyl)-1,2,3,4-tetrahydroacridine 3ca^[7]

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 1H), 7.59 (td, *J* = 6.2, 3.0 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.29 – 7.25 (m, 1H), 7.03 (d, *J* = 8.8 Hz, 2H), 3.20 (t, *J* = 6.6 Hz, 2H), 2.61 (t, *J* = 6.5 Hz, 2H), 2.43 (s, 3H), 2.01 – 1.91 (m, 2H), 1.85 – 1.74 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.2, 146.9, 146.5, 138.4, 137.2, 129.8, 128.61, 128.56, 128.5, 128.4, 126.9, 126.3, 126.0, 125.4, 34.4, 28.2, 23.2, 23.1, 21.7.

9-(o-Tolyl)-1,2,3,4-tetrahydroacridine 3da

Brown solid; m.p. 112-113 °C;

IR (KBr): 3060, 2926, 2867, 1574, 1484,1457, 1377, 1147, 1020, 917, 839, 761, 727, 419 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.41 – 7.35 (m, 2H), 7.35 – 7.35 (m, 2H), 7.18 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 3.21 (t, J = 6.6 Hz, 2H), 2.59 (dt, J = 17.3, 6.6 Hz, 1H), 2.39 (dt, J = 17.2, 6.4 Hz, 1H), 2.01 – 1.94 (m, 2H), 1.91 (s, 3H), 1.85 – 1.74 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 159.4, 146.44, 146.35, 136.7, 135.9, 130.4, 129.0, 128.62, 128.58, 128.55, 128.2, 126.5, 126.3, 125.7, 125.5, 34.4, 27.8, 23.11, 23.09, 19.7.

9-([1,1'-Biphenyl]-4-yl)-1,2,3,4-tetrahydroacridine 3ea

Brown solid; m.p. 203-204 °C;

IR (KBr): 3057, 3028, 2929, 2865, 1573, 1485, 1456, 1378, 1355, 1009, 848, 763, 734, 696 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.3 Hz, 1H), 7.77 – 7.71 (m, 2H), 7.71 – 7.66 (m, 2H), 7.60 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.43 – 7.35 (m, 2H), 7.35 – 7.27 (m, 3H), 3.21 (t, J = 6.6 Hz, 2H), 2.66 (t, J = 6.5 Hz, 2H), 2.02 – 1.92 (m, 2H), 1.85 – 1.75 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.2, 146.4, 146.3, 140.7, 136.2, 129.7, 129.0, 128.6, 128.52, 128.47, 127.6, 127.4, 127.2, 126.8, 125.9, 125.5, 34.4, 28.2, 23.1, 23.0.

HRMS (ESI): calcd. for $C_{25}H_{22}N^+$ ([M+H]⁺): 336.1747, found: 336.1758.

9-(4-Methoxyphenyl)-1,2,3,4-tetrahydroacridine 3fa

Brown solid; m.p. 174-175 °C;

IR (KBr): 2927, 2858, 2839, 1609, 1514, 1491, 1458, 1287, 1246, 1174, 1032, 842, 763, 576 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 8.1 Hz, 2H), 7.04 (d, J = 8.1 Hz, 2H), 3.88 (s, 3H), 3.19 (t, J = 6.6 Hz, 2H), 2.62 (t, J = 6.5 Hz, 2H), 1.99 – 1.91 (m, 2H), 1.81 – 1.73 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 159.2, 159.1, 146.43, 146.40, 130.4, 129.2, 128.9, 128.5, 128.4, 127.1, 125.9, 125.4, 114.1, 55.4, 34.3, 28.2, 23.2, 23.0.

HRMS (ESI): calcd. for C₂₀H₂₀NO⁺ ([M+H]⁺): 290.1539, found: 290.1546.

N,N-dimethyl-4-(1,2,3,4-tetrahydroacridin-9-yl)aniline 3ga

Brown solid; m.p. 213-214 °C;

IR (KBr): 2951, 2926, 2869, 1735, 1610, 1525, 1491, 1454, 1355, 1229, 1020, 824, 798, 764 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 8.5 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 3.18 (t, J = 6.6 Hz, 2H), 3.04 (s, 6H), 2.67 (t, J = 6.5 Hz, 2H), 1.99 – 1.92 (m, 2H), 1.81 – 1.75 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 159.2, 150.0, 147.1, 146.6, 130.2, 129.0, 128.5, 128.2, 127.5, 126.3, 125.2, 124.7, 112.3, 40.6, 34.4, 28.3, 23.3, 23.1.

HRMS (ESI): calcd. for $C_{21}H_{23}N_2^+$ ([M+H]⁺): 303.1856, found: 303.1864.

4-(4-(1,2,3,4-Tetrahydroacridin-9-yl)phenyl)morpholine 3ha

Brown solid; m.p. 222-223 °C;

IR (KBr): 2952, 2927, 2857, 1610, 1518, 1490, 1450, 1378, 1235, 1123, 928, 828, 764, 625 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.18 – 7.11 (m, 2H), 7.09 – 6.99 (m, 2H), 3.91 (t, J = 4.7 Hz, 4H), 3.27 (t, J = 4.8 Hz, 4H), 3.19 (t, J = 6.6 Hz, 2H), 2.64 (t, J = 6.5 Hz, 2H), 2.02 – 1.90 (m, 2H), 1.84 – 1.73 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 150.7, 146.6, 146.5, 130.3, 128.9, 128.5, 128.4, 128.3, 127.2, 126.1, 125.3, 115.4, 67.1, 49.1, 34.4, 28.3, 23.2, 23.1.

HRMS (ESI): calcd. for C₂₃H₂₅N₂O⁺ ([M+H]⁺): 345.1961, found: 345.1968.

9-(Naphthalen-2-yl)-1,2,3,4-tetrahydroacridine 3ia

Brown solid; m.p. 156-157 °C;

IR (KBr): 3055, 2929, 2864, 2841, 1572, 1494, 1457, 1431, 1398, 1354, 1269, 1166, 1019, 860, 812, 761, 746, 481 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.96 – 7.90 (m, 1H), 7.88 – 7.82 (m, 1H), 7.71 (s, 1H), 7.59 (ddd, J = 8.4, 6.6, 1.6 Hz, 1H), 7.54 (td, J = 6.4, 6.0, 3.3 Hz, 2H), 7.34 (dd, J = 8.4, 1.6 Hz, 2H), 7.30 – 7.24 (m, 1H), 3.23 (t, J = 6.6 Hz, 2H), 2.63 (q, J = 6.2 Hz, 2H), 2.02 – 1.90 (m, 2H), 1.82 – 1.71 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.3, 146.51, 146.50, 134.8, 133.5, 132.9, 128.8, 128.6, 128.52, 128.46,

128.24, 128.15, 128.0, 127.3, 126.9, 126.7, 126.5, 126.0, 125.6, 34.4, 28.3, 23.2, 23.1. HRMS (ESI): calcd. for $C_{23}H_{20}N^+$ ([M+H]⁺): 310.1590, found: 310.1600.

9-(6-Methoxypyridin-3-yl)-1,2,3,4-tetrahydroacridine 3ja

Brown solid; m.p. 127-128 °C;

IR (KBr): 2933, 2864, 1603, 1562, 1502, 1486, 1368, 1284, 1249, 1126, 1026, 837, 763, 603 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 8.07 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.39 – 7.31 (m, 2H), 6.92 (d, *J* = 8.4 Hz, 1H), 4.03 (s, 3H), 3.20 (t, *J* = 6.8 Hz, 2H), 2.75 – 2.55 (m, 2H), 2.01 – 1.90 (m, 2H), 1.86 – 1.75 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 163.9, 159.2, 146.9, 146.5, 142.8, 139.8, 129.4, 128.7, 128.6, 127.0, 125.8, 125.7, 125.4, 111.0, 53.7, 34.3, 28.3, 23.1, 22.9.

HRMS (ESI): calcd. for $C_{19}H_{19}N_2O^+$ ([M+H]⁺): 291.1492, found: 291.1500.

9-(4-Fluorophenyl)-1,2,3,4-tetrahydroacridine 3ka^[8]

¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.4 Hz, 1H), 7.60 (ddd, J = 8.4, 6.1, 2.1 Hz, 1H), 7.36 – 7.27 (m, 2H), 7.25 – 7.15 (m, 4H), 3.19 (t, J = 6.6 Hz, 2H), 2.59 (t, J = 6.5 Hz, 2H), 2.01 – 1.90 (m, 2H), 1.84 – 1.73 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 162.5 (d, J = 246.9 Hz), 159.2, 146.4, 145.5, 133.0 (d, J = 3.5 Hz), 130.9 (d, J = 8.0 Hz), 128.7, 128.6, 128.5, 126.8, 125.62, 125.60, 115.8 (d, J = 21.4 Hz), 34.4, 28.2, 23.1, 23.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.18 - -114.26 (m).

9-(4-(Trifluoromethyl)phenyl)-1,2,3,4-tetrahydroacridine 3la

Brown solid; m.p. 192-193 °C;

IR (KBr): 2948, 2907, 2840, 1576, 1493, 1323, 1167, 1122, 1066, 1020, 856, 763, 628 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.61 (t, J = 7.2 Hz, 1H), 7.38 (d, J = 7.9 Hz, 2H), 7.33 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 3.21 (t, J = 6.6 Hz, 2H), 2.57 (t, J = 6.5 Hz, 2H), 2.03 - 1.92 (m, 2H), 1.85 - 1.75 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.3, 146.4, 145.0, 141.2, 130.3 (q, J = 32.5 Hz), 129.8, 128.7, 128.3, 126.2, 125.9, 125.8 (q, J = 3.7 Hz), 125.4, 124.3 (q, J = 272.2 Hz), 34.3, 28.2, 23.0, 22.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.51 (s).

HRMS (ESI): calcd. for C₂₀H₁₇F₃N⁺ ([M+H]⁺): 328.1308, found: 328.1316.

6-Methyl-9-phenyl-1,2,3,4-tetrahydroacridine 3ma^[9]

¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.55 – 7.40 (m, 3H), 7.25 – 7.17 (m, 3H), 7.13 (d, *J* = 8.4 Hz, 1H), 3.18 (t, *J* = 6.6 Hz, 2H), 2.58 (t, *J* = 6.5 Hz, 2H), 2.50 (s, 3H), 2.00 – 1.89 (m, 2H), 1.82 – 1.72 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.0, 146.6, 146.4, 138.5, 137.4, 129.2, 128.6, 127.74, 127.71, 127.52, 127.51, 125.6, 124.8, 34.4, 28.1, 23.2, 23.1, 21.8.

7-Methyl-9-phenyl-1,2,3,4-tetrahydroacridine 3na^[10]

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.6 Hz, 1H), 7.55 – 7.38 (m, 4H), 7.22 (d, J = 7.0 Hz, 2H), 7.05 (s, 1H), 3.17 (t, J = 6.6 Hz, 2H), 2.57 (t, J = 6.5 Hz, 2H), 2.35 (s, 3H), 2.01 – 1.89 (m, 2H), 1.83 – 1.70 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.1, 146.0, 145.0, 137.5, 135.2, 130.7, 129.2, 128.7, 128.4, 128.2, 127.7, 126.7, 124.6, 34.3, 28.2, 23.2, 23.1, 21.8.

9-Phenyl-6-(trifluoromethyl)-1,2,3,4-tetrahydroacridine 3oa

Brown solid; m.p. 69-70 °C;

IR (KBr): 2929, 2866, 2841, 1577, 1491, 1441, 1331, 1286, 1207, 1169, 1126, 1062, 934, 904, 837, 819, 754, 702 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.58 – 7.41 (m, 5H), 7.22 (d, J = 6.6 Hz, 2H), 3.22 (t, J = 6.6 Hz, 3.24 (t

6.6 Hz, 2H), 2.64 (t, *J* = 6.5 Hz, 2H), 2.03 – 1.94 (m, 2H), 1.86 – 1.76 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 161.0, 146.6, 145.3, 136.5, 130.8, 130.2 (q, *J* = 32.4 Hz), 129.1, 128.9, 128.3, 128.2, 127.2, 126.4 (q, *J* = 4.4 Hz), 124.3 (q, *J* = 272.4 Hz), 121.0 (q, *J* = 3.1 Hz), 34.4, 28.3, 22.9, 22.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.59 (s).

HRMS (ESI): calcd. for $C_{20}H_{17}F_3N^+$ ([M+H]⁺): 328.1308, found: 328.1315.

7-Fluoro-9-phenyl-1,2,3,4-tetrahydroacridine 3pa^[10]

¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 9.2, 5.5 Hz, 1H), 7.56 – 7.44 (m, 3H), 7.36 (ddd, J = 9.2, 8.1, 2.9 Hz, 1H), 7.24 – 7.18 (m, 2H), 6.92 (dd, J = 10.2, 2.9 Hz, 1H), 3.18 (t, J = 6.6 Hz, 2H), 2.60 (t, J = 6.5 Hz, 2H), 2.01 – 1.91 (m, 2H), 1.83 – 1.73 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 160.0 (d, *J* = 245.5 Hz), 158.5 (d, *J* = 2.6 Hz), 146.1 (d, *J* = 5.6 Hz), 143.5, 136.8, 130.9 (d, *J* = 9.2 Hz), 129.3, 129.1, 128.9, 128.1, 127.5 (d, *J* = 9.3 Hz), 118.6 (d, *J* = 25.9 Hz), 109.1 (d, *J* = 22.8 Hz), 34.2, 28.2, 23.0, 23.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.44 - -114.51 (m).

9-Methyl-1,2,3,4-tetrahydroacridine 3qa^[5]

¹H NMR (600 MHz, CDCl₃) δ 7.96 (t, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 3.11 (t, *J* = 5.7 Hz, 3H), 2.88 (t, *J* = 5.6 Hz, 3H), 2.53 (s, 3H), 1.97 – 1.88 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 158.7, 146.0, 141.3, 129.1, 128.8, 128.2, 127.0, 125.3, 123.4, 34.6, 27.2, 23.3, 22.9, 13.6.

9-Isopropyl-1,2,3,4-tetrahydroacridine 3ra

Brown oil;

IR (KBr): 2931, 2869, 1566, 1495, 1455, 1401, 928, 759 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.6 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 3.78 (s, 1H), 3.13 (t, J = 6.3 Hz, 2H), 2.97 (t, J = 6.0 Hz, 2H), 1.99 – 1.84 (m, 4H), 1.53 (d, J = 7.3 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 159.0, 150.3, 147.1, 129.7, 127.7, 125.7, 125.1, 124.4, 34.8, 28.3, 27.3, 23.5, 22.6, 21.6.

HRMS (ESI): calcd. for $C_{16}H_{20}N^+$ ([M+H]⁺): 226.1590, found: 226.1591.

9-Hexyl-1,2,3,4-tetrahydroacridine 3sa^[11]

¹H NMR (600 MHz, CDCl₃) δ 7.95 (dd, J = 19.2, 8.4 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 3.12 (t, J = 6.2 Hz, 2H), 2.99 (t, J = 8.2 Hz, 2H), 2.92 (t, J = 6.2 Hz, 2H), 1.99 – 1.86 (m, 4H), 1.63 – 1.54 (m, 2H), 1.54 – 1.45 (m, 2H), 1.41 – 1.29 (m, 4H), 0.91 (t, J = 6.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.0, 146.6, 145.8, 129.3, 128.13, 128.10, 126.4, 125.4, 123.4, 34.7,

31.8, 30.1, 29.8, 27.8, 26.5, 23.4, 23.0, 22.8, 14.2.

1,2,3,4-Tetrahydroacridin-9-amine 3ta^[12]

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.60 – 7.52 (m, 1H), 7.36 (t, J = 7.6 Hz, 1H), 4.96 (s, 2H), 3.02 (t, J = 6.0 Hz, 2H), 2.58 (t, J = 6.0 Hz, 2H), 1.98 – 1.86 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 158.0, 147.4, 145.6, 129.0, 127.9, 124.2, 120.1, 117.0, 110.4, 33.5, 23.7, 22.8 (2C).

2-Methyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bb

Brown solid; m.p. 131-132 °C;

IR (KBr): 3060, 2951, 2925, 2868, 1576, 1492, 1455, 1376, 1356, 1022, 814, 762 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 1H), 7.59 (ddd, J = 8.3, 6.5, 1.8 Hz, 1H), 7.38 – 7.27 (m, 4H), 7.12 (ddd, J = 8.4, 6.6, 2.2 Hz, 2H), 3.35 – 3.24 (m, 1H), 3.24 – 3.10 (m, 1H), 2.68 (ddd, J = 17.0, 4.8, 2.0 Hz, 1H), 2.47 (s, 3H), 2.29 – 2.18 (m, 1H), 2.09 – 1.99 (m, 1H), 1.94 – 1.81 (m, 1H), 1.64 – 1.50 (m, 1H), 1.01 (d, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.9, 146.7, 146.4, 137.5, 134.1, 129.5, 129.4, 129.2, 129.1, 128.44, 128.42, 128.2, 126.9, 126.0, 125.4, 36.6, 34.0, 31.3, 29.4, 22.0, 21.5.

HRMS (ESI): calcd. for $C_{21}H_{22}N^+$ ([M+H]⁺): 288.1747, found: 288.1749.

2-Ethyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bc

Brown solid; m.p. 87-88 °C;

IR (KBr): 3060, 2957, 2925, 2872, 1575, 1492, 1457, 1378, 1356, 1215, 1021, 762 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.36 – 7.27 (m, 4H), 7.11 (t, J = 8.2 Hz, 2H), 3.33 – 3.25 (m, 1H), 3.20 – 3.10 (m, 1H), 2.70 (ddd, J = 17.0, 4.9, 1.9 Hz, 1H), 2.46 (s, 3H), 2.26 (dd, J = 16.9, 10.5 Hz, 1H), 2.16 – 2.08 (m, 1H), 1.69 – 1.60 (m, 1H), 1.59 – 1.49 (m, 1H), 1.40 – 1.27 (m, 2H), 0.89 (t, J = 7.5 Hz, 3H).

 ^{13}C NMR (151 MHz, CDCl₃) δ 159.2, 146.8, 146.5, 137.5, 134.1, 129.42, 129.35, 129.2, 129.1, 128.5, 128.4, 128.2, 127.0, 126.0, 125.3, 36.0, 34.5, 33.9, 28.9, 28.5, 21.5, 11.6.

HRMS (ESI): calcd. for C₂₂H₂₄N⁺ ([M+H]⁺): 302.1903, found: 302.1906.

2-Isopropyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bd

Brown solid; m.p. 94-95 °C; IR (KBr): 3059, 2955, 2927, 2869, 1573, 1492, 1459, 1380, 1020, 762 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, J = 8.5 Hz, 1H), 7.58 (t, J = 7.0 Hz, 1H), 7.36 – 7.27 (m, 4H), 7.11 (d, J = 7.7 Hz, 2H), 3.35 – 3.26 (m, 1H), 3.19 – 3.08 (m, 1H), 2.68 – 2.60 (m, 1H), 2.47 (s, 3H), 2.40 – 2.32 (m, 1H), 2.12 – 2.04 (m, 1H), 1.65 – 1.49 (m, 3H), 0.87 (dd, J = 18.2, 6.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 159.4, 146.9, 146.5, 137.5, 134.2, 129.5, 129.4, 129.2, 129.1, 128.57, 128.55, 128.4, 127.0, 126.0, 125.4, 40.8, 34.3, 32.0, 25.9, 21.5, 20.2, 19.5. HRMS (ESI): calcd. for C₂₃H₂₆N⁺ ([M+H]⁺): 316.2060, found: 316.2062.

2-Benzyl-9-(*p***-tolyl)-1,2,3,4-tetrahydroacridine 3be** White solid; m.p. 110-111 °C; IR (KBr): 3059, 3025, 2925, 1574, 1492, 1453, 1357, 1021, 763, 700 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.9 Hz, 1H), 7.59 (ddd, J = 8.3, 6.6, 1.7 Hz, 1H), 7.38 – 7.30 (m, 4H), 7.29 – 7.23 (m, 3H), 7.21 – 7.16 (m, 1H), 7.14 – 7.08 (m, 4H), 3.34 – 3.22 (m, 1H), 3.14 – 3.02 (m, 1H), 2.80 – 2.68 (m, 2H), 2.51 – 2.35 (m, 5H), 2.10 – 1.98 (m, 2H), 1.63 – 1.50 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 146.9, 146.5, 140.5, 137.6, 134.0, 129.42, 129.39, 129.3, 129.2, 129.1, 128.51, 128.48, 128.4, 127.8, 126.9, 126.07, 126.06, 125.5, 42.4, 36.3, 34.9, 33.6, 28.0, 21.5. HRMS (ESI): calcd. for C₂₇H₂₆N⁺ ([M+H]⁺): 364.2060, found: 364.2065.

2-Phenyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bf

White solid; m.p. 173-174 °C;

IR (KBr): 3059, 3027, 2952, 2927, 1574, 1492, 1454, 1377, 1021, 762, 699 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 1H), 7.62 (ddd, J = 8.4, 6.4, 1.9 Hz, 1H), 7.38 – 7.24 (m, 6H), 7.24 – 7.17 (m, 3H), 7.10 (t, J = 8.4 Hz, 2H), 3.46 – 3.26 (m, 2H), 3.07 – 2.96 (m, 1H), 2.95 – 2.86 (m, 1H), 2.81 – 2.70 (m, 1H), 2.42 (s, 3H), 2.33 – 2.24 (m, 1H), 2.22 – 2.08 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 147.1, 146.6, 146.1, 137.6, 133.8, 129.6, 129.5, 129.1, 128.9, 128.7, 128.6, 128.5, 128.0, 127.03, 126.96, 126.5, 126.1, 125.6, 41.0, 36.3, 34.5, 30.3, 21.4. HRMS (ESI): calcd. for C₂₆H₂₄N⁺ ([M+H]⁺): 350.1903, found: 350.1906.

2-Methoxy-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bg

Brown solid; m.p. 101-102 °C;

IR (KBr): 3059, 3026, 2926, 2823, 1577, 1492, 1457, 1355, 1188, 1097, 763 cm⁻¹.

¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.5 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.34 – 7.28 (m, 3H), 7.12 (dd, *J* = 23.3, 7.0 Hz, 2H), 3.73 – 3.66 (m, 1H), 3.39 – 3.30 (m, 4H), 3.20 – 3.12 (m, 1H), 2.89 – 2.82 (m, 1H), 2.75 – 2.68 (m, 1H), 2.46 (s, 3H), 2.24 – 2.16 (m, 1H), 2.11 – 2.01 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 158.1, 147.6, 146.6, 137.7, 133.8, 129.6, 129.4, 129.2, 129.0, 128.64, 128.55, 126.9, 126.0, 125.9, 125.5, 75.1, 56.0, 33.7, 30.9, 27.2, 21.4.

HRMS (ESI): calcd. for C₂₁H₂₂NO⁺ ([M+H]⁺): 304.1696, found: 304.1697.

3-Methyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bh'

Brown solid; m.p. 125-126 °C; IR (KBr): 3059, 2949, 2925, 2868, 1575, 1492, 1454, 1354, 1022, 813, 762 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 1H), 7.59 (ddd, J = 8.4, 6.5, 1.7 Hz, 1H), 7.38 – 7.27 (m, 4H), 7.16 – 7.07 (m, 2H), 3.35 – 3.24 (m, 1H), 2.84 – 2.72 (m, 1H), 2.72 – 2.54 (m, 2H), 2.46 (s, 3H), 2.11 – 1.96 (m, 1H), 1.93 – 1.82 (m, 1H), 1.45 – 1.32 (m, 1H), 1.13 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 146.6, 146.5, 137.5, 134.2, 129.43, 129.39, 129.2, 129.0, 128.5, 128.4, 128.0, 126.9, 126.0, 125.4, 43.0, 31.3, 29.3, 27.8, 22.0, 21.5. HRMS (ESI): calcd. for C₂₁H₂₂N⁺ ([M+H]⁺): 288.1747, found: 288.1748.

1-Methyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bh"

Brown solid; m.p. 99-100 °C;

IR (KBr): 3060, 2928, 2869, 1573, 1491, 1456, 1396, 1355, 1021, 821, 762 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 1H), 7.59 (ddd, J = 8.4, 5.3, 3.0 Hz, 1H), 7.37 – 7.27 (m, 4H), 7.23 – 7.18 (m, 1H), 7.15 – 7.10 (m, 1H), 3.36 – 3.24 (m, 1H), 3.23 – 3.04 (m, 2H), 2.48 (s, 3H), 2.19 – 2.04 (m, 1H), 1.99 – 1.83 (m, 2H), 1.78 – 1.67 (m, 1H), 0.98 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 146.6, 146.4, 137.5, 133.89, 133.85, 130.3, 129.4, 129.1, 128.9, 128.5, 128.4, 127.3, 126.2, 125.3, 33.8, 29.9, 29.8, 21.9, 21.5, 17.9. HRMS (ESI): calcd. for C₂₁H₂₂N⁺ ([M+H]⁺): 288.1747, found: 288.1748.

3-Ethyl-9-(*p***-tolyl)-1,2,3,4-tetrahydroacridine 3bi'** Brown solid; m.p. 100-101 °C; IR (KBr): 2957, 2925, 2871, 1736, 1575, 1492, 1458, 1378, 1355, 1021, 806, 762 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.5 Hz, 1H), 7.58 (t, J = 7.2 Hz, 1H), 7.38 – 7.27 (m, 4H), 7.12 (t, J = 5.9 Hz, 2H), 3.36 (dd, J = 17.3, 3.2 Hz, 1H), 2.77 (dd, J = 17.3, 10.9 Hz, 1H), 2.72 – 2.54 (m, 2H), 2.46 (s, 3H), 1.98 – 1.74 (m, 2H), 1.54 – 1.31 (m, 3H), 1.01 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 146.53, 146.51, 137.5, 134.2, 129.41, 129.37, 129.2, 129.0, 128.5,

128.4, 128.3, 126.9, 126.0, 125.4, 40.8, 36.0, 29.3, 29.2, 27.7, 21.5, 11.6.

HRMS (ESI): calcd. for $C_{22}H_{24}N^+$ ([M+H]⁺): 302.1903, found: 302.1904.

1-Ethyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bi"

Brown solid; m.p. 123-124 °C;

IR (KBr): 2955, 2926, 2869, 1737, 1572, 1491, 1458, 1377, 1020, 762 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 1H), 7.59 (ddd, J = 8.4, 5.6, 2.7 Hz, 1H), 7.36 – 7.28 (m, 4H), 7.20 (d, J = 7.3 Hz, 1H), 7.10 (d, J = 7.2 Hz, 1H), 3.34 – 3.22 (m, 1H), 3.18 – 3.04 (m, 1H), 2.92 – 2.83 (m, 1H), 2.47 (s, 3H), 2.12 – 1.98 (m, 1H), 1.98 – 1.85 (m, 2H), 1.77 – 1.67 (m, 1H), 1.48 – 1.29 (m, 2H), 0.62 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.0, 146.6, 146.4, 137.4, 134.0, 133.8, 130.2, 129.4, 129.2, 128.9, 128.44, 128.37, 127.4, 126.3, 125.3, 36.5, 33.6, 27.8, 24.6, 21.5, 17.8, 12.2.

HRMS (ESI): calcd. for $C_{22}H_{24}N^+$ ([M+H]⁺): 302.1903, found: 302.1904.

VI. References

[1] S. Luo, Z. W. Hu and Q. Zhu, Org. Chem. Front. 2016, 3, 364-367.

[2] R. Ruzi, J. Y. Ma, X. A. Yuan, W. L. Wang, S. S. Wang, M. L. Zhang, J. Dai, J. Xie, C. J. Zhu, *Chem. Eur. J.* **2019**, *25*, 12724-12729.

[3] J. X. Chen, L. P. Ye and W. K. Su, Org. Biomol. Chem. 2014, 12, 8204-8211.

[4] T. Kniess, M. Laube, R. Bergmann, F. Sehn, F. Graf, J. Steinbach, F. Wuest, J. Pietzsch, *Bioorg. Med. Chem.* 2012, *20*, 3410-3421.

[5] Y. Gao, J. H. Nie, Y. B. Li, X. W. Li, Q. Chen, Y. P. Huo, and X. Q. Hu, *Org. Lett.* **2020**, *22*, 2600-2605.

[6] Z. H. Li, L. M. Xu, W. K. Su, J. Chem. Res. 2011, 35, 240-242.

[7] Y. Wang, C. Chen, S. Zhang, Z. B. Lou, X. Su, L. R. Wen, and M. Li, Org. Lett. 2013, 15, 4794-4797.

[8] C. S. Jia, Z. Zhang, S. J. Tu, G. W. Wang, Org. Biomol. Chem. 2006, 4, 104-110.

[9] E. Q. Ma, P. Wang, P. H. Li, L. P. Mo, Res. Chem. Intermed. 2015, 41, 6433-6441.

[10] J. J. Chen, C. Chen, J. Chen, H. P. Gao, H. M. Qu, Synlett 2014, 25, 2721-2726.

[11] K. Okuma, S. Ozaki, J. I. Seto, N. Nagahora, K. Shioji, Heterocycles 2010, 81, 935-942.

[12] M. Maspero, D. Volpato, D. Cirillo, et al. Bioorgan. Chem. 2020, 96, 103633.

VII. Copies of ¹H, ¹³C and ¹⁹F NMR Spectra

¹H and ¹³C NMR spectra of compound (2-aminophenyl)(*p*-tolyl)methanone 1b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H and ¹³C NMR spectra of compound (2-aminophenyl)(*m*-tolyl)methanone 1c

¹H and ¹³C NMR spectra of compound [1,1'-biphenyl]-4-yl(2-aminophenyl)methanone 1e

f1 (ppm)

¹H and ¹³C NMR spectra of compound (2-aminophenyl)(4-methoxyphenyl)methanone 1f

0 100 f1 (ppm) 170 160 150 140 130

¹H and ¹³C NMR spectra of compound (2-aminophenyl)(4-methoxyphenyl)methanone 1g

28

¹H and ¹³C NMR spectra of compound (2-aminophenyl)(4-morpholinophenyl)methanone 1h

 $\begin{array}{c} 7.2 \\$

¹H and ¹³C NMR spectra of compound (2-aminophenyl)(naphthalen-2-yl)methanone 1i

$\begin{array}{c} & 2 \\ & 2$

¹H and ¹³C NMR spectra of compound (2-aminophenyl)(6-methoxypyridin-3-yl)methanone 1j

8.8.50 8.8.50 8.8.49 8.8.49 8.8.49 8.8.49 8.8.50 7.7.7.7.7.29 7.7.7.7.7.7.20 7.7.47 7.7.7.7.7.20 7.7.21 7.7.22 7.7.721 7.7.22 7.7.721 7.7.22 7.7.721 7.7.22 7.7.721 7.7.22 7.7.721 7.7.22 7.7.721 7.7.22 7.7.721 7.7.22 7.7

¹H, ¹³C and ¹⁹F NMR spectra of compound (2-aminophenyl)(4-(trifluoromethyl)phenyl)methanone 11

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

¹H and ¹³C NMR spectra of compound (2-amino-4-methylphenyl)(phenyl)methanone 1m

¹H and ¹³C NMR spectra of compound (2-amino-5-methylphenyl)(phenyl)methanone 1n

¹H, ¹³C and ¹⁹F NMR spectra of compound (2-amino-4-(trifluoromethyl)phenyl)(phenyl)methanone 10

Io o -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)
¹H, ¹³C and ¹⁹F NMR spectra of compound (2-amino-5-fluorophenyl)(phenyl)methanone 1p

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 1-(2-aminophenyl)-2-methylpropan-1-one 1r

3.64 3.59 3.55 3.55 3.55 3.55 1.21
 1.20
 1.20

¹H and ¹³C NMR spectra of compound 1-(2-aminophenyl)heptan-1-one 1s

¹H and ¹³C NMR spectra of compound **9-phenyl-1,2,3,4-tetrahydroacridine 3aa**

¹H and ¹³C NMR spectra of compound 9-(*p*-tolyl)-1,2,3,4-tetrahydroacridine 3ba

¹H and ¹³C NMR spectra of compound 9-(*m*-tolyl)-1,2,3,4-tetrahydroacridine 3ca

¹H and ¹³C NMR spectra of compound 9-(o-tolyl)-1,2,3,4-tetrahydroacridine 3da

¹H and ¹³C NMR spectra of compound 9-([1,1'-biphenyl]-4-yl)-1,2,3,4-tetrahydroacridine 3ea

805

¹H and ¹³C NMR spectra of compound 9-(4-methoxyphenyl)-1,2,3,4-tetrahydroacridine 3fa

¹H and ¹³C NMR spectra of compound N,N-dimethyl-4-(1,2,3,4-tetrahydroacridin-9-yl)aniline 3ga

¹H and ¹³C NMR spectra of compound 4-(4-(1,2,3,4-tetrahydroacridin-9-yl)phenyl)morpholine 3ha

¹H and ¹³C NMR spectra of compound 9-(naphthalen-2-yl)-1,2,3,4-tetrahydroacridine 3ia

8.06 7.39 8.06 7.39 8.06 7.39 8.07 7.39 8.06 7.39 8.07 7.39 8.06 7.35 7.45 <li

¹H and ¹³C NMR spectra of compound 9-(6-methoxypyridin-3-yl)-1,2,3,4-tetrahydroacridine 3ja

¹H, ¹³C and ¹⁹F NMR spectra of compound **9-(4-fluorophenyl)-1,2,3,4-tetrahydroacridine 3ka**

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H, ¹³C and ¹⁹F NMR spectra of compound **9-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroacridine 3**la

¹H and ¹³C NMR spectra of compound 6-methyl-9-phenyl-1,2,3,4-tetrahydroacridine 3ma

¹H and ¹³C NMR spectra of compound 7-methyl-9-phenyl-1,2,3,4-tetrahydroacridine 3na

¹H, ¹³C and ¹⁹F NMR spectra of compound **9-phenyl-6-(trifluoromethyl)-1,2,3,4-tetrahydroacridine 30a**

-5 -15 -25 -35 -45 -55 -65 -75 -85 -95 -105 -115 -125 -135 -1 f1 (ppm)

¹H, ¹³C and ¹⁹F NMR spectra of compound 7-fluoro-9-phenyl-1,2,3,4-tetrahydroacridine 3pa

8 8 8 8 9 8 9

¹H and ¹³C NMR spectra of compound **9-methyl-1,2,3,4-tetrahydroacridine 3qa**

¹H and ¹³C NMR spectra of compound **9-isopropyl-1,2,3,4-tetrahydroacridine 3ra**

¹H and ¹³C NMR spectra of compound **9-hexyl-1,2,3,4-tetrahydroacridine 3sa**

¹H and ¹³C NMR spectra of compound **1,2,3,4-tetrahydroacridin-9-amine 3ta**

¹H and ¹³C NMR spectra of compound 2-methyl-9-(*p*-tolyl)-1,2,3,4-tetrahydroacridine 3bb

¹H and ¹³C NMR spectra of compound 2-ethyl-9-(*p*-tolyl)-1,2,3,4-tetrahydroacridine 3bc

¹H and ¹³C NMR spectra of compound **2-isopropyl-9-(***p***-tolyl)-1,2,3,4-tetrahydroacridine 3bd**

¹H and ¹³C NMR spectra of compound **2-benzyl-9-(***p***-tolyl)-1,2,3,4-tetrahydroacridine 3be**

¹H and ¹³C NMR spectra of compound **2-phenyl-9-(***p***-tolyl)-1,2,3,4-tetrahydroacridine 3bf**

¹H and ¹³C NMR spectra of compound **2-methoxy-9-**(*p*-tolyl)-1,2,3,4-tetrahydroacridine 3bg

8.802 7.60 7.60 7.7.557

¹H and ¹³C NMR spectra of compound **3-methyl-9-**(*p*-tolyl)-1,2,3,4-tetrahydroacridine **3bh**'

¹H and ¹³C NMR spectra of compound 1-methyl-9-(*p*-tolyl)-1,2,3,4-tetrahydroacridine 3bh"

¹H and ¹³C NMR spectra of compound **3-ethyl-9-(***p***-tolyl)-1,2,3,4-tetrahydroacridine 3bi**'

¹H and ¹³C NMR spectra of compound 1-ethyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bi"

IIII	

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(f1 (ppm)