Supporting Information

Palladium-catalyzed conversion of phenols into tetrahydroacridines

Jianjin Yu, Renqin Zhan, Chao-Jun Li and Huiying Zeng*

List of Contents

I. General Information S2
II. Optimization of the Reaction Conditions S2
III. General Procedures for Preparation and the Analytical Data of the
2-Aminoarylketones S5
IV. General procedure for the Synthesis of 1,2,3,4-TetrahydroacridineDerivativesS11
V. Analytical Data. S11
VI. References S23
VII. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra S24

I. General Information

All reagents were purchased from commercial sources and used without further purification unless otherwise stated. All reactions were monitored by thin-layer chromatography (TLC). All reactions were carried out in argon atmosphere unless otherwise stated. Column chromatography was performed on silica gel (200-300 mesh) and visualized with ultraviolet light. Ethyl acetate and petroleum ether were used as eluents (unless otherwise stated). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on 400 MHz and 600 MHz NMR spectrometers in CDCl_{3} (unless otherwise stated) at room temperature. The chemical shifts are referenced to internal TMS. HRMS analyses were made by Lanzhou University by means of ESI. Melting points were measured on micro melting point apparatus and uncorrected. All solvents were purified and dried by standard techniques.

II. Optimization of the Reaction Conditions

1) Optimizing the type and the amount of catalysts ${ }^{\text {a }}$

 1a, 0.2 mmol			
Entry	Catalyst	3aa $/ \%^{\text {b }}$	$1 \mathrm{a}_{\mathrm{red}} / \%^{\text {b }}$
1	$10 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}$	15	50
2	$5 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$	4	67
3	$10 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$	38	26
4	$20 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$	29	30
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	trace	19
6	PdCl_{2}	n.p.	n.p.
7	$3.5 \mathrm{~mol} \% 10 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}$	12	49
8	$10 \mathrm{~mol} \% 10 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}$	3	65
9	$1.75 \mathrm{~mol} \% 10 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$	24	30
10	$3.5 \mathrm{~mol} \% 10 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$	42	13
11	$10 \mathrm{~mol} \% 10 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$	25	28

[^0]2) Screening the type of solvents ${ }^{\text {a }}$

 1a, 0.2 mmol			
Entry ${ }^{\text {a }}$	Solvent	3aa $/ \%^{\text {b }}$	$1 \mathrm{a}_{\text {red }} / \%^{\text {b }}$
1	toluene	42	20
2	1,4-dioxane	6	
3	t - BuOH	2	50
4	DMSO	n.p.	
5	heptane	43	22
6	cyclohexane	42	20
7	$\mathrm{H}_{2} \mathrm{O}$	trace	79
8	m-xylene	34	20
9	p-xylene	2	27

[a] General conditions: 1a (0.2 mmol), $\mathbf{2 a}(0.4 \mathrm{mmol}), 10 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(3.5 \mathrm{~mol} \%), \mathrm{HCO}_{2} \mathrm{H}(2$ equiv.) in solvent (1 mL) were stirred at $160{ }^{\circ} \mathrm{C}$ in the pre-heated oil bath for 12 h under Ar atmosphere. $1 \mathbf{a}_{\text {red }}$ represented that the carbonyl group of $\mathbf{1 a}$ was reduced to methylene. [b] Yields were determined by ${ }^{1} \mathrm{H}$ NMR with dibromomethane as internal standard.
3) Screening the type of hydrogen sources ${ }^{a}$

[a] General conditions: 1a $(0.2 \mathrm{mmol})$, 2a $(0.4 \mathrm{mmol}), 10 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(3.5 \mathrm{~mol} \%)$, H source in heptane $(1 \mathrm{~mL})$ were stirred at $160{ }^{\circ} \mathrm{C}$ in the pre-heated oil bath for 12 h under Ar atmosphere. $\mathbf{1} \mathbf{a}_{\text {red }}$ represented that the carbonyl group of $\mathbf{1 a}$ was reduced to methylene. [b] Yields were determined by ${ }^{1} \mathrm{H}$ NMR with dibromomethane as internal standard.
4) Screening the amount of $\mathrm{HCO}_{2} \mathrm{Li} \cdot \mathrm{H}_{2} \mathrm{O}^{\mathrm{a}}$

[a] General conditions: $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{2 a}(0.4 \mathrm{mmol}), 10 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(3.5 \mathrm{~mol} \%), \mathrm{HCO}_{2} \mathrm{Li} \cdot \mathrm{H}_{2} \mathrm{O}$ (x equiv.) in heptane $(1 \mathrm{~mL})$ were stirred at $160{ }^{\circ} \mathrm{C}$ in the pre-heated oil bath for 12 h under Ar atmosphere. $\mathbf{1 a}_{\mathrm{red}}$ represented that the carbonyl group of $\mathbf{1 a}$ was reduced to methylene. [b] Yields were determined by ${ }^{1} \mathrm{H}$ NMR with dibromomethane as internal standard.
5) Screening the amount of heptane ${ }^{a}$

[a] General conditions: 1a (0.2 mmol), 2a (0.4 mmol), $10 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(3.5 \mathrm{~mol} \%), \mathrm{HCO}_{2} \mathrm{Li} \cdot \mathrm{H}_{2} \mathrm{O}(4$ equiv.) in heptane (x mL) were stirred at $160^{\circ} \mathrm{C}$ in the pre-heated oil bath for 12 h under Ar atmosphere. $\mathbf{1 a} \mathrm{a}_{\mathrm{red}}$ represented that the carbonyl group of $\mathbf{1 a}$ was reduced to methylene. [b] Yields were determined by ${ }^{1} \mathrm{H}$ NMR with dibromomethane as internal standard.
6) Screening the amount of $\mathbf{2} \mathbf{a}^{a}$

1	0.3	68	12
2	0.4	79	12
3	0.5	83	6
$\mathbf{4}$	$\mathbf{0 . 6}$	$\mathbf{9 3}$	$\mathbf{4}$

[a] General conditions: 1a (0.2 mmol), 2a(x mmol), $10 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(3.5 \mathrm{~mol} \%), \mathrm{HCO}_{2} \mathrm{Li} \cdot \mathrm{H}_{2} \mathrm{O}$ (4 equiv.) in heptane (0.2 mL) were stirred at $160^{\circ} \mathrm{C}$ in the pre-heated oil bath for 12 h under Ar atmosphere. $\mathbf{1 a}_{\mathrm{red}}$ represented that the carbonyl group of $\mathbf{1 a}$ was reduced to methylene. [b] Yields were determined by ${ }^{1} \mathrm{H}$ NMR with dibromomethane as internal standard.
7) Changing the condition ${ }^{\text {a }}$

[a] General conditions: $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{2 a}(0.6 \mathrm{mmol}), 10 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(3.5 \mathrm{~mol} \%), \mathrm{HCO}_{2} \mathrm{Li} \cdot \mathrm{H}_{2} \mathrm{O}$ (4 equiv.) in heptane $(0.2 \mathrm{~mL})$ were stirred at $160^{\circ} \mathrm{C}$ in the pre-heated oil bath for 12 h under Ar atmosphere. $\mathbf{1 a}_{\text {red }}$ represented that the carbonyl group of $\mathbf{1 a}$ was reduced to methylene. [b] Yields were determined by ${ }^{1} \mathrm{H}$ NMR with dibromomethane as internal standard.

III. General Procedures for Preparation and the Analytical Data of the

2-Aminoarylketones

Method A:

Step 1: To a stirred solution of 2-aminobenzoic acid $\mathbf{S} 1(10.0 \mathrm{mmol})$ in anhydrous THF (40 mL) was added 1,1 '-carbonyldiimidazole $\mathrm{CDI}(10.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under argon atmosphere. The reaction mixture was allowed to warm to room temperature and stirred for 2 h , then a suspension of $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine hydrochloride $(10.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(10.0 \mathrm{mmol})$ in $\mathrm{THF}(10 \mathrm{~mL})$ was added,
and the reaction mixture was stirred overnight. When the reaction was completed as determined by TLC, the volatile solvent was removed under reduced pressure. The residue was poured into water (100 mL). The pH was adjusted to neutral with $5 \% \mathrm{NaOH}$ solution. The mixture was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography to yield Weinreb amide $\mathbf{S 2}$.

Step 2: Weinreb amide $\mathbf{S 2}(5.0 \mathrm{mmol})$ and the corresponding aryl bromide (5.0 mmol) were dissolved in anhydrous THF (30 mL). This solution was cooled to $-78{ }^{\circ} \mathrm{C}$, remain at that temperature with stirring and n-butyl lithium hexane solution $(1.6 \mathrm{~N}, 10.0 \mathrm{mmol})$ was added dropwise over 1 h . After the dropwise addition, the $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was added. The mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography to yield the desired $2-$ aminoaryl ketones 1.
$1 \mathbf{n}^{[1]}$ were synthesized according to method \mathbf{A}.

Method B:

Step 1: To a solution of N,O-dimethylhydroxylamine hydrochloride ($21.0 \mathrm{mmol}, 1.5$ equiv.) in EtOH (10 mL) was added NEt_{3} ($21.0 \mathrm{mmol}, 1.5$ equiv.) and after stirred at rt for $10 \mathrm{~min}, \mathbf{S 3}(14.0 \mathrm{mmol})$ was added in portions. The reaction system was then heated and refluxed for 1.5 h and poured onto an equal volume of ice and saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$. To remove ethanol by rotary evaporation, and the resulting aqueous mixture was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography to yield Weinreb amide S2.
Step 2: The method was the same as the Step 2 of method A to yield the desired 2-aminoaryl ketones 1.
$\mathbf{1}{ }^{[1]}, \mathbf{1 h}, \mathbf{1} \mathbf{j}, \mathbf{1 I}^{[2]}$ were synthesized according to method B.

Method C:

Grignard reagents (4 equiv.) were added slowly to a solution of the 2-cyanoaniline $\mathbf{S 4}(7.0 \mathrm{mmol})$ in anhydrous THF $(20 \mathrm{~mL})$ at $-80^{\circ} \mathrm{C}$. After 12 hours of stirring at room temperature, the reaction mixture
was poured onto ice, then added $4 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ and stirred for 30 min . The mixture finally was added $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution to $\mathrm{pH}>10$, and then extracted with ether $(3 \times 20 \mathrm{~mL})$. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel.
$\mathbf{1 b}^{[1]}, \mathbf{1} \mathbf{e}^{[3]}, \mathbf{1}^{[1]}, \mathbf{1} \mathbf{r}^{[1]}, \mathbf{1} \mathbf{g}^{[4]}, \mathbf{1 m}{ }^{[1]}, \mathbf{1 0}, \mathbf{1}{ }^{[1]}, \mathbf{1 r}, \mathbf{1 s}$ were synthesized according to method \mathbf{C}.

(2-Aminophenyl)(p-tolyl)methanone 1b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}$, $3 \mathrm{H}), 6.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 199.0,150.8,141.8,137.4,134.5,134.1,129.6,128.9,118.7,117.1$, 115.6, 21.7.

(2-Aminophenyl)(m-tolyl)methanone 1c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.22$ $(\mathrm{m}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{ddd}, J=8.1,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 199.4, 151.0, 140.2, 138.0, 134.7, 134.3, 131.9, 129.7, 128.0, 126.4, 118.4, 117.1, 115.6, 21.5

[1,1'-Biphenyl]-4-yl(2-aminophenyl)methanone 1e

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.60(\mathrm{~m}, 6 \mathrm{H}), 7.52(\mathrm{dt}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.43-7.36$ (m, 1H), 7.30 (ddd, $J=8.6,7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (dd, $J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (ddd, $J=$ $8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 198.8$, 151.0, 144.1, 140.3, 138.9, 134.6, 134.3, 130.0, 129.1, 128.1, 127.4, 126.9, 118.5, 117.2, 115.7

(2-Aminophenyl)(4-methoxyphenyl)methanone 1f
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.9,162.5,150.5,134.1,133.8,132.5,131.9,119.1,117.1,115.7$, 113.5, 55.6.

(2-Aminophenyl)(4-methoxyphenyl)methanone 1 g
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H})$, $6.76-6.59(\mathrm{~m}, 4 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.2,153.0,149.7,133.5,132.9,132.4,126.8,120.5,117.0,115.8,110.7$, 40.2.

(2-Aminophenyl)(4-morpholinophenyl)methanone 1 h

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 1 \mathrm{H})$, $6.94-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{ddd}, J=8.1,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 2 \mathrm{H})$, $3.94-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.36-3.23(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.5,153.6,150.2,133.8,133.4,131.9,130.2,119.6,117.0,115.7$, 113.5, 66.8, 48.0.

(2-Aminophenyl)(naphthalen-2-yl)methanone 1i
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{q}, J=7.5,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.77(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55(\mathrm{dq}, J=24.6,8.4,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08$ ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 199.0,151.1,137.5,134.8,134.7,134.3,132.5,130.2,129.2,128.1$, 127.9, 127.8, 126.8, 125.9, 118.7, 117.2, 115.8.

(2-Aminophenyl)(6-methoxypyridin-3-yl)methanone $\mathbf{1 j}$
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{dd}, J=2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J$ $=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=8.4,7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.3$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (ddd, $J=8.1,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.1,165.9,150.8,149.5,139.8,134.4,133.9,129.2,118.4,117.2,115.9$, 110.7, 54.0.

(2-Aminophenyl)(4-(trifluoromethyl)phenyl)methanone 11
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~s}, 4 \mathrm{H}), 7.35(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (ddd, $J=8.5,7.1,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{ddd}, J=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,151.4,143.6,135.0,134.5,132.6(\mathrm{q}, J=32.6 \mathrm{~Hz}), 129.3,125.3(\mathrm{q}$, $J=3.8 \mathrm{~Hz}), 123.9(\mathrm{q}, J=272.6 \mathrm{~Hz}), 117.4,117.3,115.8$.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.84(\mathrm{~s})$.

(2-Amino-4-methylphenyl)(phenyl)methanone 1 m

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.44$ (dd, $\left.J=8.1,6.5 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.8,151.3,145.5,140.5,134.9,130.9,129.1,128.2,117.2,117.1,116.1$, 21.8.

(2-Amino-5-methylphenyl)(phenyl)methanone 1n
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{tt}, J=6.6,1.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}$, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 199.2,148.9,140.3,135.5,134.2,131.1,129.3,128.2,124.7,118.4$, 117.3, 20.4.

(2-Amino-4-(trifluoromethyl)phenyl)(phenyl)methanone 10
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 2 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.6,150.6,139.4,135.4(\mathrm{q}, J=32.4 \mathrm{~Hz}), 135.1,131.9,129.4,128.4$, $123.6(\mathrm{q}, J=273.0 \mathrm{~Hz}), 120.2,113.9(\mathrm{q}, J=4.0 \mathrm{~Hz}), 111.7(\mathrm{q}, J=3.6 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.87 (s)

(2-Amino-5-fluorophenyl)(phenyl)methanone 1p
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dd}$, $J=9.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{ddd}, J=9.0,7.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.1$ ($\mathrm{d}, J=2.4 \mathrm{~Hz}$), 153.3 (d, $J=234.8 \mathrm{~Hz}$), 147.5, 139.5, 131.6, 129.2, $128.4,122.3(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 119.1(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 118.3(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 117.9(\mathrm{~d}, J=5.5 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-128.36-128.42(\mathrm{~m})$.

1-(2-Aminophenyl)-2-methylpropan-1-one $\mathbf{1 r}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{td}, J=7.3,6.9$, $1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.29 (s, 2H), 3.59 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.20 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.2,151.0,134.2,131.1,117.7,117.0,115.8,35.4$, 19.7.

1-(2-Aminophenyl)heptan-1-one 1s
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.27$ ($\mathrm{s}, 2 \mathrm{H}$), $2.96-2.88(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{p}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{td}, J=7.0,2.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.3,150.5,134.2,131.3,118.2,117.5,115.8,39.5,31.8,29.3,25.1$, 22.7, 14.2.

IV. General procedure for the Synthesis of 1,2,3,4-Tetrahydroacridine

Derivatives

An oven-dried microwave reacting tube $(10.0 \mathrm{~mL})$ was charged with a magnetic stir-bar, $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(10$ $\mathrm{wt} \%, 10.0 \mathrm{mg}, 3.5 \mathrm{~mol} \%$ based on Pd contents, vacuum drying under reduced pressure for six hours), $\mathrm{HCO}_{2} \mathrm{Li} \cdot \mathrm{H}_{2} \mathrm{O}$ ($56.0 \mathrm{mg}, 0.8 \mathrm{mmol}, 4$ equiv.), 2-aminoarylketone (0.2 mmol) and phenol (0.6 mmol) were added. The tube was sealed with rubber plug and after three cycles of evacuation/backfilling sequence with argon, heptane $(0.2 \mathrm{~mL})$ was added. Replace the rubber plug with an aluminum cover having a teflon pad. The tube was stirred at $160{ }^{\circ} \mathrm{C}$ in the pre-heated oil bath for 12 h . After completion, the reaction mixture was cooled to room temperature, diluted with EtOAc and filtered through the pad of celite. The filtrate was concentrated in vacuo and the resulting residue was purified via the column chromatography.

V. Analytical Data of the 1,2,3,4-Tetrahydroacridine Derivatives

9-Phenyl-1,2,3,4-tetrahydroacridine 3aa ${ }^{[5]}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.4,5.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.42$ (m, 3H), $7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.00$ $-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.2,146.6,146.4,137.2,129.2,128.7,128.46,128.45,128.43,127.8$, $126.8,125.9,125.5,34.4,28.2,23.1,23.0$.

9-(p-Tolyl)-1,2,3,4-tetrahydroacridine 3ba ${ }^{[6]}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}$, $3 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 159.2,146.7,146.5,137.5,134.2,129.4,129.2,128.6,128.5,128.3$, 127.0, 126.0, 125.4, 34.4, 28.2, 23.2, 23.1, 21.4.

9-(m-Tolyl)-1,2,3,4-tetrahydroacridine 3ca ${ }^{[7]}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{td}, J=6.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,146.9,146.5,138.4,137.2,129.8,128.61,128.56,128.5,128.4$, $126.9,126.3,126.0,125.4,34.4,28.2,23.2,23.1,21.7$.

9-(o-Tolyl)-1,2,3,4-tetrahydroacridine 3da
Brown solid; m.p. 112-113 ${ }^{\circ} \mathrm{C}$;
IR (KBr): 3060, 2926, 2867, 1574, 1484,1457, 1377, 1147, 1020, 917, 839, 761, 727, $419 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{dt}$, $J=17.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dt}, J=17.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.74(\mathrm{~m}$, 2 H).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,146.44,146.35,136.7,135.9,130.4,129.0,128.62,128.58,128.55$, $128.2,126.5,126.3,125.7,125.5,34.4,27.8,23.11,23.09,19.7$.

HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 274.1590, found: 274.1591.

9-([1,1'-Biphenyl]-4-yl)-1,2,3,4-tetrahydroacridine 3ea

Brown solid; m.p. 203-204 ${ }^{\circ} \mathrm{C}$;
IR (KBr): 3057, 3028, 2929, 2865, 1573, 1485,1456, 1378, 1355, 1009, 848, 763, 734, $696 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.60$ (ddd, $J=8.3,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.21$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,146.4,146.3,140.7,136.2,129.7,129.0,128.6,128.52,128.47$, 127.6, 127.4, 127.2, 126.8, 125.9, 125.5, 34.4, 28.2, 23.1, 23.0.

HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 336.1747$, found: 336.1758 .

9-(4-Methoxyphenyl)-1,2,3,4-tetrahydroacridine 3fa

Brown solid; m.p. $174-175{ }^{\circ} \mathrm{C}$;
IR (KBr): 2927, 2858, 2839, 1609, 1514, 1491, 1458, 1287, 1246, 1174, 1032, 842, 763, $576 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,159.1,146.43,146.40,130.4,129.2,128.9,128.5,128.4,127.1$, $125.9,125.4,114.1,55.4,34.3,28.2,23.2,23.0$.

HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 290.1539$, found: 290.1546 .

N,N-dimethyl-4-(1,2,3,4-tetrahydroacridin-9-yl)aniline 3ga

Brown solid; m.p. 213-214 ${ }^{\circ} \mathrm{C}$;
IR (KBr): 2951, 2926, 2869, 1735, 1610, 1525, 1491, 1454, 1355, 1229, 1020, 824, 798, $764 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04$ $(\mathrm{s}, 6 \mathrm{H}), 2.67(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,150.0,147.1,146.6,130.2,129.0,128.5,128.2,127.5,126.3$, 125.2, 124.7, 112.3, 40.6, 34.4, 28.3, 23.3, 23.1.

HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 303.1856$, found: 303.1864.

4-(4-(1,2,3,4-Tetrahydroacridin-9-yl)phenyl)morpholine 3ha

Brown solid; m.p. $222-223{ }^{\circ} \mathrm{C}$;
IR (KBr): 2952, 2927, 2857, 1610, 1518, 1490, 1450, 1378, 1235, 1123, 928, 828, 764, $625 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.27(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.19(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.2,150.7,146.6,146.5,130.3,128.9,128.5,128.4,128.3,127.2$, 126.1, 125.3, 115.4, 67.1, 49.1, 34.4, 28.3, 23.2, 23.1.

HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 345.1961$, found: 345.1968 .

9-(Naphthalen-2-yl)-1,2,3,4-tetrahydroacridine 3ia
Brown solid; m.p. $156-157{ }^{\circ} \mathrm{C}$;
IR (KBr): 3055, 2929, 2864, 2841, 1572, 1494, 1457, 1431, 1398, 1354, 1269, 1166, 1019, 860, 812, $761,746,481 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 1 \mathrm{H})$, $7.88-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.4,6.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=6.4,6.0,3.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.02-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.3,146.51,146.50,134.8,133.5,132.9,128.8,128.6,128.52,128.46$,
$128.24,128.15,128.0,127.3,126.9,126.7,126.5,126.0,125.6,34.4,28.3,23.2,23.1$.
HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 310.1590$, found: 310.1600.

9-(6-Methoxypyridin-3-yl)-1,2,3,4-tetrahydroacridine 3ja
Brown solid; m.p. $127-128{ }^{\circ} \mathrm{C}$;
IR (KBr): 2933, 2864, 1603, 1562, 1502, 1486, 1368, 1284, 1249, 1126, 1026, 837, 763, $603 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.75$ $-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 163.9,159.2,146.9,146.5,142.8,139.8,129.4,128.7,128.6,127.0$, 125.8, 125.7, 125.4, 111.0, 53.7, 34.3, 28.3, 23.1, 22.9.

HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$291.1492, found: 291.1500.

9-(4-Fluorophenyl)-1,2,3,4-tetrahydroacridine $\mathbf{3 k a}{ }^{[8]}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=8.4,6.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27$ (m, 2H), $7.25-7.15(\mathrm{~m}, 4 \mathrm{H}), 3.19(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.84$ $-1.73(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5(\mathrm{~d}, J=246.9 \mathrm{~Hz}), 159.2,146.4,145.5,133.0(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 130.9$ (d, $J=8.0 \mathrm{~Hz}$), 128.7, 128.6, 128.5, 126.8, 125.62, 125.60, 115.8 (d, $J=21.4 \mathrm{~Hz}$), 34.4, 28.2, 23.1, 23.0. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.18--114.26(\mathrm{~m})$.

9-(4-(Trifluoromethyl)phenyl)-1,2,3,4-tetrahydroacridine 31a
Brown solid; m.p. $192-193{ }^{\circ} \mathrm{C}$;
IR (KBr): 2948, 2907, 2840, 1576, 1493, 1323, 1167, 1122, 1066, 1020, 856, 763, $628 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.57$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,146.4,145.0,141.2,130.3(\mathrm{q}, J=32.5 \mathrm{~Hz}), 129.8,128.7,128.3$, $126.2,125.9,125.8(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.4,124.3(\mathrm{q}, J=272.2 \mathrm{~Hz}), 34.3,28.2$, 23.0, 22.9.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.51$ (s).
HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 328.1308, found: 328.1316.

6-Methyl-9-phenyl-1,2,3,4-tetrahydroacridine 3ma ${ }^{[9]}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.72$ (m, 2H).
${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,146.6,146.4,138.5,137.4,129.2,128.6,127.74,127.71,127.52$, 127.51, 125.6, 124.8, 34.4, 28.1, 23.2, 23.1, 21.8.

7-Methyl-9-phenyl-1,2,3,4-tetrahydroacridine 3na ${ }^{[10]}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.05(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.83-$ $1.70(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 158.1,146.0,145.0,137.5,135.2,130.7,129.2,128.7,128.4,128.2$, 127.7, 126.7, 124.6, 34.3, 28.2, 23.2, 23.1, 21.8.

9-Phenyl-6-(trifluoromethyl)-1,2,3,4-tetrahydroacridine 3oa
Brown solid; m.p. $69-70{ }^{\circ} \mathrm{C}$;
IR (KBr): 2929, 2866, 2841, 1577, 1491, 1441, 1331, 1286, 1207, 1169, 1126, 1062, 934, 904, 837, 819, $754,702 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=$
$6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,146.6,145.3,136.5,130.8,130.2(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.1,128.9$, $128.3,128.2,127.2,126.4(\mathrm{q}, J=4.4 \mathrm{~Hz}), 124.3(\mathrm{q}, J=272.4 \mathrm{~Hz}), 121.0(\mathrm{q}, J=3.1 \mathrm{~Hz}), 34.4,28.3,22.9$, 22.8 .
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.59(\mathrm{~s})$.
HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 328.1308$, found: 328.1315 .

7-Fluoro-9-phenyl-1,2,3,4-tetrahydroacridine 3pa ${ }^{[10]}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{dd}, J=9.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.36$ (ddd, $J=9.2$, $8.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{dd}, J=10.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.0(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 158.5(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 146.1(\mathrm{~d}, J=5.6 \mathrm{~Hz})$, $143.5,136.8,130.9(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 129.3,129.1,128.9,128.1,127.5(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 118.6(\mathrm{~d}, J=25.9$ Hz), 109.1 ($\mathrm{d}, ~ J=22.8 \mathrm{~Hz}$), 34.2, 28.2, 23.0, 23.0.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.44--114.51(\mathrm{~m})$.

9-Methyl-1,2,3,4-tetrahydroacridine 3qa ${ }^{[5]}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.11(\mathrm{t}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.88(\mathrm{t}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 158.7$, 146.0, 141.3, 129.1, 128.8, 128.2, 127.0, 125.3, 123.4, 34.6, 27.2, 23.3, 22.9, 13.6.

9-Isopropyl-1,2,3,4-tetrahydroacridine 3ra

Brown oil;
IR (KBr): 2931, 2869, 1566, 1495, 1455, 1401, 928, $759 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.84(\mathrm{~m}$, $4 \mathrm{H}), 1.53$ (d, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,150.3,147.1,129.7,127.7,125.7,125.1,124.4,34.8,28.3,27.3$, 23.5, 22.6, 21.6.

HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 226.1590$, found: 226.1591.

9-Hexyl-1, 2,3,4-tetrahydroacridine 3sa ${ }^{[11]}$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{dd}, J=19.2,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 4 \mathrm{H})$, $1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,146.6,145.8,129.3,128.13,128.10,126.4,125.4,123.4,34.7$, $31.8,30.1,29.8,27.8,26.5,23.4,23.0,22.8,14.2$.

$\mathbf{1 , 2 , 3 , 4 - T e t r a h y d r o a c r i d i n - 9 - a m i n e} \mathbf{3 t a}{ }^{[12]}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.86(\mathrm{~m}$, $4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 158.0,147.4,145.6,129.0,127.9,124.2,120.1,117.0,110.4,33.5,23.7$, 22.8 (2C).

2-Methyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bb

Brown solid; m.p. 131-132 ${ }^{\circ} \mathrm{C}$;
IR (KBr): 3060, 2951, 2925, 2868, 1576, 1492, 1455, 1376, 1356, 1022, 814, $762 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.3,6.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27$ (m, 4H), 7.12 (ddd, $J=8.4,6.6,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.68$ (ddd, $J=$ $17.0,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.64$ $-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.9,146.7,146.4,137.5,134.1,129.5,129.4,129.2,129.1,128.44$, 128.42, 128.2, 126.9, 126.0, 125.4, 36.6, 34.0, 31.3, 29.4, 22.0, 21.5.

HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 288.1747$, found: 288.1749.

2-Ethyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bc
Brown solid; m.p. $87-88^{\circ} \mathrm{C}$;
IR (KBr): 3060, 2957, 2925, 2872, 1575, 1492, 1457, 1378, 1356, 1215, 1021, $762 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H})$, $7.11(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=17.0,4.9,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{dd}, J=16.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.49(\mathrm{~m}$, $1 \mathrm{H}), 1.40-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,146.8,146.5,137.5,134.1,129.42,129.35,129.2,129.1,128.5$, $128.4,128.2,127.0,126.0,125.3,36.0,34.5,33.9,28.9,28.5,21.5,11.6$.
HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 302.1903$, found: 302.1906.

2-Isopropyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bd
Brown solid; m.p. $94-95^{\circ} \mathrm{C}$;
IR (KBr): 3059, 2955, 2927, 2869, 1573, 1492, 1459, 1380, 1020, $762 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H})$, $7.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, $2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.49(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{dd}, J=18.2,6.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,146.9,146.5,137.5,134.2,129.5,129.4,129.2,129.1,128.57$, 128.55, 128.4, 127.0, 126.0, 125.4, 40.8, 34.3, 32.0, 25.9, 21.5, 20.2, 19.5.

HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 316.2060$, found: 316.2062.

2-Benzyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3be
White solid; m.p. $110-111{ }^{\circ} \mathrm{C}$;

IR (KBr): 3059, 3025, 2925, 1574, 1492, 1453, 1357, 1021, 763, $700 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.3,6.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30$ $(\mathrm{m}, 4 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 4 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.02$ $(\mathrm{m}, 1 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.35(\mathrm{~m}, 5 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{C}}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.9,146.9,146.5,140.5,137.6,134.0,129.42,129.39,129.3,129.2$, 129.1, 128.51, 128.48, 128.4, 127.8, 126.9, 126.07, 126.06, 125.5, 42.4, 36.3, 34.9, 33.6, 28.0, 21.5. HRMS (ESI): calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 364.2060$, found: 364.2065.

2-Phenyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bf
White solid; m.p. $173-174{ }^{\circ} \mathrm{C}$;
IR (KBr): 3059, 3027, 2952, 2927, 1574, 1492, 1454, 1377, 1021, 762, $699 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, J=8.4,6.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.24$ $(\mathrm{m}, 6 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.95-$ $2.86(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 158.3,147.1,146.6,146.1,137.6,133.8,129.6,129.5,129.1,128.9$, $128.7,128.6,128.5,128.0,127.03,126.96,126.5,126.1,125.6,41.0,36.3,34.5,30.3,21.4$.

HRMS (ESI): calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 350.1903$, found: 350.1906 .

2-Methoxy-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bg
Brown solid; m.p. $101-102{ }^{\circ} \mathrm{C}$;
IR (KBr): 3059, 3026, 2926, 2823, 1577, 1492, 1457, 1355,1188, 1097, $763 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{dd}, J=23.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.30(\mathrm{~m}, 4 \mathrm{H}), 3.20-$ $3.12(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.01$ (m, 1H).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1,147.6,146.6,137.7,133.8,129.6,129.4,129.2,129.0,128.64$, $128.55,126.9,126.0,125.9,125.5,75.1,56.0,33.7,30.9,27.2,21.4$.
HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 304.1696, found: 304.1697.

3-Methyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bh'
Brown solid; m.p. $125-126^{\circ} \mathrm{C}$;
IR (KBr): 3059, 2949, 2925, 2868, 1575, 1492, 1454, 1354, 1022, 813, $762 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (ddd, $\left.J=8.4,6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.38-7.27$ $(\mathrm{m}, 4 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}$, $3 \mathrm{H}), 2.11-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,146.6,146.5,137.5,134.2,129.43,129.39,129.2,129.0,128.5$, 128.4, 128.0, 126.9, 126.0, 125.4, 43.0, 31.3, 29.3, 27.8, 22.0, 21.5.

HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$288.1747, found: 288.1748 .

1-Methyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bh"
Brown solid; m.p. $99-100{ }^{\circ} \mathrm{C}$;
IR (KBr): 3060, 2928, 2869, 1573, 1491, 1456, 1396, 1355, 1021, 821, $762 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.4,5.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27$ $(\mathrm{m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~s}$, $3 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8,146.6,146.4,137.5,133.89,133.85,130.3,129.4,129.1,128.9$, $128.5,128.4,127.3,126.2,125.3,33.8,29.9,29.8,21.9,21.5,17.9$.
HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$288.1747, found: 288.1748.

3-Ethyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bi'
Brown solid; m.p. $100-101^{\circ} \mathrm{C}$;
IR (KBr): 2957, 2925, 2871, 1736, 1575, 1492, 1458, 1378, 1355, 1021, 806, $762 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 4 \mathrm{H})$, $7.12(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{dd}, J=17.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=17.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.54(\mathrm{~m}$, $2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.2,146.53,146.51,137.5,134.2,129.41,129.37,129.2,129.0,128.5$, $128.4,128.3,126.9,126.0,125.4,40.8,36.0,29.3,29.2,27.7,21.5,11.6$.
HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 302.1903$, found: 302.1904.

1-Ethyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bi"
Brown solid; m.p. $123-124{ }^{\circ} \mathrm{C}$;
IR (KBr): 2955, 2926, 2869, 1737, 1572, 1491, 1458, 1377, 1020, $762 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.4,5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.28$ (m, 4H), $7.20(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.04(\mathrm{~m}, 1 \mathrm{H})$, $2.92-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.48-$ $1.29(\mathrm{~m}, 2 \mathrm{H}), 0.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.0,146.6,146.4,137.4,134.0,133.8,130.2,129.4,129.2,128.9$, $128.44,128.37,127.4,126.3,125.3,36.5,33.6,27.8,24.6,21.5,17.8,12.2$.
HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 302.1903$, found: 302.1904.

VI. References

[1] S. Luo, Z. W. Hu and Q. Zhu, Org. Chem. Front. 2016, 3, 364-367.
[2] R. Ruzi, J. Y. Ma, X. A. Yuan, W. L. Wang, S. S.Wang, M. L. Zhang, J. Dai, J. Xie, C. J. Zhu, Chem. Eur. J. 2019, 25, 12724-12729.
[3] J. X. Chen, L. P. Ye and W. K. Su, Org. Biomol. Chem. 2014, 12, 8204-8211.
[4] T. Kniess, M. Laube, R. Bergmann, F. Sehn, F. Graf, J. Steinbach, F. Wuest, J. Pietzsch, Bioorg. Med. Chem. 2012, 20, 3410-3421.
[5] Y. Gao, J. H. Nie, Y. B. Li, X. W. Li, Q. Chen, Y. P. Huo, and X. Q. Hu, Org. Lett. 2020, 22, 26002605.
[6] Z. H. Li, L. M. Xu, W. K. Su, J. Chem. Res. 2011, 35, 240-242.
[7] Y. Wang, C. Chen, S. Zhang, Z. B. Lou, X. Su, L. R. Wen, and M. Li, Org. Lett. 2013, 15, 4794-4797.
[8] C. S. Jia, Z. Zhang, S. J. Tu, G. W. Wang, Org. Biomol. Chem. 2006, 4, 104-110.
[9] E. Q. Ma, P. Wang, P. H. Li, L. P. Mo, Res. Chem. Intermed. 2015, 41, 6433-6441.
[10] J. J. Chen, C. Chen, J. Chen, H. P. Gao, H. M. Qu, Synlett 2014, 25, 2721-2726.
[11] K. Okuma, S. Ozaki, J. I. Seto, N. Nagahora, K. Shioji, Heterocycles 2010, 81, 935-942.
[12] M. Maspero, D. Volpato, D. Cirillo, et al. Bioorgan. Chem. 2020, 96, 103633.

VII. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound (2-aminophenyl)(p-tolyl)methanone 1b

$\stackrel{\circ}{\circ}$

$\stackrel{\stackrel{\rightharpoonup}{i}}{\stackrel{\rightharpoonup}{1}}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound (2-aminophenyl)(m-tolyl)methanone 1c

No

1

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound［1，1＇－biphenyl］－4－yl（2－aminophenyl）methanone $\mathbf{1 e}$

$$
\begin{aligned}
& \text { 人天宊 }
\end{aligned}
$$

[^1]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound (2-aminophenyl)(4-methoxyphenyl)methanone 1 f

ハ

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound (2-aminophenyl)(4-methoxyphenyl)methanone 1 g

-197.24
웅 N
$\underset{\sim}{\text { NiN }}$
N
$\underset{\sim}{+}$
$\dot{+}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound (2-aminophenyl)(4-morpholinophenyl)methanone $\mathbf{1 h}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound (2-aminophenyl)(naphthalen-2-yl)methanone 1i

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound (2-aminophenyl)(6-methoxypyridin-3-yl)methanone $\mathbf{1} \mathbf{j}$

$\stackrel{\pi}{\dot{\sigma}}$
$\stackrel{\rightharpoonup}{+}$

Nic

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of compound (2-aminophenyl)(4-(trifluoromethyl)phenyl)methanone 11

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound (2-amino-4-methylphenyl)(phenyl)methanone $\mathbf{1 m}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound (2-amino-5-methylphenyl)(phenyl)methanone 1n

\qquad
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of compound (2-amino-4-(trifluoromethyl)phenyl)(phenyl)methanone 10

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of compound (2-amino-5-fluorophenyl)(phenyl)methanone $\mathbf{1 p}$

 ๙ึ~
 $\underbrace{\top}{ }^{\top}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 1-(2-aminophenyl)-2-methylpropan-1-one $\mathbf{1 r}$

なぁ

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9 -(m-tolyl)-1,2,3,4-tetrahydroacridine 3ca

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9 -(o-tolyl)-1,2,3,4-tetrahydroacridine 3da

170	160	${ }_{150}^{15}$	140	130	120	${ }_{1}^{110}$	${ }_{100}^{10}$	90	80	70	60	50	40	30	20	10	o
								$f 1$									

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9 -([1,1'-biphenyl]-4-yl)-1,2,3,4-tetrahydroacridine 3ea

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9-(4-methoxyphenyl)-1,2,3,4-tetrahydroacridine 3fa

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound \mathbf{N}, \mathbf{N}-dimethyl-4-(1,2,3,4-tetrahydroacridin-9-yl)aniline 3ga

> 응 on in in f O

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 4-(4-(1,2,3,4-tetrahydroacridin-9-yl)phenyl)morpholine 3ha

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9-(naphthalen-2-yl)-1,2,3,4-tetrahydroacridine 3ia

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9 -(6-methoxypyridin-3-yl)-1,2,3,4-tetrahydroacridine $\mathbf{3 j a}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of compound 9-(4-fluorophenyl)-1,2,3,4-tetrahydroacridine 3ka

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of compound 9-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroacridine 3la

[^2]

80	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 7-methyl-9-phenyl-1,2,3,4-tetrahydroacridine 3na


```
~m
```


${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of compound 9-phenyl-6-(trifluoromethyl)-1,2,3,4-tetrahydroacridine $30 a$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of compound 7－fluoro－9－phenyl－1，2，3，4－tetrahydroacridine 3pa

$\stackrel{\text { ® }}{\text { ¢ }}$	
天下边	

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9 -methyl-1,2,3,4-tetrahydroacridine 3qa

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9 -isopropyl-1,2,3,4-tetrahydroacridine 3ra

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 9-hexyl-1,2,3,4-tetrahydroacridine 3sa

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 1,2,3,4-tetrahydroacridin-9-amine 3ta

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2-methyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bb

170	160	150	${ }_{1}^{140}$	130	120	110	${ }_{100}^{1}$	${ }_{90}$	80	70	60	50	40	${ }^{1} 0$	${ }_{20}$	10	1

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2-ethyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bc


```
Nべ心%
```


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2-benzyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3be

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2-phenyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bf

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2-methoxy-9-(\boldsymbol{p}-tolyl)-1,2,3,4-tetrahydroacridine 3bg

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3-methyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bh'
ºbo

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 1-methyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bh"

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	12	10	${ }_{0}$
									(ppm)								

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3-ethyl-9-(p-tolyl)-1,2,3,4-tetrahydroacridine 3bi'

$$
\begin{aligned}
& \text { Nべか } \\
& \text { ธin N N NON N N }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MNN~N N N }
\end{aligned}
$$

[^0]: [a] General conditions: $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{2 a}(0.4 \mathrm{mmol})$, catalyst ($7 \mathrm{~mol} \%$), $\mathrm{HCO}_{2} \mathrm{H}$ (2 equiv.) in toluene (1 mL) were stirred at $160{ }^{\circ} \mathrm{C}$ in the pre-heated oil bath for 12 h under Ar atmosphere. $\mathbf{1} \mathbf{a}_{\mathrm{red}}$ represented that the carbonyl group of $\mathbf{1 a}$ was reduced to methylene. [b] Yields were determined by ${ }^{1} \mathrm{H}$ NMR with dibromomethane as internal standard.

[^1]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^2]:

