Supporting Information

Tunable construction of CuS nanosheets@flower-like ZnColayered double hydroxide nanostructures for hybrid supercapacitor

Akbar Mohammadi Zardkhoshoui*, Ramtin Arian, and Saied Saeed Hosseiny Davarani*

Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.

Corresponding authors: *Tel: +98 21 22431661; Fax: +98 21 22431661; E-mail: <u>ss-hosseiny@sbu.ac.ir</u> (S.S.H. Davarani); and mohammadi.bahadoran@gmail.com (A. Mohammadi Zardkhoshoui)

Fig. S1 (a-d) FE-SEM images of the NF@CS5. (e-h) FE-SEM images of the NF@CS10. (i-l) FE-SEM images of the NF@CS15.

Fig. S2 (a-f) FE-SEM mapping images of the NF@CS10-ZC-LDH4.

Fig. S3 (a, b) FE-SEM images of the pure NF@ZC-LDH4.

Fig. S4 XPS survey of the CS10-ZC-LDH4 sample.

Fig. S5 (a) BET curve of the CS10-ZC-LDH4. (b) BET curve of the ZC-LDH4. (c) BET curve of the CS10.(d) BJH plot of the CS10-ZC-LDH4. (e) BJH plot of the ZC-LDH4. (f) BJH plot of the CS10.

Fig. S6 (a) CV plots of the NF@CS5, NF@CS10, and NF@CS15 electrodes at 30 mV s⁻¹. (b) GCD curves of the NF@CS5, NF@CS10, and NF@CS15 electrodes at 1 A g⁻¹. (c) Specific capacities of the NF@CS5, NF@CS10, and NF@CS15 electrodes at 1 A g⁻¹.

Fig. S7 (a) CV plots of the NF@CS5-ZC-LDH2, NF@CS5-ZC-LDH4, and NF@CS5-ZC-LDH6 electrodes at 30 mV s⁻¹. (b) GCD curves of the NF@CS5-ZC-LDH2, NF@CS5-ZC-LDH4, and NF@CS5-ZC-LDH6 electrodes at 1 A g⁻¹. (c) Specific capacities of the NF@CS5-ZC-LDH2, NF@CS5-ZC-LDH4, and NF@CS5-ZC-LDH6 electrodes at 1 A g⁻¹.

Fig. S8 Nyquist plots of the NF@CS10, NF@ZC-LDH4, and NF@CS10-ZC-LDH4 electrodes (inset indicate the equivalent circuit model and magnified Nyquist curves).

Fig. S9 (a) CV curves of the NF@ZC-LDH4 electrode at various scan rates from 10 to 50 mV s⁻¹. (b) CV curves of the NF@CS10 electrode at various scan rates from 10 to 50 mV s⁻¹.

Fig. S10 (a) GCD curves of the NF@ZC-LDH4 electrode from 1 to 25 A g^{-1} . (b) GCD curves of the NF@CS10 electrode from 1 to 25 A g^{-1} .

Fig. S11 Durability test of the NF@CuS10 and NF@ZC-LDH4 electrodes.

Fig. S12 XRD patterns of the CS10-ZC-LDH4 sample before and after durability test.

Fig. S13 (a) CV plots of the NF@AC at various scan rates from 10 to 50 mV s⁻¹. (b) GCD plots of the NF@AC@ at various current densities from 1 to 25 A g⁻¹. (c) Rate capability of the NF@AC electrode.

Composition	Capacity (C/g)	Cycles, retention	Rate capability	ED (Wh kg ⁻¹)	Reference
CoNi-LDH	1031 at 1 A g ⁻¹	50000, 88.2%	64.7% at 25 A g ⁻¹	49	1
NiCoMn-S-1.5	657.7 at 1 A g ⁻¹	50000, 90%	51.61% at 50 A g ⁻¹	36.3	2
C0 ₉ S ₈	926 at 1 A g ⁻¹	8000, 86%	67.4% at 15 A g ⁻¹	25.49	3
NiCo ₂ S ₄ /HMCSs	659 at 1 A g ⁻¹	3000, 90.1%	53.4% at 10 A g ⁻¹	35.5	4
Co ₃ S ₄ /g-C ₃ N ₄ -10	415 at 0.5 A g ⁻¹	5000, 75.6%	54.5% at 10 A g ⁻¹	37.7	5
NiCoMn-S	661 at 1 A g ⁻¹	1000, 86.45%	66.56% at 50 A g ⁻¹	42.1	6
CoNi ₂ S ₄	1158 at 1 A g ⁻¹	8500, 84%	60.8% at 10 A g ⁻¹	34.4	7
NiCo2S4/NGF	558 at 1 A g ⁻¹	6000, 92.6%	55.5% at 20 A g ⁻¹	36.8	8
NF@CS10-ZC-LDH4	1270.5 at 1 A g ⁻¹	8000, 90.7 (3 E)	71.5% at 25A g ⁻¹	62.4	This work

Table S1. Comparison of the performance of the NF@CS10-ZC-LDH4 with other previously reported

materials.

References

 Z. Li, H. Mi, F. Guo, C. Ji, S. He, H. Li and J. Qiu, Oriented Nanosheet-Assembled CoNi-LDH Cages with Efficient Ion Diffusion for Quasi-Solid-State Hybrid Supercapacitors, *Inorg. Chem.* 2021, 60, 12197–12205.

2. J. Zhang, C. Li, M. Fan, T. Ma, H. Chen and H. Wang, Two-dimensional nanosheets constituted trimetal Ni-Co-Mn sulfide nanoflower-like structure for high-performance hybrid supercapacitors, *Appl. Surf. Sci.* 2021, **565**, 150482.

3. J. Li, Q. Li, J. Sun, Y. Ling, K. Tao and L. Han, Controlled Preparation of Hollow and Porous Co₉S₈ Microplate Arrays for High-Performance Hybrid Supercapacitors, *Inorg. Chem.* 2020, **59**, 11174–11183.

4. Y. Liu, G. Jiang, Z. Huang, Q. Lu, B. Yu, U. Evariste and P. Ma, Decoration of Hollow Mesoporous Carbon Spheres by NiCo₂S₄ Nanoparticles as Electrode Materials for Asymmetric Supercapacitors, *ACS Appl. Energy Mater.* 2019, **2**, 8079–8089

5. W. Li, Y. Li, C. Yang, Q. Ma, K. Tao and L. Han, Fabrication of 2D/2D nanosheet heterostructures of ZIF-derived Co_3S_4 and $g-C_3N_4$ for asymmetric supercapacitors with superior cycling stability, *Dalton Trans* 2020, **49**, 14017–14029.

6. J. Cao, Y. Hu, Y. Zhu, H. Cao, M. Fan, C. Huang, K. Shu, M. He and H. C. Chen, Synthesis of mesoporous nickel-cobalt-manganese sulfides as electroactive materials for hybrid supercapacitors, *Chem. Eng. J* 2021, **405**, 126928.

 X. Zhao, Q. Ma, K. Tao and L. Han, ZIF-Derived Porous CoNi₂S₄ on Intercrosslinked Polypyrrole Tubes for High-Performance Asymmetric Supercapacitors, *ACS Appl. Energy Mater*. 2021, 4, 4199–4207.

8. Y. Chen, T. Liu, L. Zhang and J. Yu, NiCo₂S₄ Nanotubes Anchored 3D Nitrogen-Doped Graphene Framework as Electrode Material with Enhanced Performance for Asymmetric Supercapacitors, *ACS Sustainable Chem. Eng.* 2019, **7**, 11157–11165.