Supplementary Material

Stable zinc anode by regulating solvated shell and electrode-electrolyte interface with sodium tartrate additive

Jie Ren,^a Hai-Yang Wu,^a Wen Yan,^a Peng Huang,^{*a} Chao Lai^{*a}

^a School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu

221116, China.

E-mail: laichao@jsnu.edu.cn ; huangpeng@jsnu.edu.cn

Fig. S1 1 mol L⁻¹ ZnSO₄ containing different concentration of STA.

Fig. S2 Contact angle measurement on Zn foil in the 1 mol L^{-1} ZnSO₄ with/without STA.

Fig. S3 Chronoamperometry curves indicating Zn^{2+} diffusion process of Zn electrode under different electrolyte system.

Fig. S4 Voltage-time profiles of Zn||Zn symmetric cells in 1 mol L⁻¹ ZnSO₄ with/without STA at 5 mA cm⁻² with capacity of 2 mAh cm⁻².

Fig. S5 The electrochemical impedance spectroscopy (EIS) plots of the Zn||Zn symmetric cells in 1 mol L^{-1} ZnSO₄ with/without STA.

Fig. S6 EDS analysis of Zn anodes after 10 cycles at a current density of 10 mA cm⁻² and 2 mAh cm⁻² in Zn||Zn symmetric cells with STA additives.

Fig. S7 AFM images of Zn anodes after 10 cycles at 10 mA cm⁻² with capacity of 2 mAh cm⁻² in (a) blank electrolyte and (b) electrolyte with STA.

Fig. S8 XPS spectra of (a) the total spectrum and (b) Zn 2p spectrum of Zn anode after 10 cycles with 0.2 g L^{-1} STA.

Fig. S9 IR spectra of STA adsorbed on the Zn foil.

Fig. S10 Raman spectra of pure ZnSO₄ and electrolytes containing different concentrations STA.

Fig. S11 Absorption energy comparison of H_2O and STA on Zn (002) crystal plane, insets show the corresponding absorbed models for different situations.

Fig. S12 Schematic diagram of hydrogen evolution device.

Fig. S13 Graph of hydrogen precipitated content with time in different electrolytes at the current density of 4 mA cm⁻².

Fig. S14 The CV curves of the $Zn||V_2O_5$ cells using blank electrolyte at the scan rate of 1 mV s⁻¹.

Fig. S15 The discharge/charge curves of $Zn||V_2O_5$ cells from 0.2 A g⁻¹ to 2 A g⁻¹ using blank electrolyte.

Fig. S16 The equivalent circuits corresponding to Fig. 6d.

	0.2 g L ⁻¹ STA	Error (%)	Blank	Error (%)
R_e	2.817	1.1583	2.624	1.1583
R_{f}	3.168	4.8084	9.221	4.8084
R _{ct}	25.51	5.8726	31.83	5.8726
Sum	31.495		43.675	

 Table S1 The fitting results of the simulated equivalent circuit.

Fig. S17 Long-term cycling performance of the $Zn||V_2O_5$ cells in the electrolyte with/without the STA additive at 2 A g⁻¹ at 10°C.

Fig. S18 Long-term cycling performance of the $Zn||V_2O_5$ cells in the electrolyte with/without the STA additive at 2 A g⁻¹ at 40°C.