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Instrument/Analysis Conditions 
Table S1: Preparation of Mixture Samples - Standards 

Particle Sample Type Stock PNC (particles mL-1) 
Cerium (IV) Oxide (ENP) 3.03E+05 
Ferrocerium Mischmetal (INP) 3.38E+05 
Bastnaesite/Parisite Mineral (NNP) 7.74E+05 

 
Table S2: Preparation of Mixture Samples – Mixtures 

Sample PNC (particles mL-1) Dilution 
Factor - ENP 

Dilution 
Factor - INP 

Dilution 
Factor - NNP 

E1 2.85E+05 1.43 

14.5 

31.1 

E2 1.67E+05 2.15 
E3 1.21E+05 4.30 
E4 8.96E+04 10.8 
E5 7.91E+04 21.5 
E6 7.22E+04 108 
I1 2.48E+05 

10.8 

1.45 
I2 1.59E+05 2.90 
I3 1.27E+05 5.80 
I4 9.74E+04 14.5 
I5 7.54E+04 29.0 
I6 5.85E+04 145 

 
Table S3: Instrument Parameters 

Spray Chamber Baffled cyclonic quartz 
Nebulizer PFA Prep Fast 
Sample Uptake (µL min-1) 45 
Nebulizer flow (L min-1) 0.81 
Auxiliary gas flow (L min-1) 1.14 
Cool gas flow (L min-1) 13.3 
RF Power (W) 1515 
Add. gas flow Ar/He (L min-1)* 0.013/0.34 
Transport Efficiency (%) 4 
Torch/Injector iCAP Q Quartz torch with 1.5 mm quartz injector 
Sampling Depth (mm) 4.98 

Sampler/Skimmer Cone iCAP Q Nickel Sampler (X Series) with 
Skimmer (with insert) 

Notch filter masses (Th) 17.2, 30.0, 36.5,40.5 
He collision cell flow (mL min-1) 5.6 
Averaged TOF spectrum time resolution 1.2 
Number TOF spectra averaged per time point 100 

*Additional gases are for the desolvation of droplets with the online microdroplet calibration system. 
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Table S4: Isotopes used for quantification, element concentrations in droplets for online 
microdroplet calibration, and absolute sensitivities (TofCts g-1) from droplet-derived signals. The 
multi-element calibration solution for online microdroplet calibration was prepared using single-
element standards (High-Purity Standards, SC, USA). All dilutions were prepared gravimetrically 
(ML204T/A00, Mettler-Toledo, Greifensee, Switzerland) using 2% sub-boiled, trace-metal grade 
nitric acid (Fisher Scientific, Fair Lawn, NJ, USA) as the diluent.  

Isotopes used for  
quantification 

Element 
concentrations in 
droplets (ng mL-1) 

Absolute sensitivities 
(TofCts g-1) 

57Fe 62.5 1.62E+15 

139La 32.8 2.59E+17 

140Ce 30.5 2.78E+17 

141Pr 31.9 3.20E+17 

144Nd, 146Nd 31.8 1.42E+17 

232Th 32.5 3.65E+17 

133Cs* 31.3 2.22E+17 
*Cs was used for the determination of solution uptake and was not quantified in NPs.  
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Supervised Machine Learning 
Thirty different supervised machine learning models were tested as a comparison against the 
SSML model. We report these methods and figures of merit to demonstrate that the supervised 
learning models did not perform at the same level as the first SSML model, i.e. all supervised 
methods performed with an AUC value below that of the first SSML model (~0.96). These models 
were tested using the Classification Learner™ in MATLAB and by direct coding with 
hyperparameter optimization. Results are summarized in Table S5. 

Table S5: Figures of merit for supervised machine learning models including the learner type, 
accuracy (ACC), weighted-average AUC values from the ROC curve and additional model 
parameters. 

Learner Type ACC 
(%) 

AUC 
(Avg) Additional Parameters 

Tree: Fine 78.5 0.91 MaxNumSplits: 100, SplitCriterion: Gini's Diversity Index 
Tree: Medium 75.2 0.89 MaxNumSplits: 20, SplitCriterion: Gini's Diversity Index 
Tree: Coarse 70.2 0.85 MaxNumSplits: 4, SplitCriterion: Gini's Diversity Index 
Linear 
Discriminant 55.9 0.82 CovarianceStructure: Full 

Naive Bayes 62.4 0.75 Distribution: Gaussian 
Naive Bayes 69.0 0.83 Distribution: Kernel, KernelType: Gaussian, Support: Unbounded 

SVM 64.2 0.84 KernelFunction: Linear, KernelScale: Automatic, BoxConstraint: 1, 
MulticlassMethod: OneVOne, StandardizeData: True 

SVM 36.2 0.53 KernelFunction: Quadratic, KernelScale: Automatic, BoxConstraint: 1, 
MulticlassMethod: OneVOne, StandardizeData: True 

SVM 38.1 0.51 KernelFunction: Cubic, KernelScale: Automatic, BoxConstraint: 1, 
MulticlassMethod: OneVOne, StandardizeData: True 

SVM 75.5 0.90 KernelFunction: Gaussian, KernelScale: 0.61, BoxConstraint: 1, 
MulticlassMethod: OneVOne, StandardizeData: True 

SVM 69.9 0.87 KernelFunction: Gaussian, KernelScale: 2.4, BoxConstraint: 1, 
MulticlassMethod: OneVOne, StandardizeData: True 

SVM 60.7 0.84 KernelFunction: Gaussian, KernelScale: 9.8, BoxConstraint: 1, 
MulticlassMethod: OneVOne, StandardizeData: True 

KNN 78 0.82 NumNeighbors: 1, Distance: Euclidean, DistanceWeight: Equal, 
StandardizeData: True 

KNN 79.2 0.92 NumNeighbors: 10, Distance: Euclidean, DistanceWeight: Equal, 
StandardizeData: True 

KNN 78.7 0.92 NumNeighbors: 100, Distance: Euclidean, DistanceWeight: Equal, 
StandardizeData: True 

KNN 71.1 0.86 NumNeighbors: 10, Distance: Cosine, DistanceWeight: Equal, 
StandardizeData: True 

KNN 79.2 0.92 NumNeighbors: 10, Distance: Cubic, DistanceWeight: Equal, 
StandardizeData: True 

KNN 78.5 0.90 NumNeighbors: 10, Distance: Euclidean, DistanceWeight: Squared inverse, 
StandardizeData: True 

Ensemble 79.2 0.92 
EnsemblePreset: Boosted Trees, EnsembleMethod: AdaBoost, LearnerType: 
Decision Tree, MaxNumSplit: 20, NumLearn: 30, LearnRate: 0.1, Predictors: 
ALL 
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Ensemble 78.5 0.90 EnsemblePreset: Bagged Trees, EnsembleMethod: Bag LearnerType: 
Decision Tree, MaxNumSplit: 5610, NumLearn: 30, Predictors: ALL 

Ensemble 55.5 0.82 EnsemblePreset: Discriminant, EnsembleMethod: Subspace, LearnerType: 
Discriminant, NumLearn: 30, SubspaceDimension: 3, Predictors: ALL 

Ensemble 54.5 0.72 EnsemblePreset: KNN, EnsembleMethod: Subspace, LearnerType: Nearest 
Neighbors, NumLearn: 30, SubspaceDimension: 3, Predictors: ALL 

Ensemble 78.0 0.92 
Ensemble Preset: RUSBoosted Trees, Ensemble Method: RUSBoost Type: 
Decision Tree, MaxNumSplit: 20, NumLearn: 30, LearningRate: 0.1, 
Predictors: ALL 

Neural 
Network 77.7 0.92 Preset: Narrow Neural Network, NumConnect: 1, FirstLayerSz: 10, 

Activation: ReLU, IterationLim: 1000, Lambda: 0, Stdz: True 
Neural 
Network 80.3 0.93 Preset: Medium Neural Network, NumConnect: 1, FirstLayerSz: 25, 

Activation: ReLU, IterationLim: 1000, Lambda: 0, Stdize: True 
Neural 
Network 80.3 0.93 Preset: Wide Neural Network, NumConnect: 1, FirstLayerSz: 100, Activation: 

ReLU, IterationLim: 1000, Lambda: 0, Stdize: True 

Neural 
Network 79.9 0.93 

Preset: Bilayer Neural Network, NumConnect: 2, FirstLayerSz: 10, Second 
Layer Size: 10, Activation: ReLU, IterationLim: 1000, Lambda: 0, Stdize: 
True 

Neural 
Network 80.8 0.93 

Preset: Trilayer Neural Network, NumConnect: 3, FirstLayerSz: 10, Second 
Layer Size: 10, Third Layer Size: 10, Activation: ReLU, IterationLim: 1000, 
Lambda: 0, Stdize: True 

Kernel 58.1 0.57 Preset: SVM Kernel, Learner: SVM, NumExpDim: Auto, Lambda: Auto, 
Kernel Scale: Auto, MultiClassMethod: OneVOne, IterationLim: 1000 

Kernel 57.1 0.59 
Preset: Logistic Regression Kernel, Learner: Logistic Regression, 
NumExpDim: Auto, Lambda: Auto, Kernel Scale: Auto, MultiClassMethod: 
OneVOne, IterationLim: 1000 

Neural 
Network 80.3 0.93 Preset: Medium Neural Network, NumConnect: 1, First Layer Size: 25, 

Activation: ReLU, IterationLim: 1000, Lambda: 0, Stdize: True 
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Semi-Supervised Machine Learning 
Figure S1: Flow chart describing data processing, model optimization, and sample analysis. 
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Table S6: Parameters used for semi-supervised machine learning models. Differences between 
the first and second model are indicated by the use of a semi-colon. Italicized fonts are indicative 
of the functions used in MATLAB. 

Parameter Value 
fitsemiself 

Learner templateEnsemble 

IterationLimit 1.00E+03 
ScoreThreshold -0.1 

CategoricalPredictors ‘all’ 
ClassNames {'ENP','INP','NNP'}; {'ENP','INP','NNP',‘UNE’,‘UNI’} 

PredictorNames {'Fe (g)', ‘La (g)’, ‘Ce (g)’, ‘Th (g)’, ‘Nd (g)’, ‘Pr (g)’} 

ObservationsIn ‘rows’ 
templateEnsemble 

Method ‘bag’ 
Nlearn 500 

Learner templateTree 
Nprint ‘off’ 

Type ‘classification’ 
FResample 1 

Replace ‘on’ 
Resample ‘on’ 
LearnRate 1 

templateTree 
MaxNumSplits ‘n-1’ 

MergeLeaves ‘off’ 
MinLeafSize 1 

MinParentSize 2 
NumVariablesToSample ‘all’ 

PredictorSelection ‘allsplits’ 
Prune ‘off’ 

PruneCriterion ‘error’ 
Reproducible TRUE 
SplitCriterion ‘gdi’ 

Surrogate ‘off’ 
Type ‘classification’ 

AlgorithmForCategorical ‘exact’ 
MaxNumCategories 3; 5 
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Time Traces from spICP-TOFMS  
Figure S2: spICP-TOFMS time traces of pristine nanoparticles suspensions. Spikes represent a 
measured nanoparticle. Spikes with multiple colors are representative of multi-elemental 
nanoparticle signals. 
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Unsupervised Machine Learning 
An unsupervised machine learning model, t-stochastic neighbor embedding (tSNE), was tested 
using the neat suspension data from ENPs, INPs and NNPs. For this model, we used the Euclidean 
distance function and manipulated the perplexity argument in an effort to extract distinct clusters 
for ENPs, INPs and NNPs. In Figure S3A and S3B , we show results using perplexity values of 
150 and 15, respectively. In either case (and in all those we tested), the tSNE unsupervised learning 
model does not show usable clusters for the three particle types; therefore, tSNE was deemed to 
be an ineffective model type for classification of Ce-NPs. 

Figure S3: An example of t-stochastic neighbor embedding performed with the pristine sample 
data. Distance function was set to Euclidean and the perplexity was set to 150 (A) and 15 (B).  
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Confusion Matrix Normalization 
Figure S4: The non-normalized confusion matrix representing the performance of the second 
SSML model with resampling. 

 

It is important to note that this confusion matrix is misleading and not representative of the true 
performance of the SSML model because the particle events are resampled; therefore, the matrix 
must be normalized in order to compare the performance of the first and second SSML models. 
To normalize the matrix, we multiplied each matrix component by the actual number of particles 
in each class and divided by the number of samples used (Eq. S1).  

𝑁𝑁𝑊𝑊 =
𝑀𝑀𝑖𝑖,𝑗𝑗 ∗ 𝑁𝑁

𝑘𝑘
                                              𝐸𝐸𝐸𝐸. 𝑆𝑆1 

Where NW is the weighted number of particles, 𝑀𝑀𝑖𝑖,𝑗𝑗 is matrix value, N is the true number of events 
without resampling and k is the total number events sampled from each class (i.e. 400). This 
normalization preserves the percentages of true-positives (TP) and false-negatives (FN) but adjusts 
percentages of positive-predictions (PP) and false-predictions (FP) to be representative of the true 
model performance. 
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Precision-Recall Curves 
In machine learning metrics, precision is used to measure how many of positive predictions are 
truly positive. Recall (a.k.a. sensitivity, true positive rate) is the measure of the number of true 
positives that are correctly classified as positive. Together, precision and recall can be used to 
assess model performance with respect to a minor class in an imbalanced model; a precision-recall 
(PR) curve is often used as visualization of this assessment. As with ROC curves, we may use the 
area under the PR curve for a quantitative comparison of model performance (the closer the AUC 
value is to 1, the better the model performance).1, 2  As seen in Figure S5, the PR curve improves 
for classification NNPs and remains similar for the ENP and INP classification from the first to 
second SMML models. 

Figure S5: Precision-recall curves for the first (A) and second (B) SSML models with AUC 
values shown for each of the particle classes used in the model. The weighted-averages were 
0.945 and 0.912 for A and B, respectively. 
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Mixture Analysis 
Figure S6: The number of particles that were classified by the second machine learning model vs. 
the number of calculated, or theoretically desired, engineered (A) and incidental (B) particles. 
Error bars show the variability of the model in the number of particles in each class depending on 
which particle events were sampled for the training sets. Figure includes the unclassifiable particle 
classes and the number of particle events that fell below 49 ag. 
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Table S7: ANOVA test results for nanoparticle classification, by semi-supervised machine 
learning; results were calculated with an alpha of 0.05. 

A) Increasing ENPs PNC with constant INP and NNP background 

  DF Sum of 
Squares 

Mean 
Square F Value Prob > F 

No. 
ENPs 

Model 1 325.81 325.81 776.21 9.87E-6 
Error 4 1.68 0.42   
Total 5 327.49    

No. 
INPs 

Model 1 30.96 30.96 3.39 0.14 
Error 4 36.55 9.14   
Total 5 67.50    

No. 
NNPs 

Model 1 1.30 1.30 0.07 0.81 
Error 4 78.86 19.72   
Total 5 80.17    

No. 
UNIs 

Model 1 22.28 22.28 101.78 5.43E-4 
Error 4 0.88 0.22   
Total 5 23.16    

No. 
UNEs 

Model 1 49.14 49.14 247.10 9.57E-5 
Error 4 0.80 0.20   
Total 5 49.94    

 

B) Increasing INPs PNC with constant ENP and NNP background 

  DF Sum of 
Squares 

Mean 
Square F Value Prob > F 

No. 
ENPs 

Model 1 4.41 4.41 8.57 0.043 
Error 4 2.06 0.51   
Total 5 6.47    

No. 
INPs 

Model 1 1859.57 1859.57 1411.27 3.00E-6 
Error 4 5.27 1.32   
Total 5 1864.84    

No. 
NNPs 

Model 1 511.62 511.62 2.67 0.18 
Error 4 767.35 191.84   
Total 5 1278.98    

No. 
UNIs 

Model 1 73.72 73.72 52.83 1.90E-3 
Error 4 5.58 1.40   
Total 5 79.30    

No. 
UNEs 

Model 1 15.28 15.28 87.15 7.33E-4 
Error 4 0.70 0.18   
Total 5 15.99 4.41   
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Particle Type Specific Detection Limit Filtering 
A particle-type detection limit is the minimum signal of a major element (j) required to produce a 
measurable signal (at a given confidence level) of a minor element (k) from a particle type that 
contains elements j and k at a given ratio (Rj:k).3 The particle-type detection limit is calculated 
based on Poisson-Normal statistics and also depends on the critical value of the minor element (i.e. 
LC,sp,k) in a given particle type. A generic particle-type detection limit (LD,sp,j,j-k) expression is given 
in Equation S2, where 𝑧𝑧1−𝛽𝛽 is the one-sided z-score for a false-negative 𝛽𝛽 value. This beta value 
is usually set to 5% to achieve a 95% confidence limit for the detection limit. 

𝐿𝐿𝐷𝐷,𝑠𝑠𝑠𝑠,𝑗𝑗,𝑗𝑗−𝑘𝑘 = �
𝑧𝑧1−𝛽𝛽+�𝑧𝑧1−𝛽𝛽2+4𝐿𝐿𝐶𝐶,𝑠𝑠𝑠𝑠,𝑘𝑘

2
�

2

𝑅𝑅𝑗𝑗:𝑘𝑘    Eq. S2 

In our analysis of Ce-containing NNPs (i.e. from a bastnaesite mineral sample), both Ce:La and 
Ce:Nd showed good correlation. The signal (TofCts) ratio of Ce:La was 2.11 and the mass ratio 
was 1.99. For the Ce:Nd ratio, the TofCts ratio was 3.89 and the mass ratio was 2.02. Because 
particle-type detection limits are calculated based on Poisson statistics, they are calculated in the 
signal domain. Example calculations for 𝐿𝐿𝐷𝐷,𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶−𝐿𝐿𝐿𝐿 and 𝐿𝐿𝐷𝐷,𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶−𝑁𝑁𝑁𝑁 with a beta value of 5% 
and experimental LC,sp,k, and Rj:k  values from the NNP neat suspension are given below in Eq. S3 
and S4, respectively. 

𝐿𝐿𝐷𝐷,𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶−𝐿𝐿𝐿𝐿 = �1.64+�2.69+4(7.64)
2

�
2
∗ 2.11 = 28.9 TofCts    Eq. S3 

𝐿𝐿𝐷𝐷,𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶−𝑁𝑁𝑁𝑁 = �1.64+�2.69+4(6.92)
2

�
2
∗ 3.89 = 49.7 TofCts   Eq. S4 

The particle-type detection limits correspond to Ce masses of 100 ag and 172 ag, respectively, for 
the detection of Ce-La and Ce-Nd signatures in NNPs. These particle-type detection limits indicate 
the minimum signal from Ce required to measure La or Nd in the Ce-NNPs with 95% confidence. 
If Ce is measured as a Ce-only smNP with Ce signal greater than 𝐿𝐿𝐷𝐷,𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶−𝐿𝐿𝐿𝐿, then the particle 
is classified as an “ENP.” However, if a Ce-only smNP is recorded with Ce signal less than 
𝐿𝐿𝐷𝐷,𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶−𝐿𝐿𝐿𝐿, then the particle is classified as “Ce-only undefined.” Ce-INPs are characterized as 
having both Ce and La. With particle-type detection limit filtering, if a dual-metal Ce-La particle 
is measured, and the Ce signal is greater than 𝐿𝐿𝐷𝐷,𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶−𝑁𝑁𝑁𝑁, then the particle is classified as an 
“INP.” However, if a Ce-La mmNP particle is recorded with Ce signal less than 𝐿𝐿𝐷𝐷,𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶−𝑁𝑁𝑁𝑁, 
then this particle is not large enough to be certain that Nd would have been measured if the particle 
were an NNP; therefore, we cannot confidently assign a class to the particle event and it is 
classified as “CeLa undefined.” Any Ce-containing particles with measurable Nd signals are 
classified as “NNPs.” 

The results of the particle-type detection limit classification are summarized in Figure S7. The 
slopes were also statistically tested with an ANOVA test and results are given in Table S8. As with 
semi-supervised machine learning, the slope of the ENPs was significantly different from zero and 
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the detection limit classification performs as expected with a constant INP and NNP background. 
Additionally, the particle-type specific detection limits showed that the slope of the NNPs was the 
only significantly different from zero when increasing the INP’s PNC. The ENPs trendline had an 
R2 of 0.667 and a p-value of 0.047, similar to the results of the semi-supervised machine learning 
model performance. However, the maximum number of incidental particles classified by the 
detection limit classification, 274, was small in comparison to the maximum number classified by 
machine learning, 400. 

Figure S7: Scatter plot of particle event classification, by particle type specific detection limits, 
as a function of increasing ENP number (A) and INP number (B).  
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Table S8: ANOVA test results for nanoparticle classification, by particle-type specific detection 
limits; results were calculated with an alpha of 0.05. 

A) Increasing ENPs PNC with constant INP and NNP background 

  DF Sum of 
Squares 

Mean 
Square F Value Prob > F 

No. 
ENPs 

Model 1 191984.15 191984.15 248.31 9.48E-5 
Error 4 3092.69 773.17   
Total 5 195076.83    

No. 
INPs 

Model 1 45.68 45.68 0.62 0.48 
Error 4 295.65 73.91   
Total 5 341.33    

No. 
NNPs 

Model 1 180.93 180.93 5.73 0.075 
Error 4 126.40 31.60   
Total 5 307.33    

No. 
UNIs 

Model 1 41320.05 41320.05 241.36 1.00E-4 
Error 4 684.78 171.20   
Total 5 42004.83    

No. 
UNEs 

Model 1 68.08 68.08 0.58 0.49 
Error 4 469.42 117.36   
Total 5 537.50    

B) Increasing INPs PNC with constant ENP and NNP background 

  DF Sum of 
Squares 

Mean 
Square F Value Prob > F 

No. 
ENPs 

Model 1 676.90 676.90 8.01 0.047 
Error 4 337.93 84.48   
Total 5 1014.83    

No. 
INPs 

Model 1 54626.38 54626.38 1533.87 2.54E-6 
Error 4 142.45 35.61   
Total 5 54768.83    

No. 
NNPs 

Model 1 24.76 24.76 0.30 0.61 
Error 4 332.58 83.14   
Total 5 357.33    

No. 
UNIs 

Model 1 94954.87 94954.87 261.59 8.55E-5 
Error 4 1451.97 362.99   
Total 5 96406.83    

No. 
UNEs 

Model 1 11935.89 11935.89 51.80 1.97E-3 
Error 4 921.61 230.40   
Total 5 12857.50    
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