Applicability of microwave induced plasma optical emission spectrometry for wear metal determination in lubricant oil using a multinebulizer

Sergio J. Abellán-Martín, Miguel Ángel Aguirre and Antonio Canals

Department of Analytical Chemistry and Food Science, University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080, Alicante, Spain

Figures

Figure S1. Schematic of experimental setup of the different liquid sample introduction using the multinebulizer (MultiNeb®).

Figure S2. Signal variation during an SDA analysis.

Figure S3. Percent recoveries (%) for experiments with lubricating oil samples determined by the MP AES using different calibration strategies. A. Unused lubricating oil. B. Used lubricating oil

Tables

Table S1. Optimum instrumental parameters used with the MP AES.

Instrumental parameter	Mode			
mstrumentar parameter	Normal	Continuous		
Nebulizer gas flow (L min ⁻¹)	0.7	0.7		
Channel 1 liquid flow (mL min-1)	0.2	0.2		
Channel 2 liquid flow (mL min-1)	0.5	0.5		
Channel 3 liquid flow (mL min-1)	0.5	0.5		
Integration time (s)	3	1		
Number of replicates	3	1		
Plasma observation position	О	0		
Background correction	Automatic	Automatic		

Table S2. Emission lines used in this work.

Element	Emission lines (nm)		
Al	396.152		
Cr	425.433		
Cu	324.754		
Mn	403.076		
Ni	352.454		
V	309.311		
Y	371.029		

Table S3. Critical comparison of the different calibration methodologies evaluated.

Calibration method	Organic standards	Aqueous standards	Samplesa	Sample preparation (min)	Analysis (min)	Total time (min)	Sample per hour (h ⁻¹)
EC	5	1	4	20	20	40	6
IS	5	1	4	20	20	40	6
SA	-	6	4	15	50	65	4
SDA	-	2	4	5	20	25	10

^a Spiked and non-spiked samples for used and unused lubricating oil.