Supplementary Data

Improving Detection Thresholds and Robust Event Filtering in Single-Particle and Single-Cell ICP-MS Analysis

Matthias Elinkmann *a, Sarah Reuter ^b, Michael Holtkamp ^a, Steffen Heuckeroth ^a, Alexander Köhrer ^a, Katharina Kronenberg ^a, Michael Sperling ^c, Oliver Rubner ^d, C. Derrick Quarles Jr ^e, Michael Hippler ^b, Uwe Karst ^a

^a Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 48, 48149 Münster, Germany

^b Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Muenster, Germany

^c European Virtual Institute for Speciation Analysis (EVISA), Corrensstr. 48, 48149 Münster, Germany

^d Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany

^e Elemental Scientific, Inc., 7277 World Communications Dr., Omaha, NE 68022, United States

E-mail: m.elin@uni-muenster.de

Fig. S 1. Panel A. For a data set of 50 nm AuNP (¹⁹⁷Au, DT = 1 ms), the outlier test requires a value of at least $f_0 = 4$ to obtain a SD greater than zero. Star symbols (\star) mark the final stopping point of the algorithm. Panel B shows the relative SD (RSD) depending on f_0 . For the AuNP (¹⁹⁷Au, DT = 1 ms), μ_B is smaller than one which causes all observed RSD to be larger than 1.5. Data from a sample of *C. reinhardtii* (²⁴Mg, DT = 1 ms) are shown as a reference that agrees with the expectation to observe RSD > 1.5 after the transition to masking effects. For the AuNP data, no points $f_0 < 4$ are shown because the RSD cannot be computed for $\mu_B = 0$.

Fig. S 2. Data from a sample of *C. reinhardtii* (${}^{31}P \rightarrow {}^{31}P^{16}O$, DT = 1 ms) is processed according to the modular workflow. At the top, a mixed histogram of split-corrected cell signals and uncorrected BG is shown (gray). In the middle, only the split-corrected cell events above the " $3.29\sigma_B$ " criterion (Y_D) are shown (blue). At the bottom, the cell signals (black) are filtered with the secondary gate filter ($2 \cdot Y_D$), reducing the remaining false-positive BG contribution.

Table S 1. The key parameters of the improved " $f_0 \cdot \sigma_B$ " outlier test are shown for three samples that were chosen for the respective BG levels to exemplify the algorithm. SD and μ_B refer to the remaining BG signal after the test with the given value of f_0 . The value of f_0 was determined via the incrementing algorithm to guarantee SD > 0. The region with the transition to masking effects was determined with a step size of $\Delta f_0 = 0.01$ and is indicated by f_{mask} . The data supplement Fig. 2, Fig. 3, and Fig. S 1.

Sample, <i>m</i> /z	μ_{B}	SD	<i>f</i> o	f _{mask} transition,
	[cts·DT ⁻¹]	[cts·DT ⁻¹]		$\Delta f_{\rm o} = 0.01$
AuNP (50 nm), ¹⁹⁷ Au	0.1	0.3	5	11.19 → 11.20
S. cerevisiae, ³¹ P→ ³¹ P ¹⁶ O	7.4	3.6	3	$6.53 \rightarrow 6.54$
<i>C. reinhardtii</i> , ²⁴ Mg	235.8	40.8	3	$14.53 \rightarrow 14.54$