## **ELECTRONIC SUPPLEMENTARY INFORMATION**

## COMPARISON OF DIFFERENT MASS BIAS CORRECTION PROCEDURES FOR THE MEASUREMENT OF MERCURY SPECIES-SPECIFIC ISOTOPIC COMPOSITION BY GAS CHROMATOGRAPHY COUPLED TO MULTICOLLECTOR ICP-MS

Laura Suárez-Criado, Silvia Queipo-Abad, Pablo Rodríguez-González\*, José Ignacio García Alonso Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, 33006-Oviedo (Spain) \*Author for correspondence: rodriguezpablo@uniovi.es

Number of pages: 8

Number of Tables: 4

Number of Figures: 3

| GC                         | Agilent 6890                                                                                                                                                                         |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Column                     | DB-5MS (5% diphenyl, 95% dimethylsiloxane, 30 m x<br>0.53 mm i.d. x 1µm)                                                                                                             |  |  |
| Carrier gas                | Не                                                                                                                                                                                   |  |  |
| Injector temperature       | 250 °C                                                                                                                                                                               |  |  |
| Volume of injection        | 2 μL                                                                                                                                                                                 |  |  |
| Injector purge time        | 1 min                                                                                                                                                                                |  |  |
| GC-ICP-MS Interface T      | 270 °C                                                                                                                                                                               |  |  |
| Initial temperature        | 60 °C                                                                                                                                                                                |  |  |
| Initial time               | 1 min                                                                                                                                                                                |  |  |
| Ramp                       | 40 °C/min                                                                                                                                                                            |  |  |
| Final temperature          | 250 °C                                                                                                                                                                               |  |  |
| Final time                 | 1 min                                                                                                                                                                                |  |  |
| Total analysis time        | 6.8 min                                                                                                                                                                              |  |  |
| MC-ICP-MS                  | Neptune Plus (Thermo Scientific)                                                                                                                                                     |  |  |
| RF power                   | 1200 W                                                                                                                                                                               |  |  |
| Resolution mode            | Medium                                                                                                                                                                               |  |  |
| Integration times          | 0.132 s                                                                                                                                                                              |  |  |
| Cycles/Blocks              | 2500                                                                                                                                                                                 |  |  |
| Sample Ar gas flow         | 0.7 L/min                                                                                                                                                                            |  |  |
| Nebulization Ar gas flow   | 0.5 L/min                                                                                                                                                                            |  |  |
| Cooling Ar gas flow        | 15.2 L/min                                                                                                                                                                           |  |  |
| Auxiliary Ar gas flow      | 0.8 L/min                                                                                                                                                                            |  |  |
| Faraday Cups configuration | L4, L3 ( <sup>198</sup> Hg), L2 ( <sup>199</sup> Hg), L1 ( <sup>200</sup> Hg), C ( <sup>201</sup> Hg), H1 ( <sup>202</sup> Hg), H2 ( <sup>203</sup> Tl), H3 ( <sup>205</sup> Tl), H4 |  |  |

 Table S1. GC-MC-ICP-MS operating conditions.

Figure S1. Schematic analytical setup of the GC-MC-ICPMS used in this work for the measurement of compound-specific Hg isotope ratios.



**Figure S2.** Process for the determination of mercury and thallium isotope ratios. 1) Signal profile for <sup>198</sup>Hg and <sup>202</sup>Hg for 321 consecutive data points (signal for <sup>202</sup>Hg shifted for clarity). 2) Measurement of the isotope ratio from the slope of the linear plot. 3) Correction for time-lag at <sup>202</sup>Hg and final isotope ratio. 4) Signal profile for <sup>203</sup>Tl and <sup>205</sup>Tl for 321 consecutive data points. 5) Calculation of the <sup>205</sup>Tl/<sup>203</sup>Tl isotope ratio. 6) Determination of the residuals for thallium to check for mass bias alterations during the elution of the mercury peak.



Figure S3. δ-values calculation. a) SSB and b) Baxter delta calculation model.



**Table S2.** Average NIST RM 8610 IR values and the internal precision expressed as  $\pm 2SE$  calculated with Russell and Baxter for three independent measurement sessions with three different mass bias correction approaches: 1) 321 acquisition points of Tl, 2) 27 acquisition points of Tl and 3) point by point (Pbp).

| Mass Bias Correction<br>Model              |                       |                     | Russell             | Baxter              |                     |                     |  |
|--------------------------------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|
| Mass bias calculation<br>procedure with Tl |                       | LRS-321 TI          | LRS-27 TI           | PbP – 321 Tl        | LRS-321 TI          | LRS-27 TI           |  |
| Session 1<br>NIST<br>RM 8610<br>(n=8)      | <sup>199/198</sup> Hg | $1.6871 \pm 0.0005$ | $1.6870 \pm 0.0007$ | 1.6869± 0.0008      | $1.6871 \pm 0.0002$ | $1.6871 \pm 0.0003$ |  |
|                                            | <sup>200/198</sup> Hg | $2.3042 \pm 0.0008$ | $2.3040 \pm 0.0011$ | 2.3037± 0.0014      | $2.3042 \pm 0.0005$ | $2.3042 \pm 0.0005$ |  |
|                                            | <sup>201/198</sup> Hg | $1.3114 \pm 0.0005$ | $1.3112 \pm 0.0008$ | 1.3109± 0.0013      | $1.3114 \pm 0.0003$ | $1.3111 \pm 0.0005$ |  |
|                                            | <sup>202/198</sup> Hg | $2.9611 \pm 0.0008$ | $2.9605 \pm 0.0018$ | 2.9597± 0.0033      | $2.9611 \pm 0.0003$ | $2.9608 \pm 0.0009$ |  |
| Session 2<br>NIST<br>RM 8610<br>(n=8)      | <sup>199/198</sup> Hg | $1.6868 \pm 0.0005$ | $1,6869 \pm 0.0005$ | $1.6868 \pm 0.0006$ | $1.6868 \pm 0.0002$ | $1.6869 \pm 0.0002$ |  |
|                                            | <sup>200/198</sup> Hg | $2.3044 \pm 0.0008$ | $2.3045 \pm 0.0012$ | $2.3045 \pm 0.0006$ | $2.3044 \pm 0.0003$ | $2.3045 \pm 0.0004$ |  |
|                                            | <sup>201/198</sup> Hg | $1.3114 \pm 0.0003$ | $1,3115 \pm 0.0006$ | $1.3115 \pm 0.0015$ | $1.3114 \pm 0.0001$ | $1.3116 \pm 0.0002$ |  |
|                                            | <sup>202/198</sup> Hg | $2.9610 \pm 0.0006$ | $2.9613 \pm 0.0015$ | $2.9613 \pm 0.0027$ | $2.9610 \pm 0.0002$ | $2.9613 \pm 0.0005$ |  |
| Session 3<br>NIST<br>RM 8610<br>(n=8)      | <sup>199/198</sup> Hg | $1.6871 \pm 0.0008$ | $1.6871 \pm 0.0007$ | $1.6871 \pm 0.0007$ | $1.6871 \pm 0.0003$ | $1.6871 \pm 0.0003$ |  |
|                                            | <sup>200/198</sup> Hg | $2.3044 \pm 0.0010$ | $2.3044 \pm 0.0009$ | $2.3043 \pm 0.0012$ | $2.3045 \pm 0.0004$ | $2.3044 \pm 0.0003$ |  |
|                                            | <sup>201/198</sup> Hg | $1.3114 \pm 0.0005$ | $1.3114 \pm 0.0006$ | $1.3113 \pm 0.0012$ | $1.3115 \pm 0.0002$ | $1.3115 \pm 0.0002$ |  |
|                                            | <sup>202/198</sup> Hg | $2.9612 \pm 0.0014$ | $2.9611 \pm 0.0013$ | $2.9608 \pm 0.0032$ | $2.9613 \pm 0.0004$ | $2.9611 \pm 0.0005$ |  |

**Table S3.** Average Hg(II)-NIST 3133  $\delta_{zero}$  (‰) and external precisions expressed as ±2SD calculated with SSB and Baxter for three independent measurement sessions with three different mass bias correction calculation methods: 1) LRS for 321 acquisition points of Tl, 2) LRS for 27 acquisition points of Tl and 3) PbP approach.

| Delta values calculation strategy       |                           |                 | SSB             | Baxter          |                 |                           |  |
|-----------------------------------------|---------------------------|-----------------|-----------------|-----------------|-----------------|---------------------------|--|
| Mass Bias Correction Model              |                           | Russell         | Russel Russel   |                 | Baxter Baxter   |                           |  |
| Mass bias calculation procedure with Tl |                           | LRS-321 TI      | LRS-27 TI       | PbP – 321 Tl    | LRS-321 TI      | LRS-27 TI                 |  |
| NIST 3133<br>(n=26)                     | $\delta^{202}$ Hg         | $0.07 \pm 0.41$ | $0.11 \pm 0.70$ | $0.14 \pm 1.26$ | $0.06\pm0.46$   | $-0.29 \pm 1.94$          |  |
|                                         | $\delta^{201}\mathrm{Hg}$ | $0.06 \pm 0.47$ | $0.08\pm0.69$   | $0.11 \pm 1.00$ | $0.00\pm0.59$   | $-0.13 \pm 0.97$          |  |
|                                         | $\delta^{200}\mathrm{Hg}$ | $0.02 \pm 0.43$ | $0.03 \pm 0.50$ | $0.05\pm0.77$   | $0.00\pm0.50$   | $-0.15 \pm 1.16$          |  |
|                                         | δ <sup>199</sup> Hg       | $0.02 \pm 0.34$ | $0.03 \pm 0.33$ | $0.03\pm0.42$   | $0.01 \pm 0.35$ | $\textbf{-0.14} \pm 0.87$ |  |

**Table S4.** Average  $\delta^{xxx}$  Hg(II) NIST RM 8610 (‰) and external precisions expressed as ±2SD calculated with SSB and Baxter for three independent measurement sessions with three different mass bias correction calculation methods: 1) LRS for 321 acquisition points of Tl, 2) LRS for 27 acquisition points of Tl and 3) PbP approach.

| Delta values calculation strategy       |                           | SSB              |                           |                  | Baxter           |                  |                     |
|-----------------------------------------|---------------------------|------------------|---------------------------|------------------|------------------|------------------|---------------------|
| Mass Bias Correction Model              |                           | Russell          | Russel                    | Russel           | Baxter           | Baxter           | Reference<br>values |
| Mass bias calculation procedure with Tl |                           | LRS-321 TI       | LRS-27 TI                 | PbP – 321 Tl     | LRS-321 TI       | LRS-27 TI        | -                   |
|                                         | $\delta^{202}\mathrm{Hg}$ | $-0.59\pm0.34$   | $-0.61 \pm 0.40$          | -0.77± 1.09      | $-0.60 \pm 0.31$ | $-0.60 \pm 0.57$ | $-0.56 \pm 0.03$    |
| NIST RM 8610                            | $\delta^{201}\mathrm{Hg}$ | $-0.44 \pm 0.35$ | $-0.46 \pm 0.46$          | $-0.58 \pm 0.92$ | $-0.44 \pm 0.44$ | $-0.46 \pm 0.74$ | $-0.46 \pm 0.02$    |
| (n=24)                                  | $\delta^{200}\mathrm{Hg}$ | $-0.27 \pm 0.38$ | $-0.28 \pm 0.44$          | $-0.36 \pm 0.65$ | $-0.27 \pm 0.44$ | $-0.25 \pm 0.46$ | $-0.27 \pm 0.01$    |
|                                         | δ <sup>199</sup> Hg       | $-0.16 \pm 0.40$ | $\textbf{-0.17} \pm 0.38$ | $-0.21 \pm 0.43$ | $-0.17 \pm 0.44$ | -0.16± 0.45      | $-0.17 \pm 0.01$    |