The Concentration gradient theory simulations.

Based on the Zn isotope value formula:

 $\delta^{66}Zn = [({}^{66}Zn/{}^{64}Zn)_{sample}/({}^{66}Zn/{}^{64}Zn)_{IRMM-3702}-1]*1000$

In the following derivation equations, C_{sp} represents the sample concentration, C_{st} represents the specimen concentration, and k represents the sample-to-standard concentration ratio ($k=C_{sp}/C_{st}$). And f symbolizes the ratio of interference signal intensity to isotope signal intensity within a specific concentration of Zn standard solution.

Model 1 Considering the isobaric interferences on ⁶⁴Zn:

$$\delta^{66} Zn = [({}^{66} Zn/{}^{64} Zn)_{sample}/({}^{66} Zn/{}^{64} Zn)_{IRMM-3702}-1]*1000$$

= [(${}^{66} C_{sp}/{}^{64} C_{sp}$)/(${}^{66} C_{st}/{}^{64} C_{sp}$)-1]*1000
= [(${}^{k66} C_{st}/({}^{k64} C_{st}+f*{}^{*64} C_{st})$)/(${}^{66} C_{st}/({}^{64} C_{st}+f*{}^{*64} C_{st})$)-1]*1000
= [${}^{k}(1+f)/(k+f)$ -1]*1000
= [$f(k-1)/(k+f)$]*1000

Model 2 Considering isobaric interferences on ⁶⁶Zn, ⁶⁸Zn, and ⁷⁰Zn.

$$\delta^{66} Zn = [({}^{66} Zn/{}^{64} Zn)_{sample} / ({}^{66} Zn/{}^{64} Zn)_{IRMM-3702} - 1]*1000$$

= [((${}^{66} C_{sp}/{}^{64} C_{sp}$)/((${}^{66} C_{st}/{}^{64} C_{sp}$)-1]*1000
= [((${}^{k*66} C_{st} + f^{*66} C_{st}$)/ ${}^{k*64} C_{st}$)/((${}^{66} C_{st} + f^{*66} C_{st}$)/ ${}^{64} C_{st}$)-1]*1000
= [(${}^{k+f}$)/(${}^{k+k*f}$)-1]*1000
= [(${}^{f} - f^{*k}$)/(${}^{k+k*f}$)]*1000