Graphene-based microfluidic perforated microelectrode arrays for retinal electrophysiological

studies

Alberto Esteban-Linares,^{a,‡} Xiaosi Zhang,^{b,‡} Hannah H. Lee,^c Michael L. Risner,^c Sharon M. Weiss,^{b,d} Ya-Qiong Xu,^{b,d} Edward Levine,^{c,e,*} and Deyu Li^{a,*}

^aDepartment of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, United States

^bDepartment of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, United States

^cDepartment of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, United States

^dDepartment of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, United States

^eDepartment of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, United States

[‡]These authors contributed equally to this work.

Table of Contents

Figure S1: Optical images of the µpMEA platform	S-3
Figure S2: COMSOL Multiphysics Simulation	S-4
Figure S3: Firing activities of three different types of RGCs upon light stimulation	S-4
Figure S4: Schematic of the experimental design used for the retina phare experiments	macology S-5
Figure S5: Responses of electrodes located away from delivery channel upon locally del mM K ⁺ stimulation	ivered 22 S-5
Figure S6: Time Analysis	S-6

Supplemental Figure 1: Optical images of the μ pMEA platform. (a) Open Channel PDMS Layer. PDMS structures (green arrows) on a glass coverslip outline the microfluidic channel and chambers. (b) The PI layer with through-holes with the graphene electrodes indicated by white dashed boxes. (c) An optical image of the microfabricated PI layer with through-holes and Ti/Au electrodes. Scale bars in (a), (b), and (c) are 500, 100, and 100 μ m, respectively.

Supplemental Figure 2: COMSOL Multiphysics simulation. Results of three-dimensional computational fluid dynamics model for understanding pressure distribution across the throughholes in three different configurations: one 100 μ m deep suction channel (**a**), one 1 mm deep suction channel (**b**), and two 100 μ m deep suction channels (**c**). The plot depicts the pressure distribution along a *y*-axis slice at the center of the channel and chamber. (**d**) Statistical analysis results of the pressure distribution across the through-holes in three different configurations, showing a maximum percentage difference in pressure between the holes experiencing the highest and lowest negative pressure of 122%, 3%, and 55%, respectively.

Supplemental Figure 3: Firing activities of three different types of RGCs upon light stimulation: ON Type (a), ON-OFF Type (b), and OFF Type (c) in response to the same light stimulus. Bars above the plots indicate the light OFF (black) and ON (white).

Supplemental Figure 4: Schematic of the experimental design used for the retina pharmacology experiments.

Supplemental Figure 5: Responses of electrodes located away from delivery channel upon locally delivered 22 mM K⁺ stimulation. The responses can be categorized as stron (**a**), mild (**b**) and weak (**c**), based on their degree of similarity to standard activity upon high K⁺ stimulation (Figure 5c).

Supplemental Figure 6: Time analysis. Comparison of response to locally delivered K⁺ stimulation from electrode located ON (positioned on) and OFF (160 μ m away from) the delivery channel. Neuronal depolarization block occurs 12.5 s earlier in the ON channel electrode, whereas the reappearance of firing activity takes place 17 s later. The red and green lines depict the cessation and recovery of action potentials from the electrodes located on and off the delivery channel, respectively.