Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Performance-enhanced clogging-free viscous sheath constriction impedance flow cytometry

Junwen Zhu¹, Yongxiang Feng¹, Huichao Chai¹, Fei Liang¹, Zhen Cheng², Wenhui Wang^{1*}

¹State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China.

²Department of Automation, Tsinghua University, Beijing, 100084, P. R. China.

Supplementary Note 1

For viscosity characterization of PEG at different concentrations and other liquids, we use a classical functional relationship for Newtonian liquid^{1, 2}

$$\frac{Q_{\rm sam}}{Q_{\rm sh}} \cdot \frac{\eta_{\rm sam}}{\eta_{\rm sh}} = \frac{w_{\rm ap}}{w_{\rm ch} - w_{\rm ap}},\tag{S1}$$

where Q_{sam} and Q_{sh} are the flow rate of sample and sheath fluid, η_{sam} and η_{sh} are the corresponding viscosity, and w_{ap} and w_{ch} are the width of SA and whole flow channel, as shown in Figure S1. In this study, we used octyl alcohol with known viscosity ($\eta = 8.9 \text{ mPa} \cdot \text{s}$) as the sheath fluid and the liquid with viscosity to be measured as the sample fluid. In eqn. (S1), Q_{sam} and Q_{sh} are given by the syringe pumps, w_{ch} is set according to the device design, and w_{ap} is measured through microscope. In this way, viscosity of the liquids was obtained (Table S2).

Figure S1. Schematic diagram of microfluidic flow channel structure under SC.

Supplementary Note 2

The electrical properties of the mixture, where the cell is centered, can be represented by the properties of the individual cell and the suspending medium through Maxwell's mixture theory (MMT)³. The complex impedance of the mixture can be given by

$$Z^*_{_{mix}} = \frac{1}{j\omega\varepsilon^*_{mix}l\kappa}$$
(S2)

where κ is the cell constant dependent on the geometrical parameters of the sensing zone, and l denotes the electrode length. $\varepsilon_{\text{mix}}^* = \varepsilon_{\text{mix}} + j \frac{\sigma_{\text{mix}}}{\omega}$ indicates the complex permittivity of the mixture, with the conductivity σ_{mix} , the permittivity ε_{mix} and the angular frequency ω , which can be calculated as

$$\varepsilon_{\min}^* = \varepsilon_m^* \cdot \frac{1 + 2\delta \cdot f_{CM}^*}{1 - \delta \cdot f_{CM}^*}$$
(S3)

where ε_{m}^{*} is the complex permittivity of the medium. f_{CM}^{*} is the Clausius–Mossotti coefficient,

given by $f_{\rm CM}^* = \frac{\varepsilon_{\rm c}^* - \varepsilon_{\rm m}^*}{\varepsilon_{\rm c}^* + 2\varepsilon_{\rm m}^*}$, where $\varepsilon_{\rm c}^*$ is the complex permittivity of the cell. δ represents the cell

volume fraction, so δ increases by reducing SA. When measuring the impedance with the medium alone (i.e., Z^*_{base}), its complex permittivity is ε^*_{m} .⁴ Therefore, the impedance variation due to the presence of a cell can be calculated as

$$\Delta Z = Z^*_{\text{mix}} - Z^*_{\text{base}} = \frac{1}{j\omega\varepsilon^*_{\text{m}}l\kappa} \cdot \frac{-3\delta \cdot f^*_{\text{CM}}}{1+2\delta \cdot f^*_{\text{CM}}}.$$
(S4)

Eqn. (S4) means $|\Delta Z| \propto \delta$. Sensitivity is defined as $|\Delta Z|/|Z_{\text{base}}|$ in this study. Thus, reducing SA can increase δ , thus increase sensitivity.

On the other hand, SNR is calculated by $20 lg(V_s/V_n)$, where V_s and V_n represent the difference of signal and noise relative to the baseline voltage, respectively. Thus, $V_s \propto |\Delta Z|$, and reducing SA can also increase SNR.

Figure S2. One example segment of impedance signals detected by the coplanar double electrodes with MC, aqueous SC, and oil-phase SC.

Liquid type	Viscosity	
$C_{ m S}$	0.96 pF	
$C_{\rm DL}$ in MC with SA of 25 μm	70 pF	
$C_{\rm DL}$ in MC with SA of 30 μm	101 pF	
$C_{\rm DL}$ in MC with SA of 35 μm	126 pF	
$C_{\rm DL}$ in SC with SA of 25 μm	104 pF	
$C_{\rm DL}$ in SC with SA of 30 μm	119 pF	
$C_{\rm DL}$ in SC with SA of 35 μ m	135 pF	

Table S1. Pre-determined values of $C_{\rm S}$ and $C_{\rm DL}$.

Table S2.	Viscosity of	f different l	liquids in	this study.
-----------	--------------	---------------	------------	-------------

Liquid type	Viscosity	
PBS	1.5 mPa·s	
Deionized water	1.0 mPa·s	
Octyl Alcohol	8.9 mPa·s	
5 mM PEG	2.1 mPa·s	
40 mM PEG	14.8 mPa·s	
50 mM PEG	21.0 mPa·s	
75 mM PEG	46.7 mPa·s	
90 mM PEG	69.5 mPa·s	

References

- M. H. Panhwar, F. Czerwinski, V. A. S. Dabbiru, Y. Komaragiri, B. Fregin, D. Biedenweg, P. Nestler, R. H. Pires and O. Otto, *Nature Communications*, 2020, 11.
- 2. J. B. Knight, A. Vishwanath, J. P. Brody and R. H. Austin, *Physical Review Letters*, 1998, **80**, 3863-3866.
- 3. T. Sun, D. Holmes, S. Gawad, N. G. Green and H. Morgan, Lab Chip, 2007, 7, 1034-1040.
- 4. T. B. a. P. R. Ana Valero, Lab Chip, 2010, 10, 2216-2225.