## **Supplementary Information**

# Selective laser ablation for in-situ fabrication of enclosed channel porous-media microfluidic analytical devices

Saichon Sumantakul<sup>a</sup> and Vincent T. Remcho<sup>a\*</sup>

<sup>a</sup> Department of Chemistry, Oregon State University, Corvallis, OR 97331, United States

\*Corresponding Author: Vincent T. Remcho Email: vince.remcho@oregonstate.edu

Tel.: +1 541 737 8181. Fax: +1 541 737 2062

To whom correspondence should be addressed

Email: vince.remcho@oregonstate.edu

### Assay protocols for determination of albumin, glucose, and cholesterol in 3D flow-through





**Fig. S1** 3D flow-through devices used for analysis of albumin, glucose, and cholesterol. (a) Photographs of the devices in array format. (b) Schematic illustration of a device in an exploded view. Whatman 1 was ablated by a 455 nm laser, and PR or PE was cut using a digital craft cutter.

Albumin assay used in this work based on color changing of an indicator, TBPB, from yellow to green/blue upon formation of protein-indicator complex. In this assay, 2.0  $\mu$ L of 250 mM of citrate buffer pH 1.8 (92% water, 8% ethanol) was deposited on the sample introduction side and 1.5  $\mu$ L of 1:1 mixture of the citrate buffer (500 mM) and 5 mM of TBPB (95% ethanol, 5% water) was deposited on the detection side. The device was dried at 30 °C for 10 minutes. BSA solutions (1 - 80 g/L) prepared in PBS pH 7.4 were used as albumin standards. Human serum sample was applied to the device without further dilution. 6  $\mu$ L sample volume was used

when the device was fabricated with PR and 7  $\mu$ L sample volume was used when the device was fabricated with PE.

Enzymatic assays were used for glucose determination. 1.5  $\mu$ L of solution containing 720 U/mL GO and 180 U/mL HRP in PB pH 6 was dried on the detection side. For the devices fabricated with PR, 2.0  $\mu$ L of solution containing 0.05 M AAP and 0.1 M HBA in 25% (v/v) ethanol was dried on the sample introduction side. For the devices fabricated with PE, 2.5  $\mu$ L of solution containing 0.2 M AAP and 0.4 M HBA in 25% (v/v) ethanol was dried on the sample introductions (0.5 – 12 mM) prepared in PBS pH 7.4 were used as glucose standards. Human serum sample was applied to the device without further dilution. 6  $\mu$ L sample volume was used when the device was fabricated with PE.

Enzyme cascade assays were used for total cholesterol determination. 1.5  $\mu$ L of solution mixture of 20 U/mL CE, 40 U/mL CO, and 20 U/mL HRP in PB pH 7 containing 0.1% (v/v) Triton X-100 was dried on the detection side. 2.0  $\mu$ L of 0.075 M ABTS was dried on the sample introduction side for the devices fabricated with PR and 2.5  $\mu$ L of 0.15 M ABTS in 50% (v/v) ethanol was dried on the sample introduction side for the devices fabricated with PR and 2.5  $\mu$ L of 0.15 M ABTS in 50% (v/v) ethanol was dried on the sample introduction side for the devices fabricated with PE. The stock solution of cholesterol (5 mM) was prepared in water containing 3% (v/v) isopropanol and 3% (v/v) Triton X-100. The solution was kept in a water bath at 60°C until cholesterol was dissolved, and a clear solution of the stock solution with PB pH 7 containing 1% (v/v) Triton X-100. Human serum sample was diluted five times with PB pH 7 containing 1% (v/v) isopropanol and 1% (v/v) Triton X-100. The diluted serum was heated in a water bath at 40°C for a few minutes and then vortex for 30 seconds to ensure cholesterol was soluble in the solution. 7  $\mu$ L of standards or sample solutions were applied to the device for cholesterol determination.

### Thermogravimetric analysis of porous substrates and polymeric films

**Table. S1** Summary of decomposition temperatures of porous substrates and polymeric films

 obtained from thermogravimetric analysis (TGA).

| Materials                              | Thickness | Decomposition temperature, D <sub>T</sub> (°C)<br>[ Mass loss (%wt) ] |                               |                     |  |  |  |  |
|----------------------------------------|-----------|-----------------------------------------------------------------------|-------------------------------|---------------------|--|--|--|--|
| inatorialo                             | (mm)      | D <sub>T1</sub>                                                       | D <sub>T2</sub>               | D <sub>T3</sub>     |  |  |  |  |
| Nitrocellulose<br>(NC)                 | 0.12      | 184.75<br>[ 92.68% ]                                                  | -                             | -                   |  |  |  |  |
| Cellulose*<br>(W1)                     | 0.18      | 365.56<br>[ 87.99% ]                                                  | -                             | -                   |  |  |  |  |
| Glass microfiber<br>(GF/A)             | 0.26      | >725<br>[ 2.218% ]                                                    | -                             | -                   |  |  |  |  |
| Parafilm<br>(PR)                       | 0.12      | 292.82<br>[ 38.69% ]                                                  | 360.46<br>[ 53.77% ]          | 403.09<br>[ 99.6% ] |  |  |  |  |
| Polyethylene<br>(PE)                   | 0.13      | 481.10<br>[ 99.38% ]                                                  | -                             | -                   |  |  |  |  |
| Polyethylene +<br>adhesive<br>(PE Ad)  | 0.13      | 398.45<br>[ 43.63% ]                                                  | 479.07<br>[ 97.24% ]          | -                   |  |  |  |  |
| Polypropylene +<br>adhesive<br>(PP Ad) | 0.06      | 399.27<br>[ 22.61% ]                                                  | 460.86<br>[ 99.23% ]          | -                   |  |  |  |  |
| Polyester + adhesive<br>(PES Ad)       | 0.07      | 443.86<br>[ 91.03 ]                                                   | -                             | 2. <del></del>      |  |  |  |  |
| Silicone + adhesive<br>(Si Ad)         | 0.78      | 349.22 – 391.66<br>[ 20.68% ]                                         | 549.19 – 599.22<br>[ 78.57% ] | 1.7                 |  |  |  |  |







**Fig. S2** Thermalgravimetric analysis of (a) Whatman 1, (b) Nitrocellulose, (c) Glass microfiber, (d) Parafilm, (e) Polyethylene, (f) Polyethylene + adhesive, (g) Polypropylene + adhesive, (h) Polyester + adhesive, and (i) Silicone + adhesive. The green curves represent the % weigh loss due to increasing of temperature. The blue curves represent derivative of the % weight loss with respect to temperature.

# Combinations of porous substrate and polymeric film tested for fabrication of 2D enclosed devices

Dumbbell-shaped devices were made of the combinations of materials that applicable to selective laser ablation. Stitched composite photographs of the dumbbell-shaped devices are shown in the middle row. Top view and cross-section view microscope images are shown in the top row and bottom row, respectively. Square-shaped devices were made of the combinations of materials that inapplicable to selective laser ablation. Photographs of the square-shaped devices and cross-section view microscope images are shown in the top row and bottom row, respectively laser ablation. Photographs of the square-shaped devices and cross-section view microscope images are shown in the top row and bottom row, respectively.







**Fig. S4** Photographs of 2D enclosed devices made of Whatman 1 as a porous substrate and Parafilm, polyethylene, polyethylene + adhesive, polypropylene + adhesive, polyester + adhesive, or silicon + adhesive as a polymeric material.



**Fig. S5** Photographs of 2D enclosed devices made of Whatman 4, Whatman 541, or Whatman 42 as a porous substrate and polyethylene, or polyethylene + adhesive as a polymeric material.

| Laser type | GF/A + PR                     | GF/A + PE | GF/A + PE Ad | GF/A + PP Ad | GF/A + PES Ad | GF/A + Si Ad |
|------------|-------------------------------|-----------|--------------|--------------|---------------|--------------|
| Laser type | GF/A + PR<br>1.0 mm<br>0.2 mm | GF/A + PE | GF/A + PE Ad | GF/A + PP Ad | GF/A + PES Ad | GF/A + Si Ad |
|            |                               | 0.2 mm    |              |              |               |              |

**Fig. S6** Photographs of 2D enclosed devices made of glass microfiber grade GF/A as a porous substrate and Parafilm, polyethylene, polyethylene + adhesive, polypropylene + adhesive, polyester + adhesive, or silicon + adhesive as a polymeric material.

**Table. S2** Summary of material combinations, laser cutting parameters, % success rate,obtained channel and barrier widths of the 2D enclosed devices fabricated with 455 nm diodelaser in Fig. S3 to Fig. S5.

|    |          | Materials      |          | Cu              | itting param    | eters                  | Succoss     | Channel       | Barrior       |  |
|----|----------|----------------|----------|-----------------|-----------------|------------------------|-------------|---------------|---------------|--|
| No | Тор      | Middle         | Bottom   | Power<br>(Watt) | Speed<br>(mm/s) | Focal<br>point<br>(mm) | rate<br>(%) | width<br>(μm) | width<br>(μm) |  |
| 1  | Parafilm | Nitrocellulose | Parafilm | 1.25            | 4.17            | 3                      | 100 (n=13)  | 1835 ± 22     | 228 ± 20      |  |
| 2  | PE       | Nitrocellulose | PE       | 2.50            | 4.17            | 3                      | 100 (n=14)  | 1789 ± 14     | 190 ± 12      |  |
| 3  | PE Ad    | Nitrocellulose | PE Ad    | 2.50            | 4.17            | 3                      | 100 (n=14)  | 1852 ± 19     | 251 ± 27      |  |
| 4  | PP Ad    | Nitrocellulose | PP Ad    | 1.25            | 4.17            | 3                      | 100 (n=15)  | 1920 ± 8      | 120 ± 15      |  |
| 5  | PES Ad   | Nitrocellulose | PES Ad   | 1.5             | 4.17            | 3                      | 86 (n=14)   | 1975 ± 13     | 76 ± 8        |  |
| 6  | Parafilm | Whatman 1      | Parafilm | 3.50            | 3.33            | 3                      | 100 (n=12)  | 1835 ± 34     | 185 ± 29      |  |
| 7  | PE       | Whatman 1      | PE       | 5.00            | 3.33            | 3                      | 93 (n=15)   | 1882 ± 19     | 86 ± 19       |  |
| 8  | PE Ad    | Whatman 1      | PE Ad    | 5.00            | 3.33            | 3                      | 93 (n=15)   | 1941 ± 27     | 80 ± 18       |  |

**Note:** The % success rate was determined by a ratio of the number of fabricated devices without cut-through profile and leakage to the total number of fabricated devices multiplied by 100.

**Table. S3** Summary of material combinations, laser cutting parameters, % success rate,obtained channel and barrier widths of the 2D enclosed devices fabricated with 10.6  $\mu$ m CO<sub>2</sub>laser in Fig. S3 to Fig. S6.

|    |          | Materials           |          | Cutting         | parameters      |                        | Succoss            | Channel     | Parrier       |               |
|----|----------|---------------------|----------|-----------------|-----------------|------------------------|--------------------|-------------|---------------|---------------|
| No | Тор      | Middle              | Bottom   | Power<br>(Watt) | Speed<br>(mm/s) | Focal<br>point<br>(mm) | Pulses<br>per inch | rate<br>(%) | width<br>(μm) | width<br>(μm) |
| 1  | Parafilm | Nitrocellulose      | Parafilm | 0.25            | 11.34           | 1.30                   | 650                | 60 (n=15)   | 1896 ± 14     | 82 ± 11       |
| 2  | PE       | Nitrocellulose      | PE       | 0.1             | 12.27           | 1.20                   | 300                | 100 (n=25)  | 1862 ± 15     | 140 ± 9       |
| 3  | PE Ad    | Nitrocellulose      | PE Ad    | 0.10            | 6.49            | 1.30                   | 290                | 100 (n=25)  | 1843 ± 10     | 57 ± 6        |
| 4  | PP Ad    | Nitrocellulose      | PP Ad    | 0.05            | 7.45            | 0.70                   | 400                | 44 (n=25)   | 1913 ± 12     | 71 ± 11       |
| 5  | PE       | Whatman 541         | PE       | 0.60            | 7.45            | 1.30                   | 250                | 80 (n=25)   | 1806 ± 20     | 132 ± 14      |
| 6  | PE Ad    | Whatman 541         | PE Ad    | 0.40            | 7.45            | 1.30                   | 250                | 100 (n=20)  | 1962 ± 15     | 51 ± 7        |
| 7  | PE       | Whatman 1           | PE       | 0.65            | 7.45            | 1.30                   | 250                | 80 (n=25)   | 1790 ± 22     | 149 ± 11      |
| 8  | PE Ad    | Whatman 1           | PE Ad    | 0.45            | 7.45            | 1.30                   | 250                | 92 (n=25)   | 1909 ± 19     | 55 ± 6        |
| 9  | PE       | Whatman 42          | PE       | 0.65            | 7.45            | 1.30                   | 250                | 80 (n=25)   | 1790 ± 18     | 152 ± 8       |
| 10 | PE Ad    | Whatman 42          | PE Ad    | 0.45            | 7.45            | 1.30                   | 250                | 92 (n=25)   | 1929 ± 15     | 43 ± 7        |
| 11 | PE       | Whatman 4           | PE       | 0.65            | 7.45            | 1.40                   | 250                | 92 (n=25)   | 1792 ± 17     | 157 ± 10      |
| 12 | PE Ad    | Whatman 4           | PE Ad    | 0.45            | 7.45            | 1.40                   | 250                | 100 (n=25)  | 1918 ± 20     | 50 ± 8        |
| 13 | PE       | Glass<br>microfiber | PE       | 0.85            | 9.86            | 1.40                   | 500                | 92 (n=25)   | 1765 ± 21     | 179 ± 22      |

**Note:** The devices made of Parafilm and polypropylene + adhesive films resulted in 60 and 40 % success rates. This lower % success rate was a result of minute cut-through holes on the top layer of the films that were observed under a microscope in Fig. S3.

#### Channel resolution studies on 2D enclosed devices



Fig. S7 A Design of a device used for channel resolution studies.

Channels were design with the channel widths ranging from 100 to 1000  $\mu m.$ 

**Table. S4** Summary of channel resolution studies including material combinations, laser cutting parameters, and obtained channel widths of the 2D enclosed devices.

|          |                                             | Laser parameters |        |             |     | Designed | Obtained abapped width (um) |  |
|----------|---------------------------------------------|------------------|--------|-------------|-----|----------|-----------------------------|--|
| Photo    | Combination                                 | Power            | Speed  | Focal point | וחח | Designed |                             |  |
|          |                                             | (Watts)          | (mm/s) | (mm)        | PPI |          | average ± 3D, T=3           |  |
|          |                                             |                  |        |             |     | 1000     | 776 ± 7                     |  |
|          |                                             |                  |        |             |     | 900      | 737 ± 4                     |  |
| ~ 11 / ~ | PE<br>GF/A<br>PE<br>10.6 µm CO <sub>2</sub> | 0.85             | 9.86   |             |     | 800      | 603 ± 14                    |  |
|          |                                             |                  |        |             |     | 700      | 502 ± 6                     |  |
|          |                                             |                  |        | 1 4         | 500 | 600      | 446 ± 40                    |  |
|          |                                             |                  |        | 1.4         | 500 | 500      | 294 ± 36                    |  |
|          |                                             |                  |        |             |     | 400      | 245 ± 16                    |  |
|          |                                             |                  |        |             |     | 300      | N/A                         |  |
|          |                                             |                  |        |             |     | 200      | N/A                         |  |
|          |                                             |                  |        |             |     | 100      | N/A                         |  |

**Table. S4** Summary of channel resolution studies including material combinations, laser cutting parameters, and obtained channel widths of the 2D enclosed devices (continued).

|       |                    |         | Laser pa | rameters    |      | Dosignod           | Obtained channel width (um) |  |
|-------|--------------------|---------|----------|-------------|------|--------------------|-----------------------------|--|
| Photo | Combination        | Power   | Speed    | Focal point | וחם  | channel width (um) | $2000000 \pm SD p=2$        |  |
|       |                    | (Watts) | (mm/s)   | (mm)        | FFI  |                    | average ± 5D, h=3           |  |
|       |                    |         |          |             |      | 1000               | 794 ± 31                    |  |
|       |                    |         |          |             |      | 900                | 801 ± 3                     |  |
|       |                    |         |          |             |      | 800                | 691 ± 12                    |  |
|       | PES Ad             |         |          |             |      | 700                | 592 ± 11                    |  |
|       |                    | 1 5     | 4 4 7    | 2           | N1/A | 600                | 506 ± 8                     |  |
|       | PES AU             | I.3     | 4.17     | 3           | IN/A | 500                | 290 ± 22                    |  |
|       | 155 pm diada       |         |          |             |      | 400                | 290 ± 3                     |  |
|       | 455 1111 01000     |         |          |             |      | 300                | 189 ± 38                    |  |
|       |                    |         |          |             |      | 200                | N/A                         |  |
|       |                    |         |          |             |      | 100                | N/A                         |  |
|       |                    |         |          |             |      | 1000               | 918 ± 9                     |  |
|       | PE Ad              |         |          |             |      | 900                | 875 ± 10                    |  |
|       |                    |         |          |             |      | 800                | 750 ± 10                    |  |
| -0-   |                    |         |          |             |      | 700                | 620 ± 6                     |  |
|       |                    | 0.1     | 10.07    | 1.2         | 200  | 600                | 551 ± 10                    |  |
| -//   |                    | 0.1     | 12.21    | 1.5         | 290  | 500                | 427 ± 1                     |  |
|       |                    |         |          |             |      | 400                | 367 ± 11                    |  |
|       | $10.0 \mu m  CO_2$ |         |          |             |      | 300                | 234 ± 2                     |  |
|       |                    |         |          |             |      | 200                | 146 ± 8                     |  |
|       |                    |         |          |             |      | 100                | N/A                         |  |

**Table. S4** Summary of channel resolution studies including material combinations, laser cutting parameters, and obtained channel widths of the 2D enclosed devices (continued).

|       |                |                  | Laser pa        | rameters            |      | Designed           | Obtained channel width (um) |  |
|-------|----------------|------------------|-----------------|---------------------|------|--------------------|-----------------------------|--|
| Photo | Combination    | Power<br>(Watts) | Speed<br>(mm/s) | Focal point<br>(mm) | PPI  | channel width (µm) | average ± SD, n=3           |  |
|       |                |                  |                 |                     |      | 1000               | 834 ± 23                    |  |
|       |                |                  |                 |                     |      | 900                | 811 ± 42                    |  |
|       | חח             |                  |                 |                     |      | 800                | 688 ± 35                    |  |
|       | PR             |                  |                 |                     |      | 700                | 580 ± 30                    |  |
| Zand  |                | 2 75             | 1 17            | 2                   | NI/A | 600                | 540 ± 25                    |  |
|       | PK             | 3.75             | 4.17            | 3                   |      | 500                | N/A                         |  |
|       | 155 nm diada   |                  |                 |                     |      | 400                | N/A                         |  |
|       | 455 1111 01000 |                  |                 |                     |      | 300                | N/A                         |  |
|       |                |                  |                 |                     |      | 200                | N/A                         |  |
|       |                |                  |                 |                     |      | 100                | N/A                         |  |
|       | PE             |                  |                 |                     |      | 1000               | 787 ± 18                    |  |
|       |                |                  |                 |                     |      | 900                | 714 ± 17                    |  |
|       |                |                  |                 |                     |      | 800                | 590 ± 18                    |  |
|       |                |                  |                 |                     |      | 700                | 470 ± 14                    |  |
|       | PE             | 0.65             | 7 45            | 13                  | 250  | 600                | 360 ± 81                    |  |
| 1     |                | 0.05             | 7.45            | 1.5                 | 230  | 500                | 310 ± 43                    |  |
|       |                |                  |                 |                     |      | 400                | N/A                         |  |
|       | 10.0 µm 002    |                  |                 |                     |      | 300                | N/A                         |  |
|       |                |                  |                 |                     |      | 200                | N/A                         |  |
|       |                |                  |                 |                     |      | 100                | N/A                         |  |

Combinations of porous substrate and polymeric film tested for fabrication of 3D enclosed devices



**Fig. S8** Photographs of 3D enclosed devices made of the combination of nitrocellulose and polyethylene film after testing with dye solutions. Selective laser ablation was not applicable for this material combination resulting in ablation of top and bottom nitrocellulose layers.

**Table. S5** Summary of material combinations and laser cutting parameters for fabrication of the 3D enclosed devices using  $10.6 \ \mu m CO_2$  laser.

|    |                       | Materials             |                       |                       |                       |                                                                                                                  | Cutting p       |                     |                    |                                  |  |  |
|----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|--------------------|----------------------------------|--|--|
| No | 1 <sup>st</sup> Layer | 2 <sup>nd</sup> Layer | 3 <sup>rd</sup> Layer | 4 <sup>th</sup> Layer | 5 <sup>th</sup> Layer | Power<br>(Watt)                                                                                                  | Speed<br>(mm/s) | Focal point<br>(mm) | Pulses per<br>inch | Function                         |  |  |
| 1  | PE                    | Nitrocellulose        | PE                    | Nitrocellulose        | PE                    | The 4 <sup>th</sup> nitrocellulose layer was ablated while the 2 <sup>nd</sup> nitrocellulose layer was ablating |                 |                     |                    |                                  |  |  |
| 2  | PE                    | Nitrocellulose        | Parafilm              | Nitrocellulose        | PE                    | 0.1 12.27 3.0 300 Passive 3D                                                                                     |                 |                     | Passive 3D flow    |                                  |  |  |
| 3  | PE Ad                 | Nitrocellulose        | Parafilm              | Nitrocellulose        | PE Ad                 | 0.1                                                                                                              | 6.49            | 1.6                 | 290                | Compression-activated<br>3D flow |  |  |



#### Results of chemical compatibility of hollow barriers and materials study

**Fig. S9** Photographs show chemical compatibilities of the fabricated 2D enclosed devices with water, glycerol, surfactants (CTAB, TWEEN 20, SDS), acid, base, and common organic solvents. Nitrocellulose was used as a porous material. (a) Polyethylene and (b) Polyethylene + adhesive were used as a polymeric film.



**Fig. S10** Photographs show chemical compatibilities of the fabricated 2D enclosed devices with water, glycerol, surfactants (CTAB, TWEEN 20, SDS), acid, base, and common organic solvents. Whatman 4 was used as a porous material. (a) Polyethylene and (b) Polyethylene + adhesive were used as a polymeric film.

### Determination of albumin, glucose, and total cholesterol



**Fig. S11** Calibration curves with the insets of images at the detection zone of the 3D flowthrough devices made of Whatman 1 and polyethylene for determination of (a) Albumin, (b) Glucose, and (c) Cholesterol (n=3).



### Serum sample preparation for cholesterol assays

Fig. S12 Red color intensity obtained by different sample preparation methods.