Electronic Supplementary Information for

Strain Induced Recognition of Molecular and Chirality in Cholesteric Liquid Crystal Droplets for Distance and Curvature Sensing

Shuting Xie^{a,b,c}, Ruizhi Yang^a, Qifan Zhu^a, Shitao Shen^a, Lanhui Li^a, Minmin Zhang^{a,d}, Xiaowen Hu^a, Mingliang Jin^{a,b}, Liqiu Wang^{c*} and Lingling Shui^{a,b,d*}

^a International Joint Laboratory of Optofluidic Technology and System, South China Academy of Advanced Optoelectronic & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China

^b International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526238, China

^c Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, China.

^d Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China

† Author to whom correspondence should be addressed: liqiu.wang@polyu.edu.hk; shuill@m.scnu.edu.cn

Figure S1 Time sequence of the stabling configuration process of onion-like Ch-LC droplets. (a) POM images at initial metastable state (i), intermediate state (ii), and stabilized structure (iii); (b) corresponding schematic illustration of molecular state at different stages. The red curved lines in (b) represent the disclination lines.

Figure S2 An transmitted OM image of the Ch-LC droplet showing **n** and **h** maintained perpendicular to each other in the shell.

Figure S3 The transformation progress of Ch-LC droplets ($D=54.8 \ \mu m$) entering a homemade device. (**a-b**) Schematic illustration of the progress (a) and the force diagram of a droplet (b). (**c-h**) POM images of a droplet at different period during the progress.

Figure S4 POM and OM images of Ch-LC droplet with diameter of (a) 8 μ m, (b) <5 μ m.

Figure S5 Structure diversity of a high-chirality Ch-LC droplet ($D = 33.3 \mu m$) with RSS structure under different strain (ε) of (**a**) 0, (**b**) 1.4, (**c**) 3.6, (**d**) 7.8. Scale bars represent 20 μm .

Figure S6 Schematic illustration of lateral (**a**) and top (**b**) view of the knots of the RSS with inner pseudo-nematic structure. A series of single unlinked loops along the diametrical axis (gray); two unlinked single loops in the outer region (blue); and a four-component link consists of three connected Hopf links (red).

Figure S7 The pitch value of the Ch-LC droplet ($D = 54.8 \ \mu m$) under different strain (ε).

Figure S8 Michel–Lévy birefringence chart, relating the light retardation. White dotted lines mark the approximate changed values of birefringence for images insets in Figure 4a.

Figure S9 Optical snaps of the flexible device under pressing and stretching. Scale bars represent 1 cm.

Captions for Movie S1 to S2

Video S1. Movie of a flexible device filled with Ch-LC droplet under pressing.

Video S2. Movie of a flexible device filled with Ch-LC droplet under stretching.