Supplementary Information

Fabrication of ITO microelectrodes and electrode arrays using low-cost CO₂ laser plotter

Karthika Kappalakandy Valapil, Marcin Szymon Filipiak, Weronika Rekiel, Elżbieta Jarosińska, Wojciech Nogala, Martin Jönsson-Niedziółka, Emilia Witkowska Nery*

Figure SI 1. Performance of a 100 μ m electrode at different scan rates; 1 mV/s,10 mV/s, 50 mV/s, 100 mV/s and 200 mV/s.

Figure SI 2. Cyclic Voltammogram of the ITO circular electrodes on different plates.

Figure SI 3. Scanning electron microscopy (SEM) images of the rectangular-shaped electrodes. a) 25μm, b) 50μm, c) 100μm.

Figure SI 4. Detailed structural and morphological imaging of a 100µm electrode. a) an electron image (SEM image) of the electrode, b) an EDX map showing indium (green), c) an EDX map showing silicon (red).

Figure SI 5. Comparison of current results obtained from cyclic voltammograms of 36 electrodes at 0.29V. The numbers at the x-axis represent different ITO plates, and each point is a measurement for an individual electrode on that plate. All electrodes here have a nominal width of 100 μ m.

Figure SI 6. SECM image (left) and optical micrograph (right) of etched ITO with highlighted SECM scanning area of $(200 \times 200) \ \mu\text{m}^2$. SECM tip size: Ø ~2.6 μ m. Tip-to-sample distance: ca. 3 25 μ m. SECM scanning rate: 33.3 μ m s⁻¹. Electrolyte: aqueous 1 mM ferrocenemethanol in 0.1 M KCl.

Laser type	Yb:YAG	Yb:YAG	Nd:glass 1,056 nm	KrF excimer laser	CO ₂ 10.6µm	CO ₂ 10.6µm
	1,030 nm	1,030 nm		248 nm	Direct ablation	Stencil ablation
Model	LXR 100–1030,	TruMicro2000	femtoREGEN,	Coherent	GCC C180II,	GCC C180II, New
	Luxinar GmbH,	system,TRUMPF	Spectra-Physics, Inc	Variolas COMPex	New Taipei	Taipei City,
	Germany			Pro	City, Taiwan	Taiwan
				2055		
				205F		
Power	100 W	20 W	N/A	20 W	30W	30W
Min size of the ablated	~2um	~4um	~10um	~100um	~50um	~100um
path			200	200µ	Sohun	200μ
Min. feature widt	~2µm	~2µm	N/A	~200µm	~50µm	~100µm
Cost of the laser	~200.000 EUR	High	High	High	12 000 EUR	12 000 ELIB gross
	200 000 201	1161	i iigii	i iigii	gross	12 000 LON 81033
					8,033	
Availability	Research units	Research units	Research units	Research units	Xerox shops	Xerox shops
Concernation	Not tostod but	Nettected	Nettested	Nettested	Vac	Vac
	rosistivity for the	NOT LESTED	Not tested	NOT LESTED	res	res
properties	natterns in which					
	the ablated section					
	hecame insulating					
	increased from RS					
	= 3.8 to 200 O/sg					
	- 5.0 to 200 sz/sq					
Reference	1	2	3	4	This work	This work

Table SI 1. Comparison of different laser ablation methods for fabrication of ITO structures

Figure SI 7. Left: Cyclic Voltammogram of a 100µm wide electrode prepared in a printing shop, right: optical microscopy picture of the electrode.

Figure SI 8. Comparison of cyclic voltammograms of the ITO circular electrodes on different plates prepared in a printing shop-each plate marked with a separate color, with the electrode signal prepared in the laboratory setting (black).

Fig.SI 9 Microscopic images of a 100 μ m electrode a) before and b) after electrochemical treatment to achieve metallic indium and tin.

Bibliography

- 1 H. Heffner, M. Soldera and A. F. Lasagni, Sci Rep, 2023, 13, 9798.
- 2 JLMN, , DOI:10.2961/jlmn.2022.03.2007.
- 3 G. E. Hallum, D. Kürschner, D. Redka, D. Niethammer, W. Schulz and H. P. Huber, *Opt. Express, OE*, 2021, **29**, 30062–30076.
- 4 G. Singh, H. Sheokand, S. Ghosh, K. V. Srivastava, J. Ramkumar and S. A. Ramakrishna, *Appl. Phys. A*, 2018, **125**, 23.