Electronic Supplementary Information

In situ synthesis of [Cu(BODN)·5H₂O]_n@nano-Al composite energetic films with tunable properties in pyro-MEMS

Wei Liu, Yongan Feng, Yapeng Yao, Zihang Liang, Fei Xiao, Zhongliang Ma *

School of Environmental and Safety Engineering, North University of China, Taiyuan, Shanxi, China

* Corresponding authors. E-mail address: mazhongliang@nuc.edu.cn (Z. Ma).

1. Schematic diagram for preparing $[Cu(BODN) \cdot 5H_2O]_n$ single crystal

Fig. S1 Schematic diagram for preparing [Cu(BODN)·5H₂O]_n single crystal by liquid-phase diffusion method

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cu ¹	O ³	1.992(2)	N^6	C^4	1.314(4)
Cu ¹	O^4	1.971(2)	O^2	N^8	1.228(4)
Cu ¹	O^{111}	2.310(3)	N^5	C^3	1.282(4)
Cu ¹	N^6	1.986(3)	N^3	N^4	1.403(4)
Cu ¹	N ³¹	1.980(3)	N^3	C^1	1.315(4)
Cu ¹	O^1	2.261(3)	O^1	N^8	1.245(4)
O ⁹	C^1	1.367(4)	N^4	C^2	1.281(4)
O ⁹	C^2	1.353(4)	N^7	N^8	1.342(3)
O^5	C^4	1.371(4)	N^7	C^4	1.340(4)
O^5	C^3	1.357(4)	N^1	N^2	1.338(4)
O^{11}	N^1	1.251(4)	N^2	C^1	1.343(4)
O^{10}	N^1	1.238(4)	C^3	C^2	1.446(4)
N^6	N ⁵	1.401(4)			

Table S1 Selected bond lengths [Å] of $[Cu(BODN) \cdot 5H_2O]_n$

2. Single-crystal X-ray Diffraction Analysis of $[Cu(BODN) \cdot 5H_2O]_n$

Table S2 Selected bond angles [Å] of $[Cu(BODN) \cdot 5H_2O]_n$

\$3

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O^3	Cu ¹	O ¹¹¹	90.19(10)	C^1	N ³	N^4	107.7(2)
O^3	Cu^1	O^1	92.05(11)	N^8	O^1	Cu^1	135.8(2)
O^4	Cu^1	O^3	178.63(11)	C^2	N^4	N^3	104.6(3)
O^4	Cu^1	O ¹¹¹	88.60(10)	C^4	N^7	N^8	116.1(3)
O^4	Cu^1	N^6	89.25(10)	O^2	N^8	O^1	120.0(3)
O^4	Cu^1	N ³¹	90.48(10)	O^2	N^8	N^7	116.7(3)
O^4	Cu^1	O^1	89.18(11)	O^1	N^8	N^7	123.2(3)
N^6	Cu^1	O^3	90.44(10)	O ¹¹	N^1	N^2	123.5(3)
N^6	Cu^1	O ¹¹¹	104.76(10)	O^{10}	N^1	O^{11}	120.5(3)
N^6	Cu^1	O^1	77.15(10)	O^{10}	N^1	N^2	116.0(3)
N^{31}	Cu^1	O^3	89.87(10)	N^1	N^2	\mathbf{C}^1	116.6(3)
N ³¹	Cu^1	O ¹¹¹	76.96(10)	N^6	C^4	O^5	110.2(3)
N ³¹	Cu^1	N^6	178.26(12)	N^6	C^4	N^7	137.3(3)
N ³¹	Cu^1	O^1	101.12(10)	N^7	C^4	O^5	112.5(3)
O^1	Cu^1	O ¹¹¹	177.05(9)	N^3	C^1	O^9	110.2(3)
C^2	O ⁹	C^1	102.9(2)	N^3	C^1	N^2	137.5(3)
C^3	O^5	C^4	102.9(2)	N^2	C^1	O^9	112.3(3)
N^1	O ¹¹	Cu ¹²	134.4(2)	O^5	C^3	C^2	119.3(3)
N^5	N^6	Cu^1	121.4(2)	N^5	C^3	O^5	114.2(3)
C^4	N^6	Cu ¹	129.8(2)	N^5	C^3	C^2	126.5(3)
C^4	N^6	N^5	107.8(2)	O ⁹	C^2	C ³	117.1(3)
C^3	N^5	N^6	104.9(3)	N^4	C^2	O^9	114.5(3)
N^4	N^3	Cu ¹²	121.1(2)	N^4	C^2	C^3	128.3(3)
C1	N ³	Cu ¹²	130.3(2)				

3. Morphologies of the samples prepared under different conditions

Fig. S2 (a) and (b) represent low and high magnification SEM images of $[Cu(BODN) \cdot 5H_2O]_n$ arrays prepared by reaction for 5 min, (c) and (d) represent low and high magnification SEM images of $[Cu(BODN) \cdot 5H_2O]_n$ arrays prepared by reaction for 20 min.

Fig. S3 (a) and (b) represent the low and high magnification SEM images of $[Cu(BODN)\cdot 5H_2O]_n$ arrays prepared at a solution concentration of 2 g·L⁻¹, (c) and (d) represent the low and high magnification SEM images of $[Cu(BODN)\cdot 5H_2O]_n$ arrays prepared at a solution concentration of 6 g·L⁻¹.

4. The TG curve of $[Cu(BODN) \cdot 5H_2O]_n$ crystals

Fig. S4 The TG curve of $[Cu(BODN) \cdot 5H_2O]_n$ crystals

5. The composition of energetic films estimated by the heat releases

Somplog	Cu(OH) ₂	[Cu(BODN)·5H ₂ O] _n	Al	Nitrocellulose
Samples	(%)	(%)	(%)	(%)
[Cu(BODN)·5H ₂ O] _n arrays (5 min)	34.6	65.4		
$[Cu(BODN) \cdot 5H_2O]_n$ arrays (10 min)	0	100		
[Cu(BODN)·5H ₂ O] _n @nano-Al (2 drops)		86.2	11.7	2.1
$[Cu(BODN) \cdot 5H_2O]_n @nano-Al (6 drops)$		72.1	23.7	4.2

Table S3 The composition of energetic films estimated by the heat releases