
ELECTRONIC SUPPLEMENTARY INFORMATION

In situ structural analysis with a SAXS laboratory beamline directly in a
microfluidic chip. Supplementary information.

Radajewski Dimitri,∗ Pierre Roblin, Patrice Bacchin, Martine Meireles, Yannick Hallez∗

1 Modelling

1.1 Modelling of the form factor of a polydisperse suspen-
sion

Consider a polydisperse sphere suspension with a diameter distri-
bution given by d(σ ; σ̄ ,σ ′) where σ̄ is the average diameter and
σ ′ is RMS deviation from σ̄ . The form factor can be computed as
the weighted average

P̄(q) =
factor

V

∫
∞

σ=0
d(σ ; σ̄ ,σ ′) f 2(q,σ)dσ +background (1)

where f (q,σ) is the scattering amplitude of a sphere of diameter
σ . In the Rayleigh-Gans-Debye approximation valid here, it is
given by

f (q,σ) = (νp −νs)σ
3b(qσ/2), (2)

where νp and νs are the particle and solvent refractive indices,
and b(x) = j1(x)/x is the form amplitude of the sphere, with j1
being the spherical Bessel function of first order. Here we mod-
elled the distribution of radii with the Schulz distribution

d(σ ; σ̄ ,σ ′) = (t +1)t+1
(

σ

σ

)t exp[−(t +1)σ/σ ]

σΓ(t +1)
, (3)

where t = 1/s2 −1, s = σ ′/σ is the relative polydispersity, and Γ is
the Gamma function. The distribution parameters σ and σ ′ were
obtained by fitting the experimental SAXS intensity at large dilu-
tion to avoid any influence of colloidal interactions. The positions
of the first signal decrease and of the secondary peak allowed to
fit the mean diameter. Polydispersity was adjusted to match the
smoothing of the scattering data between peaks.

To model the measurable structure factor SM(q) of the polydis-
perse suspension, we will first need to transfer the fit of the exper-
imental P(q) by a continuous Schulz distribution to a "histogram-
matic" distribution of m species identified by indices α = 1, . . . ,m,
with discrete diameters σα and molar fractions xα . These 2m pa-
rameters can be determined by matching the first 2m moments of
the continuous Schulz distribution to those of the histogrammatic
distribution. This is possible because they are known analytically:

⟨σn⟩= (n+ t)!
t!(t +1)n σ̄

n =
m

∑
α=1

xα σ
n
α for n = 0, . . . ,2m−1 (4)
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The number of species m can be chosen arbitrarily. It has been
shown that using m = 3 was sufficient for relative polydispersities
s lower than 0.3.1 Here we considered systems with maximum
polydispersities of about 0.15 and, indeed, using m = 3 or m = 5
led to virtually identical results.

At this point, we have modelled the particle sizes with both a
continuous distribution used to plot the form factors in the main
text and with a histogrammatic distribution used to compute an
approximation of the measurable structure factor.

1.2 Modelling of the measurable structure factor of a multi-
component suspension

In this section, we essentially follow the lines of Reference 1. The
intensity scattered by a multicomponent suspension of m species
of spheres is

I(q) = N f 2(q = 0)P(q)SM(q),

where N is the number of scatterers,

f 2(q) =
m

∑
α=1

xα f 2
α (q) (5)

is the second moment of the distribution of scattering amplitudes
from each component fα (q) = f (q,σα ),

P(q) =
f 2(q)

f 2(q = 0)
(6)

is the average form factor, and

SM(q) =
1

f 2(q)

m

∑
α,β=1

√
xα xβ fα (q) fβ (q)Sαβ (q) (7)

is the measurable static structure factor, where Sαβ (q) are the
partial static structure factors.2 After the fit of the form factor
described in the previous section, m, σα and xα are known, so
eq. (5) and (6) are readily computed. Computing SM(q) with
eq. (7) is possible in principle by first solving the multicompo-
nent Ornstein-Zernike (OZ) equation for the Sαβ (q) with a suit-
able closure but it involves rather complicated and possibly unsta-
ble codes, and more importantly, it requires defining m effective
particle charges (one for each species), a task for which there is
no exact analytical method. If the polydispersity is below about
0.2, the complexity of the modelling can be greatly reduced by
invoking the decoupling approximation. Assuming the system is
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polydisperse in size but not in charge, the measurable structure
factor (7) is then

SM(q)≃ (1−X(q))Sid(q)+X(q), (8)

where

X(q) = 1− f̄ (q)2

f 2(q)

and Sid(q) is the structure factor of an "ideal" monodisperse sus-
pension with effective diameter σ e f f and charge Ze f f . Now we
only need to solve the one-component OZ equation. Parameters
σ e f f and Ze f f can be modelled or fitted. Here the diameter of the
ideal monodisperse suspension is defined as

σ
e f f =

(
m

∑
α=1

xα σ
3
α

)1/3

so the volume fraction of the ideal monodisperse suspension is
the same as that of the polydisperse system. Note that there is no
proof that this could be an ideal choice. The relation between par-
ticle size and effective particle charge Ze f f (accounting for poly-
dispersity and ion condensation) to be used in the ideal monodis-
perse suspension is unknown. Here, we first considered that the
true bare surface charge density σe carried by all the colloids was
the same. It is not unreasonable as it depends mostly on surface
chemistry and not too much the particle size. Then the bare sur-
face charge carried by particles of type α is Zα = πσ2

α σe and the
bare charge of the ideal monodisperse system was approximated
by

Zid =
m

∑
α=1

xα Zα .

We then used the Extrapolated Point Charge renormalization pro-
cedure3 to define a unique effective charge Ze f f and a renormal-
ized inverse screening length κe f f from the actual salt content
and Zid . Note that the choice of a constant surface charge density
has been made here and in Ref.1 but different choices of effective
parameters could have been made. For example, the Ze f f

α could
be computed from a polydisperse renormalization scheme4,5 and
Ze f f would then be defined in an ad hoc manner (for example
with a weighted average) or Ze f f could also just be left as a fit-
ting parameter as in Ref. 6. As no theory is available to define
σ e f f and Ze f f unambiguously, any choice is somewhat arbitrary
and has to be supported a posteriori by comparisons with exper-
iments. The choices made here were suitable to model the mea-
surable structure factors of silica and latex dispersions, but other
choices would probably have been good too as the polydispersity
was relatively modest.

1.3 Modelling of the ideal monodisperse structure factor

Once choices of the effective parameters σ e f f , Ze f f , and κe f f

were made as described above, the "ideal" structure factor in-
volved in eq. (8) was computed by solving the one-component
Ornstein-Zernike (OZ) equation for an effective interaction po-
tential of the Hard-Sphere-Yukawa (HSY) form. Dropping the
eff superscripts for conciseness and introducing the sphere radius

a = σ/2, the HSY potential reads

βu(r) =

{
Z2lB e2κa

(1+κa)2
e−κr

r , r ≥ 2a

∞, r < 2a
(9)

where β = 1/kT and lB = e2/4πεkT is the Bjerrum length, k is
Boltzmann’s constant, T is the temperature, e is the elementary
charge, and ε is the permittivity of the solvent. To solve the
OZ equation, the Rogers-Young7 (RY) closure was chosen as it
is known to yield accurate results for charged hard spheres.8–11

2 SAXS data for the latex dispersions in standard
capillaries

Measurements of scattering from latex dispersions have been un-
dertaken both in the microfluidic chip and in standard capillaries
for comparison. Results can be compared in Fig. 1. The noisy
signals visible at low q in the chip are absent in capillaries due to
the increased signal to noise ratio. The background is also one
order of magnitude smaller in capillaries, which makes the mod-
elling easier especially at high dilution. However, the first struc-
ture peak is identical in both setups as expected, which highlights
the possibility to measure colloidal interactions.
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Fig. 1 SAXS signal from latex dispersions measured in the microfluidic chip (left) and in quartz capillaries (right). The left figure is the same as
Fig. 6 in the main text but with a wider intensity range. Models fitted in the left figure are reproduced in the right figure as continuous lines to ease
comparison. The same models but with a lower background are also reported with dashed lines.
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