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Membrane break in

The proton exchange membrane (PEM) was broken in for the assembled electrolyzer using
an alternating constant voltage script to improve its performance. The procedure was inspired by
the procedure written by Klug.! The script cycles the PEM electrolyzer through potentiostatic
operation at 2V, 2.25V, then 2.5V for 1 min each and repeating for 20 cycles (total time of
1 hour). At the beginning of break-in script and at a potential of 2.5 V, the chip was consistently
achieving 3 mA c¢cm2, and at the end of the break-in script the chip achieved 6.25 mA c¢cm at the
same potential.

Raw Infrared Spectra

The raw infrared (IR) transmission spectra acquired during the Fourier transform IR (FTIR)
spectroscopy are cropped around the peak of interest. The peak of interest is roughly centered
around a wavelength of 10.7 um and is the only observable peak in the measured spectrum where
water attenuated the beam. The IR spectra are averaged for 300 acquisitions with a spectral
resolution of 4 cm!. Each acquisition is measured during the final two minutes of steady current
operation and results are presented for all experimental conditions.



(a) Transmission peak of interest: 20°C 20 pL min™
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(¢) Transmission peak of interest: 40°C 20 pL min™
Wavelength (um)
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(e) Transmission peak of interest: 60°C 20 uL min™
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(b) Transmission peak of interest: 20°C 100 pL min™!
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(d) Transmission peak of interest: 40°C 100 uL min™
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(f) Transmission peak of interest: 60°C 100 pL min™'
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Fig. S1: Averaged IR spectra from 300 acquisitions for each constant current operating condition
for (a) 20°C, 20 uL min!, (b) 20°C, 100 uL min'!, (¢) 40°C, 20 uL min’!, (d) 40 °C,
100 pL min-!, (e) 60 °C, 20 pL min’!, and (f) 60 °C, 100 uL min!.



Determining the beam size

The beam diameter is determined by assuming a Gaussian beam and performing a knife-
edge measurement. By using the interface in the channel of the chip and the edge of the electrodes,
a sharp edge representing a knife-edge can be obtained for the necessary measurements. The
methodology for determining the beam size analysis is performed by Kirkham and is replicated
here.? The final beam radius is determined to be 45.62 + 0.48 um for a wavelength of 10.7 pm.
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Fig. S2: The resulting error function plot with fitting parameters P1, P2, and P3 for a wavelength
of 10.7 um. P3 corresponds to 1/e* radius of the Gaussian beam, where the calculated beam radius
is 45.62278 +0.4828 pm.

Electrochemical impedance spectroscopy

Ohmic resistance measurements extracted from electrochemical impedance spectroscopy (EIS) are
challenging to obtain for the proposed cell geometry due to its small active area of 0.08 cm?. To
improve the accuracy of ohmic resistance measurements, an impedance model from the work
presented by Chevalier et al. is applied onto the experimentally obtained Nyquist plots, and the
ohmic resistance was extracted.> A sample Nyquist plot with the fitted model is shown in Figure
S3. Individual ohmic resistance measurements and the corresponding ohmic voltage losses are
graphically reported in Figure S4 for each operating condition. Ohmic voltage losses are computed
through the following equation:



Nokmic = Ronmic [Eq S]]
where Tormic are the ohmic voltage losses (V), i is the current density (mA cm?), and Ronmic is the
ohmic resistance (Q cm?).
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Fig. S3: A sample Nyquist plot with the corresponding Z-fit model obtained at 20 °C with a flow
rate of 20 uL min"! and at a current density of 30 mA cm2. The extracted ohmic resistance is
4.31 Q cm? and can be seen in Figure S5 as well.



(a) Ohmic performance: 20°C 20 pL min™ (b) Ohmic performance: 20°C 100 L min™!
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Fig. S4: Measured ohmic resistance acquired from imposing a Z-fit onto experimentally acquired
SGEIS data and the corresponding ohmic voltage losses for (a) 20 °C, 20 uL min-!, (b) 20 °C,
100 uL min!, (¢) 40 °C, 20 uL min!, (d) 40 °C, 100 uL min', (e) 60 °C, 20 uL min!, and (f)
60 °C, 100 uL min'.



Water attenuation coefficient
The attenuation coefficient for water #w is determined based on the transmission data for
1 um of liquid water at room temperature (25 °C) published by Hale and Querry, which is also
available on the Refractive index database for enhanced convenience.*> The change in the
transmission of water is neglected for higher temperatures, as changes in the thermal transmission
coefficient can be on the order of 103 K-1.% Specifically, their transmission data was interpolated
for the cropped wavelength range [9.8 pm - 11.5 um] through the following binomial fit:
T, =-0.026x* + 0.504x - 1.497 [Eq. 2]

Where Tw is the transmission of water and X is the wavelength of light being transmitted. In
Figure S5, a comparison between the binomial fit and experimental data published by Hale and
Querry is shown.** The transmission for 1 um of water is then converted to the absorbance per
pum of water (p,, [um-']) through the following negative base 10 logarithmic function.

o =~ 10810 (100%) [Eq. S3]
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Fig. S5: The transmittance of 1 um of water according to the data published by Hale and Querry
in comparison to the applied binomial fit from Equation S2, cropped over the wavelength range of
[9.8 um - 11.5 um].4
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