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Supporting Information for
A continuum model for magnetic particle flows in microfluidics 
applicable from dilute to packed suspensions

Supporting notes

Note S1: Drag force in the dilute regime: 

The Wen and Yu model (1) is implemented by default in COMSOL for dilute regimes. This 
formulation is derived from Stokes drag law.

𝐹𝑑→𝑐 =‒ 𝐹𝑐→𝑑 = 𝛽(𝑢𝑑 ‒ 𝑢𝑐)

The drag force coefficient writes as

𝛽 =
3𝜀𝑐𝜀𝑑𝜌𝑐𝐶𝐷

4𝑑𝑝
|𝑢𝑑 ‒ 𝑢𝑐|𝜀 ‒ 2.65

𝑐

The particle drag coefficient  is calculated as follows, using the particle Reynolds number 𝐶𝐷

.𝑅𝑒𝑝

𝑅𝑒𝑝 =
2𝑟𝑝𝜌𝑐|𝑢𝑑 ‒ 𝑢𝑐|

𝜇𝑐

𝐶𝐷 = { 24
𝑅𝑒𝑝

(1 + 0.15𝑅𝑒0.687
𝑝 )  𝑅𝑒𝑝 < 1000

0.44                                    𝑅𝑒𝑝 > 1000 �
Note S2: Drag force in the column regime: 

The model introduced here uses a tensor form of the permeability. The interphase drag force 
is expressed as

𝐹𝑑→𝑐 =‒ 𝐹𝑐→𝑑 =
𝜇𝑐𝜀2

𝑐

𝐾
(𝑢𝑑 ‒ 𝑢𝑐)

Which develops as

𝐹𝑑→𝑐 =‒ 𝐹𝑐→𝑑 = 𝜇𝜀2
𝑐[𝐾 ‒ 1

𝑥𝑥 (𝑢𝑑,𝑥 ‒ 𝑢𝑐,𝑥) + 𝐾 ‒ 1
𝑥𝑦 (𝑢𝑑,𝑦 ‒ 𝑢𝑐,𝑦) + 𝐾 ‒ 1

𝑥𝑧 (𝑢𝑑,𝑧 ‒ 𝑢𝑐,𝑧)
𝐾 ‒ 1

𝑦𝑥 (𝑢𝑑,𝑥 ‒ 𝑢𝑐,𝑥) + 𝐾 ‒ 1
𝑦𝑦 (𝑢𝑑,𝑦 ‒ 𝑢𝑐,𝑦) + 𝐾 ‒ 1

𝑦𝑧 (𝑢𝑑,𝑧 ‒ 𝑢𝑐,𝑧)
𝐾 ‒ 1

𝑧𝑥 (𝑢𝑑,𝑥 ‒ 𝑢𝑐,𝑥) + 𝐾 ‒ 1
𝑧𝑦 (𝑢𝑑,𝑦 ‒ 𝑢𝑐,𝑦) + 𝐾 ‒ 1

𝑧𝑧 (𝑢𝑑,𝑧 ‒ 𝑢𝑐,𝑧)]
The tensor K is expressed as

𝐾 = 𝑅𝐾𝑟𝑒𝑓𝑅𝑇        𝑤𝑖𝑡ℎ        𝐾𝑟𝑒𝑓 = [𝐾 ∥ 0 0
0 𝐾 ⊥ 0
0 0 𝐾 ⊥

]
The components  and  are given by the model of Whesthuizen and Du Plessis (Eq. 8).𝐾 ∥ 𝐾 ⊥
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Note S3: Rotation matrix components in 2D

 is the rotation matrix to turn  in the direction of the magnetic field . It is expressed as a 𝑅 𝐾𝑟𝑒𝑓 𝐻
function of the angle  between the magnetic field and the x-axis.𝜃

𝑅 = [cos 𝜃 ‒ sin 𝜃
sin 𝜃 cos 𝜃 ]

With  and  where  is the magnetic field norm.cos 𝜃 = 𝐻𝑥/𝐻 sin 𝜃 = 𝐻𝑦/𝐻 𝐻 = 𝐻2
𝑥 + 𝐻2

𝑦 + 𝐻2
𝑧

The elements of the matrix are

 𝑅11 = 𝐻𝑥/𝐻

 𝑅22 = 𝐻𝑥/𝐻

 𝑅12 = 𝐻𝑦/𝐻

 𝑅21 = ‒ 𝐻𝑦/𝐻

Note S4: Rotation matrix components in 3D

The rotation matrix in obtained by rotating the reference axis system around an axis  with an n
angle . The axis and angle are expressed as functions of the magnetic field components.𝜃

The axis of rotation is expressed as

 n = (1
0
0) × (𝐻𝑥/𝐻

𝐻𝑦/𝐻
𝐻𝑧/𝐻) = ( ‒

0
𝐻𝑧/𝐻
𝐻𝑦/𝐻)

Angle of rotation (angle between  and )𝑥 𝐻

cos 𝜃 =
𝑥 ∙ 𝐻

|𝑥||𝐻|
=

𝐻𝑥

𝐻
Matrix of rotation

𝑅 = [ 𝑛2
𝑥(1 ‒ 𝑐) + 𝑐 𝑛𝑥𝑛𝑦(1 ‒ 𝑐) ‒ 𝑛𝑧𝑠 𝑛𝑥𝑛𝑧(1 ‒ 𝑐) + 𝑛𝑦𝑠

𝑛𝑥𝑛𝑦(1 ‒ 𝑐) + 𝑛𝑧𝑠 𝑛2
𝑦(1 ‒ 𝑐) + 𝑐 𝑛𝑦𝑛𝑧(1 ‒ 𝑐) ‒ 𝑛𝑥𝑠

𝑛𝑥𝑛𝑧(1 ‒ 𝑐) ‒ 𝑛𝑦𝑠 𝑛𝑦𝑛𝑧(1 ‒ 𝑐) + 𝑛𝑥𝑠 𝑛2
𝑧(1 ‒ 𝑐) + 𝑐 ]

where
𝑐 = cos 𝜃 = 𝐻𝑥/𝐻
𝑠 = sin 𝜃 = 1 ‒ 𝐻2

𝑥 𝐻2

Finally, the matrix elements are expressed without trigonometric functions as

 𝑅11 = 𝐻𝑥/𝐻


𝑅12 =‒ 𝑅21 =‒

𝐻𝑦

𝐻
1 ‒ 𝐻2

𝑥 𝐻2


𝑅13 =‒ 𝑅31 =‒

𝐻𝑧

𝐻
1 ‒ 𝐻2

𝑥 𝐻2


𝑅22 =

𝐻2
𝑧

𝐻2(1 ‒
𝐻𝑥

𝐻 ) +
𝐻𝑥

𝐻


𝑅23 = 𝑅32 =‒

𝐻𝑧𝐻𝑦

𝐻2 (1 ‒
𝐻𝑥

𝐻 )
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𝑅33 =

𝐻2
𝑦

𝐻2(1 ‒
𝐻𝑥

𝐻 ) +
𝐻𝑥

𝐻
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Note S5: Implementation of the model in COMSOL

The CFD and AC/DC modules are required to implement this model, we use version 5.5 of 
COMSOL Multiphysics, but it may work using other versions. This short tutorial is aimed at 
advanced COMSOL users, who are already familiar with the following notions:

- Laminar flow simulation (e.g. spf module)
- Magnetic field simulation (mf or mfnc modules)
- Manual mesh creation and mesh refinement
- Stationary and Time dependent studies.
- Results visualization and processing in COMSOL.

1. Create a new model (2D or 3D) and draw/import the geometry. Create the mesh, and 
make sure that it is fine where the particle density is expected to be high.

2. Define the external magnetic field. It can be done analytically or by simulation.

a.  To define the magnetic field analytically, create analytic functions under the 
“Definitions” title. For example, in our magnetophoresis example, we define the 
following functions (see Figure S2):

Name Arguments Unit Expression
Hx x,y (m) A/m Id*x*y/(pi*sqrt(x^2+y^2)^4)

Hy x,y (m) A/m Id/(2*pi*sqrt(x^2+y^2)^2)-
Id*x^2/(pi*sqrt(x^2+y^2)^4)

normH x,y (m) A/m^2 Id/(2*pi*(x^2+y^2))
normB x,y (m) A/m^2 mu0_const*sqrt(Hx(x,y)^2+Hy(x,y)^2)

b. The magnetic field can also be computed using the mfnc or mf module. For 
example, in our magnetic tweezers example, we use the mfnc module. The 
external permanent magnet is defined in the material section by using ‘N50 
(Sintered NdFeB)’ and in the mfnc section with ‘Magnetic Flux Conservation’, 
using ‘Remanent flux density’ as the Magnetization model. The properties are 
then taken from material. The magnetic tweezers are defined in a similar way 
using ‘Soft Iron (witout losses)’ as a material, which was modified with a custom 
BH curve (Figure S6). The field is then computed in a separate stationary 
study.

3. Define magnetic particle properties by using custom parameters. For example, with 
MyOne beads:

Name Value
d_beads 1[um]
rho_beads 1700[kg/m^3]
Ms 21.86[A*m^2/kg]
gamma 6.28e-5[m/A]

And define an analytical function for the magnetization. (Figure S1)
Name Arguments Unit Expression
massMag H (A/m) A*m^2/kg Ms*(coth(H*gamma)-1/(H*gamma))

4. Define physics by adding an Euler-Euler (ee module) physics. This physics should be 
applied only to the fluidic geometry, and not the surrounding volume which may have 
been necessary for the previous computation of the magnetic field. In the ‘Phase 
Properties’ menu, set the required constants for continuous phase density and viscosity 
(1000[kg/m^3] and 1e-3[Pa*s] for water). For the dispersed phase properties, enter 
rho_beads and d_beads. For the viscosity model, enter a user defined viscosity with 
the Einstein formula: ee.muc*(1+2.5*ee.phidReg). Use Pure phase value for the 
continuous phase and mixture viscosity for the dispersed phase. For Drag and Solid 
Pressure models, use Gidaspow.
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5. Define boundary and initial conditions as you need. Particles can be introduced 
either by defining a volume fraction phid > 0 as initial values in the desired area, or 
using a volume fraction at the inlet. 

6. Add shallow channel approximation for 2D Hele-Shaw models. Add a custom 
volume force as follows (example for 50 µm chamber thickness):

Fc_x -12*ee.mucm*ucx/(50[µm])^2
Fc_y -12*ee.mucm*ucy/(50[µm])^2
Fd_x -12*ee.mucm*udx/(50[µm])^2
Fd_y -12*ee.mucm*udy/(50[µm])^2

7. Add magnetic force by adding a custom volume force defined as follows (Note S4):

Fc_x,y,z 0
Fd_x if(mfnc.normH>0,mu0_const*rho_beads*massMag(mfnc.normH)*d(mfnc.normH,x),0)
Fd_y if(mfnc.normH>0,mu0_const*rho_beads*massMag(mfnc.normH)*d(mfnc.normH,y),0)
Fd_z if(mfnc.normH>0,mu0_const*rho_beads*massMag(mfnc.normH)*d(mfnc.normH,z),0)

Depending on how the magnetic field was defined, the ‘mfnc’ can be replaced by a 
custom variable (e.g. mfnc.Bx becomes mu0_const*Hx)

8. Add the modified drag model. You will need to activate the ‘Equation View’ mode 
(click on the eye icon to see the options).

a. Define custom parameters for permeability as follows:

Kpara (pi+2.157*ee.phidReg)*(1-ee.phidReg)^2/(48*ee.phidPos^2)*rp^2
Kperp pi*(1-ee.phidReg)*(1-sqrt(ee.phidReg))^2/(24*ee.phidPos^(3/2))*rp^2

b. Define the reference matrix named ‘Kref’ as:

Kpara 0 0
0 Kperp 0
0 0 Kperp

c. Define the rotation matrix named ‘R’ as (Note S4):

mfnc.Bx/mfnc.normB -mfnc.By/mfnc.normB
*sqrt(1-
mfnc.Bx^2/mfnc.normB^2)

mfnc.Bz/mfnc.normB*sqrt(1-
mfnc.Bx^2/mfnc.normB^2)

mfnc.By/mfnc.normB*sqrt(1-
mfnc.Bx^2/mfnc.normB^2)

mfnc.Bz^2/mfnc.normB^2*(1
-
mfnc.Bx/mfnc.normB)+mfnc.
Bx/mfnc.normB

mfnc.Bz*mfnc.By/mfnc.norm
B^2*(1-mfnc.Bx/mfnc.normB)

-mfnc.Bz/mfnc.normB*sqrt(1-
mfnc.Bx^2/mfnc.normB^2)

mfnc.Bz*mfnc.By/mfnc.norm
B^2*(1-mfnc.Bx/mfnc.normB)

mfnc.By^2/mfnc.normB^2*(1
-
mfnc.Bx/mfnc.normB)+mfnc.
Bx/mfnc.normB

As before, depending on how the magnetic field was defined, the ‘mfnc’ can 
be replaced by a custom variable (e.g. mfnc.Bx becomes mu0_const*Hx)

d. Define the transposed rotation matrix named ‘Rt’ as:

R11 R21 R31
R12 R22 R32
R13 R23 R33
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e. Perform a first matrix product R*Kref by defining a matrix named ‘RKref’ as 
follows:

Kref11*R11+Kref21*R12+Kr
ef31*R13

Kref12*R11+Kref22*R12+Kr
ef32*R13

Kref13*R11+Kref23*R12+Kr
ef33*R13

Kref11*R21+Kref21*R22+Kr
ef31*R23

Kref12*R21+Kref22*R22+Kr
ef32*R23

Kref13*R21+Kref23*R22+Kr
ef33*R23

Kref11*R31+Kref21*R32+Kr
ef31*R33

Kref12*R31+Kref22*R32+Kr
ef32*R33

Kref13*R31+Kref23*R32+Kr
ef33*R33

f. Perform a second matrix product to obtain the final permeability matrix K = 
R*Kref*Rt. Define a matrix named ‘RKrefRt’ as follows:

Rt11*RKref11+Rt21*RKref12
+Rt31*RKref13

Rt12*RKref11+Rt22*RKref12
+Rt32*RKref13

Rt13*RKref11+Rt23*RKref12
+Rt33*RKref13

Rt11*RKref21+Rt21*RKref22
+Rt31*RKref23

Rt12*RKref21+Rt22*RKref22
+Rt32*RKref23

Rt13*RKref21+Rt23*RKref22
+Rt33*RKref23

Rt11*RKref31+Rt21*RKref32
+Rt31*RKref33

Rt12*RKref31+Rt22*RKref32
+Rt32*RKref33

Rt13*RKref31+Rt23*RKref32
+Rt33*RKref33

g. Inverse the permeability matrix by using the inversion tool of COMSOL. Define 
an inverse matrix named ‘invK’ with the following components:

RKrefRt11 RKrefRt12 RKrefRt13
RKrefRt21 RKrefRt22 RKrefRt23
RKrefRt31 RKrefRt32 RKrefRt33

h. Incorporate the permeability matrix into drag model (Equations 4-8). Under 
‘Phase Properties’, go in ‘Equation View’. Six components have to be replaced 
as follows (see Note S2):

ee.Inter
_force_
dx

nojac(gpeval(5,ee.muc*ee.phicReg/ee.phidPos,0))*(nojac(gpeval(5,invK.invT11,0)
)*ee.uslipx+nojac(gpeval(5,invK.invT12,0))*ee.uslipy+nojac(gpeval(5,invK.invT13,
0))*ee.uslipz)

ee.Inter
_force_
dy

nojac(gpeval(5,ee.muc*ee.phicReg/ee.phidPos,0))*(nojac(gpeval(5,invK.invT21,0)
)*ee.uslipx+nojac(gpeval(5,invK.invT22,0))*ee.uslipy+nojac(gpeval(5,invK.invT23,
0))*ee.uslipz)

ee.Inter
_force_
dz

nojac(gpeval(5,ee.muc*ee.phicReg/ee.phidPos,0))*(nojac(gpeval(5,invK.invT31,0)
)*ee.uslipx+nojac(gpeval(5,invK.invT32,0))*ee.uslipy+nojac(gpeval(5,invK.invT33,
0))*ee.uslipz)

ee.Inter
_force_
cx

nojac(gpeval(5,ee.muc,0))*(nojac(gpeval(5,invK.invT11,0))*ee.uslipx+nojac(gpeval
(5,invK.invT12,0))*ee.uslipy+nojac(gpeval(5,invK.invT13,0))*ee.uslipz)

ee.Inter
_force_
cy

nojac(gpeval(5,ee.muc,0))*(nojac(gpeval(5,invK.invT21,0))*ee.uslipx+nojac(gpeval
(5,invK.invT22,0))*ee.uslipy+nojac(gpeval(5,invK.invT23,0))*ee.uslipz)

ee.Inter
_force_
cz

nojac(gpeval(5,ee.muc,0))*(nojac(gpeval(5,invK.invT31,0))*ee.uslipx+nojac(gpeval
(5,invK.invT32,0))*ee.uslipy+nojac(gpeval(5,invK.invT33,0))*ee.uslipz)

9. Run a time dependent study for the Euler-Euler physics. If the magnetic field was 
computed in a previous study, you have to specify it in ‘Values of variables not solved 
for’ in the time dependent study parameters. For more stability at the first steps of 
computation, it can be worth the pre-calculate an initial flow field using a separate 
laminar flow physics (spf module), and specify its results in ‘Initial values of variable 
solved for’.
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Figure S1: Magnetization curves of M270 and MyOne magnetic particles. The magnetization 
per unit mass  as a function of the external magnetic field  is obtained 𝜎 (A ∙  m2/kg) 𝐻 (A/m)
by fitting the magnetization curve data provided by the supplier with a Langevin function: 

. The fittings give: 
𝜎(𝐻) = 𝑀𝑠(coth (𝛾𝐻) ‒

1
𝛾𝐻)

and 𝑀𝑠,𝑀270 = 10.8𝑒𝑚𝑢 𝑔,  𝛾𝑀270 = 9.47 ∙ 10 ‒ 5 𝑚/𝐴 

𝑀𝑠,𝑀𝑦𝑂𝑛𝑒 = 21.86𝑒𝑚𝑢 𝑔,   𝛾𝑀𝑦𝑂𝑛𝑒 = 6.28 ∙ 10 ‒ 5 𝑚/𝐴. 

Figure S2: Magnetic field with . The magnetic field components around the wire 𝑖𝑑 = 12 µAm

write as:  and . The wire is placed 5 µm 
𝐻𝑥 =

𝑖𝑑𝑥𝑦

𝜋(𝑥2 + 𝑦2)
𝐻𝑦 =  ‒

𝑖𝑑

2𝜋(𝑥2 + 𝑦2)
‒

𝑖𝑑𝑥2

𝜋(𝑥2 + 𝑦2)2

vertically from the top boundary, and 250 µm horizontally from the fluid inlet.
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Figure S3: Fluidized bed geometry.

Figure S4: Column-shaped aggregates in the fluidized bed. The column diameter is uneven 
and usually higher than the particle size (2.8 µm). For the simulation, we took a column 
diameter of 6 µm, which corresponds to a typical observation.
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Figure S5: Magnetic microtweezers geometry. Magnet size = 5x5x5 mm, Distance between 
magnet and tweezers = 4 mm, a (wide) = 40 µm, a (sharp) = 0 µm, b = 400 µm, e = 50 µm, h 
= 35 µm, w = 30 µm. Channel length = 1 mm.

Figure S6: Magnetization curve of the NiFe alloy, from Dumas et al. (2) This curve is set as 
material properties for the tweezers in COMSOL.
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Table S1: Bead properties

Used in Bead reference Diameter 
(µm)

Density 
(kg/m3)

Ms (emu/g 
= Am2/kg)

 × 10-5 𝛾
(m/A)

Dilute magnetophoresis 
and

Magnetic microtweezers

Dynabeads 
MyOne 1 1800 21.86 6.28

Fluidized bed Dynabeads 
M270 2.8 1300 10.80 9.47

Table S2: Grid convergence study

a) Magnetophoresis in the dilute regime

Av. element size in the 
cluster region (µm)

Computation 
time (h) Cluster size (um2) Variation %

Very coarse 0.8 0.06 6.70

Coarse 0.6 0.3 8.66 29.3%

Medium 0.4 1.06 10.52 21.4%

Fine 0.3 2.33 11.36 7.9%

Very fine 0.2 5.93 11.69 2.9%

b) Microfluidic magnetic fluidized bed

Av. element size (µm) Computation 
time (h) Bed area Variation %

Very coarse 37.71 0.35 3.88

Coarse 25.14 1.25 3.76 3.19%

Medium coarse 15.08 1.40 3.57 4.94%

Medium 12.57 1.78 3.52 1.42%

Medium fine 10.77 2.4 3.49 0.90%

Fine 9.43 2.83 3.46 0.76%

Finer 8.38 3.58 3.45 0.49%

Very fine 7.54 4.75 3.43 0.45%

c) Magnetic microtweezers

Av. element size in the 
cluster region (µm)

Computation 
time (h) Cluster size (ng) Variation %

Very coarse 3.78 0.58 12.23

Coarse 3.24 0.8 12.55 2.63%

Medium 2.71 1.45 13.85 10.32%

Fine 2.16 2.5 14.68 6.01%

Finer 1.92 4.22 15.04 2.45%

Very fine 1.82 4.77 15.11 0.47%
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