Supplementary Information

Bubble-particle dynamics in multiphase flow of capillary foams in a porous micromodel

Omotola Okesanjo^a, Guillaume Aubry^a, Sven Behrens^{ab*}, Hang Lu^a, and J. Carson Meredith^{a*}

^a School of Chemical and Biomolecular Engineering, Georgia Institute of Technology.

^b Polymer Science & Materials Chemistry, Exponent Inc.

*Email: hang.lu@chbe.gatech.edu; carson.meredith@chbe.gatech.edu

Content

File Name: Video S1 Description: **Three stages of foam flow through the microporous environment.** Three sequences show different states of the foam flowing through the device. Not real speed (slowed down).

File Name: Video S2

Description: Partial and full clogging remediation

Foam flowing through a partially clogged micromodel. Full clogging is remediated through pressure build up that forces displacement of bubbles and particles clogging the micromodel. Not real speed (slowed down).

File Name: Video S3 Description: **Water erosion process.** A current of water sweeps away particles and bubbles trapped in the pores of the micromodel and opens new channels for foam flow. Not real speed (slowed down).

File Name: Video S4

Description: Flow path reconfiguration.

Path switching occurs as new flow paths open and the existing paths close. Not real speed (slowed down).

SI Figure 1: Experimental set-up	Page 2
SI Figure 2: Phase separation through PE tubing	Page 3
Permeability computation	Page 3

1. Experimental set-up

To monitor and quantify the capillary foam's behavior through the microporous environment, the microfluidic device was set under a dissecting scope coupled to a high-speed acquisition camera (Phantom v7, 4000 fps). A syringe pump positioned vertically actuated a syringe loaded with the capillary foam. The foam is transported to the device via PE tubing and, after the device, is collected in a glass beaker.

Fig. S1: Apparatus and set-up used to image capillary foam flow.

2. Phase separation through PE tubing

At low flow rate, the stress imposed appears to hasten CF aging, leading to CF loss over time. SI Figure 2 shows phase separation as evidenced by the segregated regions of gas plugs, water, and foams in the tube.

Fig. S2: Images of capillary foams dyed with green food dye flowing through a polyethylene tube showing phase separation between (a) water and gas, (b) foam and water before entering the micromodel.

3. Permeability computation

Permeability (k) of the porous micromodel used in this work was calculated via the Kozeny-Carman equation in eq. S1 below:

$$k = \Phi^2 \frac{\varepsilon^3 d_p^2}{150 * (1 - \varepsilon)^2}$$
 S1

Where, $d_p = 200 \mu m$ is the diameter of the constriction, $\varepsilon = 0.65$ is the porosity of the micromodel and Φ is the constriction sphericity factor; for a circular constriction, $\Phi = 0.87$.