Supporting Information

Sample Preconcentration through Airjet-Induced Liquid Phase Enrichment

Edward Wang^a, Louise C. Laurent^b, Drew A. Hall^c and Yu-Hwa Lo^{ac}

- a) Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA
- b) Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
- c) Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla,

CA, USA

Figure S1. Amplification efficiencies of nucleic acids used in enrichment

Figure S2. Enrichment of rhodamine in ethanol after 2 minutes. 20 μ L of rhodamine solution was deposited on a hydrophilic glass surface, and 1 μ L of a 1% PDMS solution in hexane was added to the surface of the solution.

Figure S3. Image of the heated airjet nozzle used for enrichment. The nozzle consists of two halves of a borosilicate glass pipette with the heating element interested in the middle. The heating element consists of a 40 mm coil nichrome that is braided at the ends with wire. The glass halves are then sealed with ceramic adhesive.

Figure S4. Average temperature vs. power for the pipette's exit nozzle

Figure S5. C_q vs. EDTA concentration for a solution of λ -DNA. For each concentration, 1 µL from the EDTA solution was added to 9 µL of the qPCR reaction mix.

