Supporting Information for

An optical nanofibre enabled on-chip single nanoparticle sensor

Ning Liu, ^a Ni Yao, ^b Shipeng Wang, ^b Zhang Zhang, ^b Tanchen Ren, ^c Ying Gao, ^c Xuhao Zhou, ^c Limin Tong ^a and Lei Zhang^{* a}

^a State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and

Engineering, Zhejiang University, Hangzhou 310027, China

^b Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, China

^c Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of

Medicine, Hangzhou 310009, China.

Email: zhang_lei@zju.edu.cn

Figure S1. Simulation of flow rate distribution in a microchannel (10 μ m in width, 3 μ m in height).

Figure S2. Typical transmission spectrum of the nanoparticle sensor with a 700-nm-diamter nanofibre.

Figure S3. (a-e) Scanning electron micrographs of SU-8 microwires with different diameters in a range of 1-20 μ m. The diameter of each SU-8 microwire is labelled in the micrograph.

Fig. S4 Recovery of the transmitted intensity after a set of measurements by extensive flushing.

Fig. S5 The size distribution of the yeasts measured by Mastersizer 3000.

Supplementary Movie S1: Real time detection PS nanoparticle using the optical nanofibre enabled on-chip single nanoparticle sensor.

Supplementary Movie S2: The attached particles can be effectively removed by flushing the channel.