Supplementary Information for

Light manipulated binary droplet transport on high energy surface

Wei Li^{a,b}, Dongliang Li^{a,b}, Xun Zhu^{a,b}, Dingding Ye^{a,b}, Yang Yang^{a,b}, Hong Wang

^{a,b}, Rong Chen ^{a,b}*, Qiang Liao ^{a,b}

^a Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
^b Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China

*Corresponding author.

Tel.: 0086-23-65102019; fax: 0086-23-65102474; e-mail: rchen@cqu.edu.cn (Rong Chen)

CONTENTS

Supplementary Figures

Supplementary Figures

Fig. S1 Isothermal lines of thermal pattern and corresponding fitted circular isothermal lines (red dotted lines) under different laser beam moving velocities.

Fig. S2 (A) l_n as a function of x_{PG} for 0.6 μL binary droplet sliding on a 15° inclined high energy surface. (B) Comparison between viscous drag force and gravity along the substrate for binary droplets ($x_{PG}=0.1$) with different volumes (The calculation of viscous drag force is based on $l_n=22.6$).

Fig. S3 Comparison in the droplet moving velocity U determined by experiments and theoretical model (the blue dotted line represents the laser beam moving velocity u=0.38 mm/s).

Fig. S4 (A) Numerical and experimental results on comet-shaped thermal patterns under different laser powers (laser beam moving velocity u=0.29 mm/s). (B) One-plane temperature distributions at the central axis along the droplet motion direction under different laser powers.