Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2023

# **Supplementary Information**

# A syndromic diagnostic assay on macrochannel-to-digital microfluidic platform for automatic identification of multiple respiratory pathogens

Cheng Dong<sup>a, ‡</sup>, Fei Li<sup>b, c, ‡</sup>, Yun Sun<sup>c</sup>, Dongling Long<sup>d</sup>, Chunzhao Chen<sup>e</sup>, Mengyan Li<sup>f</sup>, Tao Wei<sup>g, h</sup>, Rui P. Martins<sup>i</sup>, Tianlan Chen<sup>c, \*</sup>, and

Pui-In Mak<sup>i, j,</sup> \*

- a. School of Intelligent Systems Science and Engineering/JNU-Industry School of Artificial Intelligence, Jinan University, Zhuhai 519000, China.
- b. Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- c. Digifluidic Biotech Ltd., Zhuhai 519000, China.
- d. Zhuhai Center for Disease Control and Prevention, Zhuhai 519087, China
- e. Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China
- f. Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, USA
- g. Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, China
- h. Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, 529080, China
- i. State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macau SAR, 999078, China.
- j. Faculty of Science and Technology, University of Macau, Taipa, Macau SAR 999078, China
- \* Corresponding author, Tianlan Chen and Pui-In Mak E-mail: oscar.chen@digifluidic.com; pimak@um.edu.mo

<sup>‡</sup>These authors contributed equally to this work

### Methods

# The reproducibility of the volumes of dispensed droplets

The images of the chips were captured by the same camera after the droplets were dispersed. The camera was fixed by a stable bracket and focused on the center of each chip with the same distance to chip when taking photos. Due to mature production technology, plates are strictly parallelized. The heigh of the chamber was assumed to be consistent, therefore, allowing to measure the volume through image analysis software ImageJ (version 1.53). The total volume after elution was exactly  $60 \ \mu L$  as the elution buffer was prestored in elution room. Thus, the volumes were calculated by the following equation:

Dispensed droplet volume (
$$\mu L$$
) =  $\frac{Dispensed droplet area}{Total area} \times 60 \,\mu L$ 

50 chips were processed for reproducibility assay in this study. The intra-assay coefficients of variation (CVs) were calculated by the 8 dispensed droplets on the same chip. The inter-assay CV represented the dispersion degree of the mean values of 50 chips.

## Temperature control and monitoring

A thin-film heater and temperature sensors were embedded on the bottom printed circuit board (PCB) to generate heat and maintain a constant temperature for the qPCR reaction. The operations on the DMF chip were managed using automated control electronics (Digifluidic, Guangdong, China), which integrate a proportion integration differentiation (PID) controller and a power amplifier for temperature control. The online temperatures acquired by sensors were used as input for PID adjustment. In temperature monitoring experiment, to accurately capture the actual temperatures at each site, eight thermocouples were seamlessly sticked at the reaction sites and read the real-time temperatures every second.

### **Results and Discussions**

#### **Droplet volume**

As shown in Fig.S3, the droplet volume count was nicely fitted ( $R^2=0.95$ ) by Gauss function as follow.

$$y = Ae^{-\frac{(x - x_c)_2}{2w^2}} = 0.12 \times e^{-\frac{(x - 5.55)^2}{2 \times 0.34^2}}$$

Where  $x_c$  is the axis of symmetry of the Gauss distribution. It suggests that 5.55 µL is the most frequently presented droplet volume; A is the maximal relative frequency, which means 5.55 µL droplet volume was presented with the frequency of 12%; w is the full-width at the half of the maximum (FWHM), which is 0.34; e is a constant (i.e., Euler's Number).



Figure S1. The software control system, composite structure diagram of VH 2.0 device and chip. (a) Desktop software system run on PC and cloud server. (b) Embedded software system for VH 2.0 device. (c) The elements to be controlled on VH 2.0 chips.

Figure S2. The on-chip "sample-answer" workflow. Sample input and preload reagents presented in dash line box. Bead moving paths are indicated by dash lines, while reagents moving path are solid lines.



Figure S3. The droplet volume distribution over discrete 400 droplets. It well fitted ( $R^2=0.95$ ) with Gauss function as the red line indicated.

| Target Region                      | Label         | Sequence                           |
|------------------------------------|---------------|------------------------------------|
| Influenza A virus<br>M1 gene       | FluA-F        | GRCCGATCCTSTCACCTCTGAC             |
|                                    | FluA-R        | GRGCATTTTGGACAAAGCGTCTACG          |
|                                    | FluA-P-ROX    | ROX-TGTTCACGCTCACCGTGCCCAG-BHQ1    |
| Influenza B virus<br>hemagglutinin | FluB-F        | GAAGCACTACTTTGCTCGC                |
|                                    | FluB-R        | GATTGCAGACATTGAAGAYCTA             |
|                                    | FluB-P-CY5    | CY5-CCTAACAACGACCATACTACGAGCA-BHQ1 |
| SARS-CoV-2                         | CovN-F        | TCACGTAGTCGCAACAGTTCAAGAA          |
| nucleocapsid                       | CovN-R        | TCTCAAGCTGGTTCAATCTGTCAA           |
| protein                            | CovN-P-FAM    | FAM-TAGAATGGCTGGCAATGGCGGTGATG-HQ1 |
| SARS-CoV-2 open                    | CovORF1-F     | CACACTGGTACTGGTCAGGCAATA           |
| reading                            | CovORF1-R     | ATCTATGTGGCAACGGCAGT               |
| frames 1                           | CovORF1-P-HEX | HEX-CACCGGAAGCCAATATGGATCAAGA-BHQ1 |

Table S1. Primers and probes for RT-qPCR

| Concentration (copies/mL) | On-chip |       | Off-chip       |       |       |                |
|---------------------------|---------|-------|----------------|-------|-------|----------------|
| FluB-CY5                  | Ct      | CV    | Detection rate | Ct    | CV    | Detection rate |
| 1000000                   | 24.47   | 1.58% | 72/72          | 28.68 | 0.39% | 4/4            |
| 100000                    | 28.18   | 2.69% | 72/72          | 31.51 | 0.99% | 4/4            |
| 10000                     | 31.39   | 1.50% | 71/72          | 35.32 | 1.16% | 4/4            |
| 1000                      | 34.05   | 2.49% | 70/72          | 38.97 | 2.08% | 4/4            |
| 100                       | 35.83   | 2.59% | 18/40          | /     | /     | /              |
| FluA-ROX                  | Ct      | CV    | Detection rate | Ct    | CV    | Detection rate |
| 1000000                   | 24.61   | 3.09% | 72/72          | 25.41 | 0.20% | 4/4            |
| 100000                    | 28.53   | 2.51% | 72/72          | 28.59 | 0.57% | 4/4            |
| 10000                     | 31.22   | 2.54% | 71/72          | 32.29 | 0.31% | 4/4            |
| 1000                      | 34.09   | 3.29% | 70/72          | 35.80 | 0.70% | 4/4            |
| 100                       | 37.32   | 2.22% | 29/40          | 39.19 | 3.06% | 4/4            |
| SARS-CoV-2(ORF1)-HEX      | Ct      | CV    | Detection rate | Ct    | CV    | Detection rate |
| 10000000                  | 16.55   | 3.27% | 16/16          | 21.06 | 0.74% | 8/8            |
| 1000000                   | 21.58   | 3.96% | 72/72          | 25.02 | 1.00% | 8/8            |
| 100000                    | 23.70   | 2.39% | 72/72          | 28.44 | 1.19% | 8/8            |
| 10000                     | 27.14   | 4.32% | 71/72          | 32.07 | 1.81% | 8/8            |
| 1000                      | 30.26   | 3.24% | 70/72          | 34.53 | 0.88% | 8/8            |
| 100                       | 33.34   | 2.20% | 71/72          | /     | /     | /              |
| 10                        | 36.00   | 2.43% | 24/72          | /     | /     | /              |
| SARS-CoV-2(N)-FAM         | Ct      | CV    | Detection rate | Ct    | CV    | Detection rate |
| 10000000                  | 18.54   | 3.94% | 16/16          | 19.94 | 1.37% | 8/8            |
| 1000000                   | 23.70   | 1.64% | 72/72          | 23.79 | 1.30% | 8/8            |
| 100000                    | 26.49   | 2.22% | 72/72          | 27.11 | 1.11% | 8/8            |
| 10000                     | 29.86   | 3.18% | 71/72          | 31.42 | 1.63% | 8/8            |
| 1000                      | 32.76   | 3.39% | 94/96          | 33.21 | 1.13% | 8/8            |
| 100                       | 35.63   | 4.20% | 47/72          | 37.39 | 2.16% | 6/8            |

Table S2. Comparison of on-chip and off-chip complete workflow on detecting various pathogenic genes

The tests with low detection rate (<50%, printed in red) was not included in the standard curve generation.

| Target               | Pearson's R | р      |
|----------------------|-------------|--------|
| FluA-ROX             | 0.91        | 0.0013 |
| SARS-CoV-2(N)-FAM    | 0.70        | 0.0002 |
| SARS-CoV-2(ORF1)-HEX | 0.93        | 0.0004 |

Table S3. The summary of Pearson correlation between on- and off-chip clinic specimen

Table S4. Summary of the clinic specimens

| Number               |       | On-chip |      |       | Off-chip |      |
|----------------------|-------|---------|------|-------|----------|------|
| FluA-ROX             | Mean  | CV      | rate | Mean  | CV       | rate |
| 1                    | 25.72 | 2.24%   | 8/8  | 28.34 | 2.08%    | 4/4  |
| 2                    | 31.71 | 1.45%   | 8/8  | 33.58 | 0.20%    | 4/4  |
| 3                    | 28.92 | 2.95%   | 8/8  | 30.71 | 0.91%    | 4/4  |
| 4                    | 28.39 | 1.75%   | 8/8  | 25.45 | 0.23%    | 4/4  |
| 5                    | 32.50 | 1.81%   | 8/8  | 30.68 | 0.56%    | 4/4  |
| 6                    | 35.24 | 6.38%   | 8/8  | 33.65 | 1.34%    | 4/4  |
| 7                    | 32.46 | 2.72%   | 8/8  | 32.28 | 0.73%    | 4/4  |
| 8                    | 29.73 | 1.49%   | 8/8  | 28.85 | 0.35%    | 4/4  |
| 9                    | 32.32 | 1.73%   | 8/8  | 31.68 | 0.70%    | 4/4  |
| 10                   | 35.11 | 3.70%   | 7/8  | 34.90 | 1.31%    | 4/4  |
| 11                   | 36.07 | 4.01%   | 7/8  | 34.23 | 1.25%    | 4/4  |
| SARS-CoV-2(N)-FAM    | Mean  | CV      | rate | Mean  | CV       | rate |
| 1                    | 26.51 | 0.99%   | 8/8  | 25.12 | 0.50%    | 4/4  |
| 2                    | 28.96 | 2.36%   | 8/8  | 26.93 | 0.24%    | 4/4  |
| 3                    | 26.59 | 1.94%   | 8/8  | 28.09 | 0.31%    | 4/4  |
| 4                    | 29.90 | 1.85%   | 8/8  | 30.2  | 0.82%    | 4/4  |
| 5                    | 30.82 | 1.11%   | 8/8  | 30.69 | 1.19%    | 4/4  |
| 6                    | 30.67 | 1.35%   | 8/8  | 30.88 | 1.47%    | 4/4  |
| 7                    | 29.93 | 2.40%   | 8/8  | 29.8  | 1.29%    | 4/4  |
| 8                    | 26.39 | 2.14%   | 8/8  | 25.26 | 0.28%    | 4/4  |
| 9                    | 30.84 | 1.73%   | 8/8  | 31.15 | 0.79%    | 4/4  |
| 10                   | 30.58 | 1.86%   | 8/8  | 30.03 | 0.47%    | 4/4  |
| 11                   | 27.88 | 5.23%   | 8/8  | 28.34 | 0.56%    | 4/4  |
| SARS-CoV-2(ORF1)-HEX | Mean  | CV      | rate | Mean  | CV       | rate |
| 1                    | 23.91 | 2.88%   | 8/8  | 24.26 | 0.46%    | 4/4  |
| 2                    | 25.42 | 1.42%   | 8/8  | 26.11 | 1.16%    | 4/4  |
| 3                    | 24.04 | 1.57%   | 8/8  | 27.11 | 0.43%    | 4/4  |
| 4                    | 27.29 | 2.64%   | 8/8  | 29.43 | 0.57%    | 4/4  |
| 5                    | 28.09 | 1.08%   | 8/8  | 29.94 | 0.60%    | 4/4  |
| 6                    | 28.28 | 1.28%   | 8/8  | 30.23 | 0.91%    | 4/4  |
| 7                    | 28.32 | 3.17%   | 8/8  | 29.13 | 0.38%    | 4/4  |
| 8                    | 23.16 | 2.39%   | 8/8  | 24.39 | 1.23%    | 4/4  |
| 9                    | 29.07 | 1.41%   | 8/8  | 30.33 | 0.19%    | 4/4  |
| 10                   | 30.46 | 1.80%   | 8/8  | 29.09 | 1.25%    | 4/4  |
| 11                   | 25.65 | 4.46%   | 8/8  | 27.39 | 1.39%    | 4/4  |

Negative samples were not shown.

| 10010 55: 110000 | use solution of the second sec |       |             |           |           |           |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-----------|-----------|-----------|--|--|
| Target           | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mean  | Inter-assay | 1 mon. vs | 2 mon. vs | 1 mon. vs |  |  |
|                  | (copies/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ct    | CV          | 2 mon.    | 3 mon.    | 3 mon.    |  |  |
| FluA             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.09 | 0.76%       | 0.32      | 0.12      | 0.47      |  |  |
| FluB             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.03 | 0.71%       | 0.16      | 0.11      | 0.95      |  |  |
| SARS-CoV-2       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.64 | 0.61%       | 0.30      | 0.50      | 0.47      |  |  |
| (N)              | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |             |           |           |           |  |  |
| SARS-CoV-2       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.12 | 0.56%       | 0.12      | 0.02      | 0.27      |  |  |
| (ORF1)           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55.12 | 0.3070      | 0.12      | 0.92      | 0.27      |  |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             |           |           |           |  |  |

Table S5. Probability associated with a two-tailed distribution Student's t-test