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1 Optimization of [*®F]YH149 synthesis on droplet reactors

1.1 |Initial conditions

Table S1. Results of initial experiments. Condition 1 was adapted from the macroscale conditions reported
by He et al. for the Cu-mediated radiosynthesis of [*8F]YH149! by reducing reagent amounts by 10x (30x
for Cu(OTf)2(Py)s) and volume by 30x. Condition 2 was taken from a previous study where we optimized
the Cu-mediated radiofluorination step for [*®F]FDOPA, and we simply changed the precursor to that for
[*8F]YH1492. Abbreviations: PTC = phase transfer catalyst.

Adapted reference condition 1 2
PTC (amount (umol)) Kz (1.7), K2C204(0.6) TEAOTT (0.3)
Base (amount (umol)) K2COs (0.07) Cs2C0s3 (0.01)
Amount of precursor (umol) [mg] 0.45 [0.24] 0.45 [0.24]
Amount of Cu(OTf)2(Py)a4 (umol) 0.68 0.68
10 pL of solvent  DMA/nBuUOH (2:1, v/v) DMA/Py (96:4, viv)
Temperature (°C) 110 110
Reaction time (min) 5 5

Radiosynthesis performance (n = 2)

Starting activity (MBQ) 45+1 46+ 1

Fluorination conversion (%) 0 44 +1

Collection efficiency (%), decay-corrected 84+1 81+2
Crude RCY (%), decay-corrected 0 362
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Figure S1. Analysis of crude fluorination products from initial experiments using multi-lane TLC with
Cerenkov luminescence imaging (CLI) readout.



1.2 Influence of solvent type

Table S2. Impact of fluorination solvent on the performance of the droplet radiosynthesis of [*F]YH149.

Solvent* C(I):r|1L\J/c()arrlsn|§t|'llo(gA)) effic iltla?lcct;/o(r:%)) Crude RCY (%)
DMF 112 64+ 4 7+1
DMA 4313 69 = 3 29+ 3
DMSO 3:0 70+ 2 250
NMP 361 75+ 6 27+ 2
DMA/NBUOH (vIv, 2:1) 49+ 2 75+ 1 35+ 0
DMA/NBUOH (viv, 2:1)° 0 84t 1 0

aAll reactions were performed with 0.3 pmol of TEAOTTf, 0.01 pmol of Cs2C0Os3, 0.18 ymol of precursor and
0.68 pmol of Cu(OTf)2(Py)4 in 10 pL of solvent/pyridine (96:4, v/v) at 110°C for 5 min (n = 3 replicates each
condition). PThe reaction was performed in the absence of pyridine (n = 2 replicates).
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Figure S2. High-throughput analysis of crude fluorination products (from study of solvent) using multi-lane
TLC with CLI readout.

1.3 Influence of type of phase transfer catalyst (PTC)/base
Table S3. Impact of type of PTC/base on the performance of the droplet radiosynthesis of [18F]YH149.

PTCIbase" conversion (o) | _efficiency G | Cude REY (9
TEAOT{/Cs2COs3 44 + 3 71+3 31+3
TBAOT{/Cs2CO3 36+2 73+8 26+4

TEAOTT 36+1 701 25+1
TBAOTf 287 66 6 19+6
TBAHCOs3 18x1 77+2 14+1

aAll reaction was performed with 0.3 ymol of PTC, 0.01 ymol of Cs2COs (if applied), 0.18 umol of precursor
and 0.68 pymol of Cu(OTf)2(Py)4 in 10 uL of DMA/nBuOH/pyridine (64:32:4, v/v) at 110°C for 5 min (n = 3
replicates each condition).
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Figure S3. High-throughput analysis of crude fluorination products (from study of PTC/base type) using
multi-lane TLC with CLI readout.

1.4 Impact of fluorination temperature and base type

Table S4. Impact of fluorination temperature (when using TEAOTf/Cs2CO3) on the performance of the
droplet radiosynthesis of [18F]YH149.

Fluorination temperature (°C)? Cgr!lf/%rr'sr}itr:o(&) efﬁgiléicg;og%) Crude RCY (%)
100 29+1 70+ 0 21+1
110 49+1 68+1 33+1
115 58+ 1 65+2 38+2
120 64+4 6312 40+ 2
130 70+ 4 59+4 415
140 78+ 1 55+1 43+1

aAll reaction was performed with 0.3 pymol of PTC, 0.01 pmol of Cs2COs, 0.18 pymol of precursor and 0.68
pmol of Cu(OTf)2(Py)s in 10 uL of DMA/nBuOH/pyridine (64:32:4, v/v) at investigating temperature for 5 min
(n = 3 replicates each condition).

250
200
['*FIYH149 =~ 150

100

concentration

Unreacted ['®F]fluoride X

—————— - ——
Relative radioactivity

Fluorination

Figure S4. High-throughput analysis of crude fluorination products (from study of reaction temperature with
TEAOT{/Cs2COs) using multi-lane TLC with CLI readout.



Table S5. Impact of fluorination temperature (when using TEAOT{/K2COs) on the performance of the droplet
radiosynthesis of [*8F]YH149.

Fluorination temperature (°C)? Cg:}%%:giﬂo(&) efﬁgiléicg;og%) Crude RCY (%)
120 66 + 3 59 +2 39+3
140 671 57+3 382
150 68+ 1 52+2 35+1
160 58 + 4 46+ 4 262

aAll reaction was performed with 0.3 pmol of PTC, 0.01 pmol of K2COs, 0.18 umol of precursor and 0.68
pmol of Cu(OTf)2(Py)4 in 10 pL of DMA/nBuOH/pyridine (64:32:4, v/v) at investigating temperature for 5 min
(n = 3 replicates each condition).
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Figure S5. High-throughput analysis of crude fluorination products (from study of reaction temperature with
TEAOT{/K2CO3) using multi-lane TLC with CLI readout.

1.5 Impact of reaction time

Table S6. Impact of reaction time on the performance of the droplet radiosynthesis of [*8F]YH149.

Reaction time (min)® | Fluorination conversion (%) |Collection efficiency (%) Crude RCY (%)
0.5 3B+1 74+0 26+1
1 41+2 63+0 26+2
2 61+1 63+3 39+2
3 66 + 3 64+0 42+2
5 68+1 52+2 36+2
7 73+6 49+ 3 36+5

aAll reaction was performed with 0.3 pymol of PTC, 0.01 pymol of K2COs, 0.18 umol of precursor and 0.68
pmol of Cu(OTf)2(Py)s in 10 yL of DMA/nBuOH/pyridine (64:32:4, viv) at 140°C for investigating reaction
time (n = 3 replicates each condition).
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Figure S6. High-throughput analysis of crude fluorination products (from study of reaction time) using multi-
lane TLC with CLI readout.

1.6 Influence of amount of base

Table S7. Impact of amount of base on the performance of the droplet radiosynthesis of [*8F]YH149.

Base amount (hmol)® |Fluorination conversion (%)|Collection efficiency (%)| Crude RCY (%)
10 736 49+3 36+5
20° 6817 47+ 1 32+4
30° 61+2 50+ 2 302

aAll reaction was performed with 0.3 ymol of PTC, investigating amount of K2COz, 0.18 pmol of precursor
and 0.68 pmol of Cu(OTf)2(Py)4 in 10 yL of DMA/nBuOH/pyridine (64:32:4, v/v) at 140°C for 7 min (n = 3
replicates each condition). °n = 2 replicates each condition.
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Figure S7. High-throughput analysis of crude fluorination products (from study of base amount with K2CO3)
using multi-lane TLC with CLI readout.



1.7 Influence of amount of precursor

Table S8. Influence of amount of precursor on the performance of the droplet radiosynthesis of [18F]YH149.

Amount of precursor (mg)? Cg:}%%:giﬂo(&) efﬁgiltla?]cct;/o(r:%) Crude RCY (%)
0.05 66+ 0 53+4 352
0.1 64+5 60+ 6 381
0.15 62 + 2 68 + 4 42+ 4
0.15° 802 71+£3 56 +3
0.15° 71+5 57+1 404
0.2 60+1 61+2 361
0.25 50+2 61+1 361
0.3 64 +3 62 +2 39+3

aAll reaction was performed with 0.3 pymol of PTC, 0.01 uymol of K2COs, investigating amount of precursor
and 0.68 pmol of Cu(OTf)2(Py)4 in 10 yL of DMA/nBUOH (v/v, 2:1) along with 4% of pyridine (v/v) at 140°C
for 3 min (n=3 replicates each condition). PThe reaction was performed with Cs2CQOz instead of K2COs, and
was repeated n = 4 times. ¢The reaction was performed in presence of DMA/nBuOH/pyridine (64:32:4, v/v),
and was repeated n = 4 times.
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Figure S8. High-throughput analysis of crude fluorination products (from additional tested conditions) using
multi-lane TLC with CLI readout. The conditions marked at the bottom are precursor amounts with
superscripts matching the special cases from Table S8.



2 Macroscale synthesis performance
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Figure S9. Implementation of radiosynthesis in a vial-based (macroscale) reaction.
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Figure S10. Impact on fluorination efficiency of different reaction times (n = 4) in the macroscale synthesis.



Table S9. Performance of translated (droplet to vial) radiosynthesis of [*8F]YH149. Activity measurements
are expressed as fractions of starting activity (corrected for decay).

Process Measurement Result
Starting activity (GBQq) 0.2-1.4
Duration for evaporating initial 25 pL [*8F]F/PTC/base (min) 5
Duration for cooling down (min) 1

18 - i

[*°FIF drying 3 X Duration for additional MeCN (30 uL) azeotropic 6
evaporation (min)
3 X Duration for cooling down (min) 3
Duration of the whole drying process (min) 15
Activity of 3-min sample (%) 0.3£0.2
Activity of 6-min sample (%) 04+0.2
Activity of 10-min sample (%) 0.3£0.2

Radio-fluorination
Collected activity from reactor (%) 815
Residual activity in reactors after extraction (%) 174
Duration (min) 15
Activity before loading on cartridge (%) 815
Activity trapped on light C18 (%) 52+10

Exchange solvent Waste from trapping and washing process (%) 27 +11

to MeCN and Eluted activity with 0.5 mL of MeCN (%) 51 + 10

concentrate to

<0.1mL Residue activity on cartridge (%) 1+0
Duration of the solvent-exchange process (min) 10
Duration of MeCN evaporation 5
Isolated [*F]YH149 from radio-HPLC (%) 50+ 10

Purification
Duration (min) 13
Total preparation time (min) 58




3 Calibration curve to determine molar activity

The same analytical scale radio-HPLC system was used to determine the molar activity of the purified
[*8F]YH149. The area under the curve for the UV absorbance peak was determined for a range of mole
amounts of YH149 reference standard (0.06-0.98 nmol) to generate a linear calibration curve (Figure S11).
This curve was then used to determine the mass of YH149 in the unknown sample, and subsequently
compute the molar activity, following standard procedures.
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Figure S11. Calibration curve of YH149 reference standard (254 nm wavelength).

4 Example HPLC chromatograms from translated synthesis
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Figure S12. Example radio-HPLC chromatogram of crude [*®F]YH149 from macroscale radiosynthesis.
The retention time was 10.0 min, earlier than that with microscale purification (tr=18.6 min) because the
crude sample was injected in 100 yL MeCN (versus 80 uL of the HPLC mobile phase for the microscale
synthesis).
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Figure S13. Example radio-HPLC chromatogram of purified [18F]YH149 from macroscale radiosynthesis.
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Figure S14. Example radio-HPLC chromatogram of co-injection of purified [*8F]YH149 (from macroscale

radiosynthesis) and reference standard.
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