Electronic Supplementary Information

Paper-embedded thermoplastic microdevice integrating additive-

enhanced allele-specific amplification and silver nanoparticle-

based colorimetric detection for point-of-care testing

Duc Anh Thai, Seung Kyun Park and Nae Yoon Lee*

Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.

*Corresponding author. Tel: +82 31 750 8556, Fax: +82 31 750 8774, Email: nylee@gachon.ac.kr (N.Y. Lee).

Table S1 The primer sequences used for loop-mediated isothermal amplification of *Hbb*, *AR*, and *esp* genes. The SNP position in primers is highlighted in bold. The mismatch nucleotide is underlined.

Target gene	Primer name	Primer sequence (5'-3')			
НЬЬ	F3	GCAGCCTAAGGGTGGGAA			
	B3	GACACCATGGTGCATCTGA			
	FIP	ACTGGGCATGTGGAGACAGAGA-TAGGCAGAGAGAGTCAGTGC			
	BIP (HbS)	AGGGCCTCACCACCAACTTC T AGAGAAGTCTGCCGTTACTG			
	BIP (HbA)	AGGGCCTCACCACCAACTTC A AGAGAAGTCTGCCGTTACTG			
	LB	TCACCTTGCCCCACAGG			
AR (rs6152)	F3	ACATCCTGAGCGAGGCC			
	B3	GCCCATGGACACCGACA			
	FIP AA	TGCCCTCGCTCCCCGCTGATGCAACTCCTTCAGCAACA			
	FIP GG	C <u>G</u> CCCTCGCTCCCCGCTGATGCAACTCCTTCAGCAACA			
	BIP	GGCTCCCACTTCCTCCAAGGGGCGTTGTCAGAAATGGTCG			
esp	F3	CCAGAACACTTATGGAACAG			
	В3	GTTGGGCTTTGTGACCTG			
	FIP	CGTGTCTCCGCTCTCTTCTTT-TTATTTGCAAGATATTGATGGTG			
	BIP	ATCGGGAAACCTGAATTAGAAGAAG-AACTCGTGGATGAATACTTTC			
	LB	TGATGTTGACACAACAGTTAAGGG			

A Without DNA target

B With DNA target

Fig. S1 TEM images of the hydrazine-induced silver nanoparticles (A) in the absence of the target DNA and (B) in the presence of the target DNA.

Fig. S2 Effect of different (A) reaction temperatures and (B) reaction times on AS-LAMP reaction for SNP detection. Experiments performed using a HbS primer set and 10^4 copies/µL of DNA template.

Fig. S3 Agarose gel electrophoresis result showing (A) the sensitivity of the LAMP assay for HbS detection and (B) detection of the HbS target in samples at varying concentrations. M: ladder. NC: negative control.

Fig. S4 (A) Agarose gel electrophoresis result showing the selectivity test for HbS detection. Experiments were performed using a HbS primer set and 10^4 copies/µL of DNA template. (B) Agarose gel electrophoresis result showing the selectivity test for rs6152AA detection. Experiments were performed using a rs6152AA primer set and 10^4 copies/µL of DNA template. M: ladder. NC: negative control.

Fig. S5 Agarose gel electrophoresis result showing the sensitivity test of the microdevices for (A) human serum spiked with different concentrations of HbS template performed using a HbS primer set and (B) tap water spiked with different concentrations of *E. faecium* performed using a *esp* primer set. M: ladder. NC: negative control.

Fig. S6 Results of the reproducibility tests performed using the microdevice for HbS detection in spiked serum. Experiments were performed using a HbS primer set and 10⁴ copies/µL of DNA template. The reproducibility was demonstrated by repeating the experiments four times.

Fig. S7 (A) Experimental design and (B) results of the multiplexing tests performed using the microdevice for rs6152 and HbS detection in spiked serum. Experiments were performed using rs6152AA and HbS primer set and 10^4 copies/µL of DNA template. M: ladder. NC: negative control.

Device	Integration	Time	Target	Limit of detection	Sample test	Ref.
Integrated paper-based biosensor	 FTA card-based extraction LAMP reactions AuNPs-based detection 	80 min	Escherichia coli Streptococcus pneumonia	10 ¹ -10 ³ CFU/mL	Spiked drinking water, milk, blood, and spinach	[1]
Paper-origami device	 Lysis buffer (95°C) LAMP reactions Calcein-based fluorescence 	60 min	Bovine herpes virus- 1 (BoHV-1) <i>Brucella</i> <i>Leptospira</i>	<1 pg/µL of DNA	Spiked semen	[2]
Origami paper microdevice	 PMA treatment and DNA purification LAMP reaction Methylene blue-based detection 	120 min	Escherichia coli Salmonella spp.	10 ³ CFU/mL	Not reported	[3]
Pop-up paper- based microdevice	 FTA card-based extraction LAMP reactions Colorimetric chemosensor 	110 min	Enterococcus faecium	10 ² CFU/mL 10 ³ CFU/g	Milk and sausage	[4]
Smartphone- assisted genotyping	 On-tube LAMP reaction 3D-printed cassette-based detection (Cresol red) 	90 min	<i>Salmonella</i> Pullorum rfbS gene	1500 copies/µL and 3.98 pg/µL	Poultry samples	[5]
Hybridisation chip	 On-tube LAMP reaction Polycarbonate chips detection (HNB) 	70 min	<i>GRIK4</i> gene (rs1954787)	10 ² gDNA copies	Buccal swabs	[6]
CD-like microfluidic chip	 LAMP reaction Colorimetric and fluorescent detection (SYBR Green I and Neutral red) 	60 min	CALR mutations	10 ¹ copies/µL	Parasite lysate	[7]
Lateral flow dipstick	On-tube LAMP reaction Lateral flow dipstick	70 min	N51l mutation (<i>Plasmodium</i> falciparum)	0.02 ng/reacti on	Blood	[8]
Paper- embedded thermoplastic microdevice	 Silica-based preparation LAMP reaction AgNPs-based colorimetric detection 	70 min	Sickle cell anemia Hair loss- associated SNP (rs6152) Enterococcus faecium	10³ copies/µL 10² CFU/mL	Spiked serum and water	This work

Table S2. Comparison showing several microdevices for point-of-care testing.

References:

- J. R. Choi, J. Hu, R. Tang, Y. Gong, S. Feng, H. Ren and F. Xu, An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care, Lab Chip 16 (3) (2016) 611-621.
- Z. Yang, G. Xu, J. Reboud, S. A. Ali, G. Kaur, J. McGiven, J. M. Cooper, Rapid veterinary diagnosis of bovine reproductive infectious diseases from semen using paper-origami DNA microfluidics, ACS Sens. 3 (2) (2018) 403-409.
- 3. P. T. Trieu, N. Y. Lee, Based all-in-one origami microdevice for nucleic acid amplification

testing for rapid colorimetric identification of live cells for point-of-care testing. Anal. Chem. 91 (17) (2019) 11013-11022.

- T. N. D. Trinh, D. A. Thai, and N. Y. Lee. Pop-up paper-based and fully integrated microdevice for point-of-care testing of vancomycin-resistant Enterococcus, *Sens Actuators B Chem.*, 345 (2021) 130362.
- J. Wen, H. Gou, S. Wang, Q. Lin, K. Chen, Y. Wu, X. Huang, H. Shen, X. Qu, J. Lin, and M. Liao, Competitive activation cross amplification combined with smartphone-based quantification for point-of-care detection of single nucleotide polymorphism, Biosens. Bioelectron. 183 (2021) 113200.
- E. S. Yamanaka, L. A. Tortajada-Genaro, N. Pastor, and Á. Maquieira, Polymorphism genotyping based on loop-mediated isothermal amplification and smartphone detection, Biosens. Bioelectron. 109 (2018) 177–183.
- S. Yongkiettrakul, J. Kampeera, W. Chareanchim, R. Rattanajak, W. Pornthanakasem, W. Kiatpathomchai, and D. Kongkasuriyachai, Simple detection of single nucleotide polymorphism in Plasmodium falciparum by SNP-LAMP assay combined with lateral flow dipstick, Parasitol. Int. 66 (2017) 964–971.
- G. Cao, J. Kong, Z. Xing, Y. Tang, X. Zhang, X. Xu, Z. Kang, X. Fang, and M. Guan, Rapid detection of CALR type 1 and type 2 mutations using PNA-LNA clamping loop-mediated isothermal amplification on a CD-like microfluidic chip, Anal. Chim. Acta 1024 (2018) 123– 135.

Video S1 The operation process of the paper-embedded thermoplastic microdevice.

Video S2 The time-lapse recording video of time-dependent colorimetric reaction for 15 min.