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Supplementary Note 1
Sharp edge height calculation

The sharp edge height can be estimated from the geometrical parameters of the pillar structure, 
such as pillar width µm and sharpness angle  (Fig. S1a). Since the shape of the pillar is 𝑤 = 30 𝛼
diverging from a simple wedge, the height of the edge is parametrized as shown in Fig. S1b-e. 
The expression for the height  can be derived as follows:𝑎
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Fig. S1. Sharp edge structure. (a) Pillar size and the sharp edge angle. (b-e) The height  𝑎
estimation for concave (b,c) and convex (d,e) shapes.
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Fig. S2. Experimental setup for exploring particle manipulation within a microfluidic device, 
comprising a microfluidic channel coupled to a piezoelectric transducer through a water layer, 
with particle suspensions introduced by a syringe pump and observed using a fluorescence 
microscope.



Supplementary Note 2
Governing equations

Perturbation theory was used to model the system with harmonic actuation. The perturbation 
approach has been previously validated for studying vibrating structures with sharp edges, and 
it has shown agreement with both the transient modeling and experimental results[56]. Physical 
fields can be decomposed into initial, first and second-order terms  where 0-𝑔 = 𝑔0 + 𝑔1 + 𝑔2

term is the initial background state. First-order fields are harmonic with , 𝑔1(𝑟,𝑡) = �̅�1(𝑟)𝑒𝑖𝜔𝑡

where  is the complex-valued amplitude,  is the angular frequency, and  is the �̅�1(𝑟) 𝜔 = 2𝜋𝑓 𝑓
oscillation frequency.

In the first step, we solve the first-order (linear) equations, leaving out the common time-
dependent factor. Reintroducing the phase factor , the time-dependent solution can be 𝑒𝑖𝜔𝑡

obtained. The PDMS and commercial IP-Dip material (printed component) domains are 
modeled with the solid mechanics module in COMSOL. In the Voigt representation the 
substrate mechanical stress tensor  and the elastic displacement field  are coupled with 𝜎1 𝑢1

Hooke's Law. For isotropic elastic materials, this is given by
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where  are the elastic constants. We introduce damping in the system through complex-𝐶𝑖𝑗

valued elastic coefficients[57]

𝐶𝑖𝑗 = 𝐶 '
𝑖𝑗 + 𝑖𝐶 ''

𝑖𝑗 = 𝐶 '
𝑖𝑗(1 + 𝑖𝜂), (S3)

where  is an isotropic loss factor. The Cauchy equation takes the form𝜂

∇ ⋅ 𝜎1 =‒ 𝜌0𝜔2𝑢1, (S4)

where  is the mass density. The storage modulus  can be defined through the longitudinal 𝜌0 𝐶 '
𝑖𝑗

 and transverse  sound speeds or Young's modulus  and the Poisson's ratio 𝑐𝐿 𝑐𝑇 𝐸 𝜈

𝐶 '
11 = 𝑐2

𝐿𝜌0 =
𝐸(1 ‒ 𝜈)

(1 + 𝜈)(1 ‒ 2𝜈)
, (S5)

𝐶 '
44 = 𝑐2

𝑇𝜌0 =
𝐸

(1 + 𝜈)
, (S6)

𝐶 '
12 = 𝐶 '

11 ‒ 2𝐶 '
44. (S7)

A roller boundary condition is applied on all side walls, with

𝑢1 ⋅ 𝑛 = 0, (S8)

where  is the normal to the boundary vector. We use a PML on the top wall to set a non-𝑛
reflecting boundary as shown in Fig. S3a. The PML acts as an artificial absorbing domain by 
imposing a complex-valued coordinate displacement in the z-direction (polynomial stretching)



∆𝑧 = 𝜆�̂�(1 ‒ 𝑖) ‒ ℎ𝑃𝑀𝐿�̂�, (S9)

where  is the acoustic wavelength, and  is a local dimensionless coordinate which varies from 𝜆 �̂�

0 to 1 over the PML height .ℎ𝑃𝑀𝐿 = 𝜆 2

In the fluid domain, governing equations of continuity, energy, and momentum conservation 
are considered, with

∂𝜌1
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=  ‒ ∇𝑝1 + 𝛽𝜇∇(∇ ⋅ 𝑣1) + 𝜇∇2𝑣1, (S12)

where  is fluid velocity perturbation,  is density perturbation,  is temperature perturbation, 𝑣1 𝜌1 𝑇1

 is the thermal diffusivity of the liquid,  is the isobaric thermal expansion coefficient 𝐷𝑇 𝛼𝑇

relating density change with temperature,  is the zeroth-order density of the fluid at rest and 𝜌0,𝑤

 is the specific heat capacity at constant pressure,  is the pressure perturbation,  is the 𝐶𝑝 𝑝1 𝛽

viscosity ratio, relating the bulk  and dynamic  viscosities[58], with . The equation 𝜇' 𝜇
𝛽 =

𝜇'

𝜇
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of state formulates the constitutive relation between density, pressure, and temperature, with

𝜌1 =
𝑝1

𝑐2
𝑤

‒ 𝜌0,𝑤𝛼𝑇1, (S13)

where  is the sound speed.𝑐𝑤

At the solid-fluid boundary, the velocity is set to be continuous, with

𝑣1 =‒ 𝑖𝜔𝑢1, (S14)

additionally, a slip boundary condition is enforced along the sides and walls of the fluid 
domains, ensuring that:

𝑣1 ⋅ 𝑛 = 0. (S15)

Adiabatic boundary conditions on the fluid domain boundaries then complete the numerical 
model, with

𝑛 ⋅ (𝐷𝑇∇𝑇1) = 0. (S16)

To excite the acoustic field in the simulation domain, a harmonic excitation is applied at the 
bottom boundary:

𝑖𝜔𝑢1,𝑧 = 𝑣1,𝑧 = 0.1(𝑚 𝑠). (S17)



This boundary condition models the domain actuation with a bulk-wave piezoelectric actuator 
used in the experiment.
As the Navier–Stokes governing equations are non-linear, the harmonic actuation generates 
higher-order responses. Following perturbation theory, the second-order time-averaged fields 
in the fluid domain  can be determined, with〈𝑔2(𝑟,𝑡)〉

‒ ∇ ⋅ 〈𝜌1𝑣1〉 = 𝜌0∇ ⋅ 𝑣2, (S18)

𝜌0〈(𝑣1 ⋅ ∇)𝑣1〉 + 〈𝜌1

∂𝑣1

∂𝑡 〉 =  ‒ ∇〈𝑝2〉 + 𝛽𝜇∇(∇ ⋅ 𝑣2) + 𝜇∇2𝑣2. (S19)

Hence, the first-order fields drive the second-order steady flow field , termed acoustic 𝑣2

streaming. To appropriately model the interaction of flowing fluid with structures, non-slip 
boundary conditions are applied at fluid-solid interfaces, with 

𝑣2 = 0, (S20)

and a slip boundary condition (symmetry condition) on the outer side walls (in the fluid 
domain), with

𝑣2 ⋅ 𝑛 = 0. (S21)

The time-averaged acoustophoretic radiation force on a spherical particle exposed to an 
acoustic standing wave is then given by Gor’kov[59], with

𝐹𝑟𝑎𝑑 =‒ ∇𝑈𝑟𝑎𝑑,  𝑈𝑟𝑎𝑑 = 𝑈𝑟𝑎𝑑
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(S22)

where  is the Gor’kov time-averaged potential, superscripts mp and dp denote monopole 𝑈𝑟𝑎𝑑

and dipole terms,  is a particle volume,  is compressibility,  is density, superscripts  and 𝑉𝑝𝑠 𝑘 𝜌 𝑤

 denote water and polystyrene beads respectively,  is the time average over 𝑝𝑠 〈𝐴𝐵〉 = 0.5𝑅𝑒(𝐴 ∗ 𝐵)
one oscillation period of complex time-harmonic fields  and , the asterisk denotes complex 𝐴 𝐵

conjugation,  is particle diameter. The Eq. (S22) is valid for particles with a diameter below 𝑑𝑝𝑠

the Rayleigh scattering limit  at 7 MHz.𝑑𝑝𝑠 ≪ 𝜆 = 213𝜇𝑚

Unlike the acoustophoretic force exerted by the harmonic fields, steady acoustic streaming 
applies a viscous drag force on particles suspended in a fluid. By implying zero background 
flow , the fluid drag force on a spherical particle caused by the streaming flow can be 𝑣0 = 0

written as follows:

𝐹𝑑𝑟𝑎𝑔 =  3𝜋𝜇𝑑𝑝𝑠 ( 𝑣2 ‒ 𝑣𝑝𝑠), (S23)

where  is the particle velocity.𝑣𝑝𝑠



Supplementary Note 3
Mesh study

A hybrid computational mesh was used in the study as shown in Fig. S3b-e. To ensure that 
mesh refining does not change the solution significantly, a mesh convergence analysis was 
conducted using the approach from Devendran et al.[62] and Muller et al.[40]. A convergence 
function  over the interior of  (Fig. S3e) can be written as follows, with𝐶(𝑔) Ω

𝐶(𝑔) =

∫
Ω

(𝑈𝑟𝑎𝑑
𝑔 ‒ 𝑈𝑟𝑎𝑑

𝑟𝑒𝑓)2𝑑𝑟 𝑑𝑧

∫
Ω

(𝑈𝑟𝑎𝑑
𝑟𝑒𝑓)2𝑑𝑟 𝑑𝑧

, (S24)

where  is the current solution and  is a reference solution. Current and reference solutions 𝑔 𝑈𝑟𝑎𝑑
𝑟𝑒𝑓

have a maximum mesh element size of  and  respectively. The fluid domain has 𝑑𝑚 𝑑𝑚, 𝑟𝑒𝑓 = 3 𝜇𝑚

mesh refinement near the boundary layer. The mesh study was performed for a , 𝑤 = 30 µ𝑚
, ° microstructure. Fig. S3f shows Gor’kov potential convergence in the fluid ℎ = 70 𝜇𝑚 𝛼 = 13

domain. A convergence threshold of  is realized in a computational mesh with 𝐶(𝑔) < 0.001

 µm used in this study.𝑑𝑚 = 6

The modeling domain dimensions can potentially affect the solution in the vicinity of the 
structure due to edge effects. To estimate the minimum domain radius  which does not have 𝑅
any substantial impact on the solution a parametric study was converted. Fig. S3g plots the 
convergence function  (S24) for the computational domains of various sizes. The function 𝐶(𝑅)

 was evaluated in the fixed-sized subdomain as denoted in Fig. S3e. The reference 𝐶(𝑅) Ω 
solution is taken for a large domain with . The function rapidly converges and 𝑅 = 400 𝜇𝑚
doesn’t exceed 2% beyond , hence a  domain was selected for further study.200 𝜇𝑚 𝑅 = 200 𝜇𝑚



 
Fig. S3. Numerical modeling set-up. (a) Modeling domain in cylindrical coordinates (b-e) 
where (b) shows the computational grid for the study. (c) Close-up of the computational mesh 
for the fluid domain, with (d) showing the mesh elements at the fluid/solid boundary. (e) The 
study subdomain  for the mesh and domain size analysis. (f) Mesh convergence study for the Ω

Gor’kov potential  field and acoustic streaming velocity magnitude field. The dashed line 𝑈𝑟𝑎𝑑

indicates  threshold. (g) Effect of the computational domain radius  on the Gor’kov 𝐶 =  0.001 𝑅

potential  value and acoustic streaming velocity magnitude field. The dotted line indicates 𝑈𝑟𝑎𝑑

 threshold.𝐶 =  0.02

Fig. S4. Time evolution of the sharp edge structure shape ( ) actuated at 7 MHz. The 𝛼 = 13°
deformation is scaled up 100 times for visualization.



Table S1. Material properties used in the computational study.

Material / Property Notation Value
Polydimethylsiloxane (PDMS)[63, 64] 
Density 𝜌0,𝑝 1070 kg m-3

Longitudinal wave speed 𝑐𝐿, 𝑝 1030 m s-1

Transverse (shear) wave speed 𝑐𝑇, 𝑝 100 m s-1

Loss factor 𝜂𝑝 0.001
Water [62]
Density 𝜌0,𝑤 997 kg m-3

Sound speed 𝑐𝑤 1497 m s-1

Dynamic viscosity 𝜇 0.00089 Pa s
Bulk viscosity 𝜇' 0.00247 Pa s
Viscous boundary layer 𝛿𝑣 =  2µ 𝜌𝜔 0.2 µm
Thermal conductivity 𝐷𝑇 0.603 W m-1 K-1

Specific heat capacity 𝐶𝑝 4183 J kg-1 K-1

Thermal expansion coefficient 𝛼𝑇 0.000297 K-1

IP-Dip 
Density[65] 𝜌0,𝑠 1170 kg m-3

Young’s Modulus[66] 𝐸𝑠 2.91 GPa
Poisson ratio[67] 𝜈𝑠 0.3
Loss factor[68] 𝜂𝑠 0.023
Polystyrene beads[69]
Density 𝜌𝑝𝑠 1050 kg m-3

Compressibility 𝑘𝑝𝑠 249 TPa-1

Diameter 𝑑𝑝𝑠 1 µm


