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Supplementary Information Note 1: 

Numerical analysis governing equations 

Computational fluid dynamics (CFD) analysis was used to model fluid flow in the domain shown 

in Fig. S1a. At the volumetric flow rate of 𝑄 = 8.3 ∙ 10−3 𝑚3 𝑠⁄  the Reynolds number was 

estimated to reach 1.4 at the inlet cross section. Due to the diverging shape of the computational 

domain downstream, the Reynolds number was predicted to be under 1.4 in the entire domain, what 

allows to assure laminar flow regime throughout. Stationary, linearized governing equations of 

continuity and momentum conservation (Navier-Stokes) for incompressible flow are considered, 

with 

 𝜌∇ ⋅ 𝐮 = 0, (S1,1) 

 𝜌(𝒖 ⋅ ∇)𝒖 = ∇ ⋅ (−𝑝𝐼 + 𝜇(∇𝐮 + (∇𝐮)𝑇)) , (S1,2) 

where 𝜌 = 997 kg m3⁄  is the mass density, 𝒖 fluid velocity, and 𝑝 is pressure, 𝐼 unity matrix, 𝜇 =

0.75 mPa s dynamic viscosity. 

The governing equations were complemented with flow rate boundary condition at the inlet 𝜕Ω: 

 − ∫ 𝒖 ∙ 𝒏𝑑𝑆

𝜕Ω

= Q, (S1,3) 

where 𝒏 is the unit normal with respect to the boundary, Q is the total volumetric flow rate. A 

pressure boundary condition is applied at the outlet: 

 (−𝑝𝐼 + 𝜇(∇𝐮 + (∇𝐮)𝑇))𝒏 = 0. (S1,4) 

To realize the radial symmetry of the domain, a slip boundary condition was applied on the side 

walls, where 

 𝒖 ⋅ 𝒏 = 0. (S1,5) 

A non-slip boundary conditions are applied at fluid-solid interfaces: 

 𝒖 = 0. (S1,6) 

This system was solved using COMSOL Multiphysics 5.5 (COMSOL, Stockholm, Sweden). 

Velocity and pressure fields were discretized with a piecewise linear interpolation. Generalized 
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minimum residual (GMRES) iterative stationary solver based on the Krylov subspace method was 

used for the system analysis. 

 

Computational mesh analysis 

Tetrahedral mesh elements were used for the domain discretization (Fig. S2b). A mesh convergence 

study was conducted using the approach from Devendran et al.4 and Muller et al..5 A convergence 

function 𝐶(𝑔) can be written as follows: 

 

𝐶(𝑔) = √
∫(𝑢𝑔 − 𝑢𝑟𝑒𝑓)

2
𝑑𝑥 𝑑𝑦 𝑑𝑧

∫(𝑢𝑟𝑒𝑓)
2

𝑑𝑥 𝑑𝑦 𝑑𝑧
, (S1,7) 

   

where 𝑔 is the current solution, ref is a reference solution. Current and reference solutions have 

maximum mesh element size of 𝑑𝑚 and 𝑑𝑚,𝑟𝑒𝑓 = 0.03 mm respectively with additional mesh 

refinement in the fluid boundary layer. Fig. S_c shows the convergence function decay with mesh 

refinement. Convergence threshold of 𝐶 < 0.005 realized in a computational meshes with 𝑑𝑚 =

0.07 mm used in this study (Fig. S1b). 
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Supplementary Information Note 2: 

Analytical calculation of the flow velocities and shear rates 

To assess the strength of the mechanical stimulus cells would experience in this device, flow rates 

and shear rates have been estimated following Rong Tsu Yen’s analytical study on radial flow 

between two parallel discs32. Figure 1E shows the flow at the bottom of the well and significant 

dimension such as the inlet radius 𝑟1, the plugin radius 𝑟2 and the channel height 2*b. It was 

assumed that the fluid is Newtonian and incompressible and that the flow is steady and laminar. 

Furthermore, the following variables were defined as: 

 

r  =  radial distance at any given point  (in mm) 

z = height in the channel at any point (in mm) 

b = channel height/2   (in mm) 

𝑟1 = inlet radius     (in mm) 

𝑟2 = plugin radius at its lowest point  (in mm) 

𝑣𝑟 = radial velocity component  (in mm) 

𝑣𝜃 = peripheral velocity component   (in mm) 

𝑣𝑧 = z-directional velocity component  (in mm) 

P = pressure     (in 𝑁 𝑚2⁄ ) 

∆𝑃 = pressure difference   (in 𝑁 𝑚2⁄ ) 

𝜇 = dynamic viscosity    (in 
𝑁

𝑚2 𝑠) 

Q = volumetric flow     (in 𝑚3 𝑠⁄ ) 

�̇� = shear rate    (in 1 𝑠⁄ ) 

𝜏 = shear stress    (in 𝑁 𝑚2⁄ ) 
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Under the assumption of radial flow 𝑉𝜃 = 𝑉𝑧 = 0, one can follow Yen [1] and use the Navier Stokes 

equation to devise the following differential equation describing the flow velocity for r1 < r < r2 

and -b < z < b. 

Equation 1, Flow velocity: 

𝑉𝑟(𝑟, 𝑧) =  
𝑏2∆𝑃

2𝜇𝑟 ln(𝑟2 𝑟1)⁄
  [1 − (

𝑧

𝑏
)

2
]        

 (S2,1) 

 

The pressure difference (∆𝑃) is unknown. But it is a function of the volumetric flow rate. Since the 

volumetric flow rate is determined by the syringe pump, it is a known variable and can be used to 

eliminate the pressure difference from the equation. The volumetric flow rate can be expressed by 

integrating the velocity profile from -b to +b over the circumference. 

 

𝑄 =  ∫ 𝑣𝑟 ∗ 2𝜋𝑟
𝑏

−𝑏
  𝑑𝑧                     (S2,2) 

 

Substituting the velocity profile from equation 1 gives: 

Equation 2, Volumetric flow rate: 

𝑄    =     ∫  2𝜋𝑟
  𝑏

−𝑏

  
𝑏2∆𝑃

2𝜇𝑟 ln(𝑟2 𝑟1)⁄
  [1 − (

𝑧

𝑏
)

2

] 𝑑𝑧 

=   
𝜋𝑏2∆𝑃

𝜇 ln(𝑟2 𝑟1)⁄
 [𝑧 −

𝑧3

3𝑏2
]−𝑏

   𝑏  

=  
4𝜋𝑏3∆𝑃

3𝜇 ln(𝑟2 𝑟1)⁄
           (S2,3) 

 

Solving equation 2 for ∆𝑃 gives: 

∆𝑃 =  
3𝑄𝜇 ln(𝑟2 𝑟1)⁄

4𝜋𝑏3           (S2,4) 
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Substituting ∆𝑃 in equation 1 enables the calculation of the flow velocity: 

𝑉𝑟(𝑟, 𝑧) =  
𝑏2 3𝑄𝜇 ln(𝑟2 𝑟1)⁄

4𝜋𝑏3

2𝜇𝑟 ln(𝑟2 𝑟1)⁄
  [1 − (

𝑧

𝑏
)

2

] 

=  
3𝑄

8𝜋𝑏𝑟
 [1 − (

𝑧

𝑏
)

2
]           (S2,5) 

 

To obtain the shear rate, the flow velocity (𝑉𝑟) was differentiated: 

�̇� =  
𝑑𝑉𝑟

𝑑(𝑧)
 =  −2𝑧 

3𝑄

8𝜋𝑏3𝑟
         

 (S2,6) 

 

Multiplying the shear rate with the fluids dynamic viscosity 𝜇 gives the following shear stress 

equation. 

Equation 1, Shear stress: 

𝜏 =  −2𝑧 𝜇 
3𝑄

8𝜋𝑏3𝑟
          (S2,7) 

 

To obtain the shear stress at the bottom of the well we can insert the following parameters into this 

equation. 

 

z = -b 

b = 100 μm   (distance to bottom of the well) 

µ = 0.75 mPa s  (dynamic viscosity of extracellular solution) 
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𝜏  =  −2 ∗ (−𝑏)𝜇 
3𝑄

8𝜋𝑏2𝑟
 =  𝜇 

6𝑄

8𝜋𝑏2𝑟
        (S2,8) 

   

This enables the calculation of shear stress at different points on the bottom of the well for a known 

injected volumetric flow rate (e.g., 50 μl/min). 

Q = 50 μl/min = 8.3 ∗ 10−10 𝑚3 𝑠⁄  

 

𝜏  =  
9𝑁𝑠 ∗ 𝑄

16𝜋𝑚4𝑟
∗ 106  =  

9𝑁𝑠 ∗ 8. 3̅ 𝑚3 𝑠⁄

16𝜋𝑚4𝑟
∗ 10−4 =  

9𝑁 ∗ 8. 3̅

16𝑚𝜋𝑟
∗ 10−4 
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Supplementary Information Note 3: 

Supplementary Video 1 

This video presents the flow-induced R-GECO1 fluorescence response in HEK293 cells expressing 

the mechanosensitive protein GPR68. Utilizing the flow plugin, the images were recorded from the 

bottom of the well with an Inverted Fluorescence Microscope IX73 (Olympus, Japan). The 

exposure time was selected to be 1 second. This video is played back at 10 frames per second, 

effectively increasing the playback speed by a factor of 10. A channel height of 200 μm was chosen, 

and this was paired with a flow injection rate of 50 μl/min, sustained for a 20-second interval. The 

injection was initiated 10 seconds after the commencement of the recording. The white scale bar in 

the video corresponds to a distance of 200 μm. The injection inlet is situated in the lower left corner 

of the field of view, with its outer boarder discernible as an arc. The high magnification employed 

results in the circular flow off area and the feet being outside the boundaries of the observed area. 

Elevated R-GECO1 fluorescence is evident in many cells following the initial application of flow. 

Subsequent gradual declines return the fluorescence to baseline levels during the course of the 

recording. This observed effect seems to diminish with increasing distance to the inlet located at 

the bottom left of the field of view, with the area directly beneath the inlet forming a noticeable 

exception. 
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Supplementary Figures  

 

 

 

Fig. S1: Computational domain (a). Computational mesh (b). Mesh convergence analysis (c). 
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Fig. S2: Maximal relative fluorescence intensity for 50 < t < 100 interval plotted against orbital 

diameter dependent shear stress. 
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