Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2023

1 Electronic Supplementary information (ESI)

2 High-Performance Cation Electrokinetic Concentrator

³ Based on γ-CD/QCS/PVA Composite and Microchip for

4 Evaluating the Activity of P-glycoprotein with

5 Interference-Free from Serum Albumin

6 Runhui Zhang^{1#}, Jun Xu^{1#}, Jieqi Deng¹, Wei Ouyang², Hanren Chen¹, Qing Tang¹,

7 Shiquan Zheng¹, Lihong Liu^{1*}

⁸ ¹NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong

9 Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,

- 10 Southern Medical University, Guangzhou, 510515, China
- 11 ²Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL
- 12 60208, United States
- 13 [#] These authors contributed equally to this work.
- 14 *Corresponding Author
- 15 NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial
- 16 Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical

17 University, Guangzhou, 510515, China; orcid.org/0000-0003-3631-2148;

18 Email: lhliu@smu.edu.cn (L. Liu)

19

20 Contents

21	Materials and reagents)
22	Experimental Section	;
23	Scheme S1. Schematic diagram of quaternized chitosan synthesis	5
24	Fig. S1 AEM line on the glass substrate after the PDMS mold was removed	5
25	Fig. S2 FTIR spectra of CS, QCS, and γ-CD/QCS/PVA AEM.	7
26	Fig. S3 SEM of the AEM composite in hydrated state. A: SEM of surface; B: SEM of section	3
27	Fig S4 Images of the channel before (A) and after (B) AEM; Images of both sides of the channel	1
28	with AEM, (C) left sides, (D) right sides)
29	Fig. S5 Stacking band of different cationic analyte)
30	Fig. S6 Effect of the content of PVA on electrokinetic concentration performance of the system. 11	l
31	Fig. S7 Effect of the contents of QCS on electrokinetic concentration performance of the system	•
32		,

33	Fig. S8 Effects of different contents of γ -CD on electrokinetic concentration of CEC13
34	Fig. S9 Effects of different types of CD on electrokinetic concentration of CEC14
35	Fig. S10 Effect of the different concentration of the γ -CD/QCS/PVA composite on CEC enrichment
36	performance15
37	Fig. S11 Effects of PBS concentrations on fluorescent bands of 1 nM Rho 12316
38	Fig. S12 Effects of serum concentrations on fluorescent bands.of 1 nM Rho 12317
39	Fig. S13 Effects of different storing time of γ -CD/QCS/PVA composite on fluorescent bands of 1
40	nM Rho 123
41	Fig. S14 Reusability of one CEC-Y. The buffer was 0.5 ×PBS, the sample was 1 nM Rho 12319
42	Fig. S15 Reusability of one CEC-Y on Rho 123 (1 nM) in 1% serum sample20
43	Fig. S16 The cytotoxicity of VER and 18α-GA on Caco-221
44	Table S1 Comparison of previously reported electrokinetic concentrators with our work
45	Table S2. Ranges for the examined parameters and the selected optimal mass proportion of each
46	component of AEM based fluorescence intensity
47	Table S3. Comparison of the methods on the analysis of Rho 123
48	Table S4. Spiked results of Rho123 in 1% serum and 0.3% Cell culture medium sample25
49	Table S5. The approximate material cost of the CEC
50	Table S6. Pharmacokinetic parameters of Rho123 in rats after intragastrical administration of
51	Rho123 with or without treatment of VER
52	Table S7 List of Abbreviations

54 Materials and reagents

55 Chitosan (CS) and polyvinyl alcohol (PVA) were purchased from China National Pharmaceutical Group 56 Corporation (Beijing, China) and Sangon Biotech Co., Ltd. (Shanghai, China), respectively. y-57 cyclodextrin (γ-CD), glutaraldehyde (GA), melamine (MA), 2,3-epoxy propyl trimethyl ammonium 58 chloride (GTAC), verapamil (VER) and 18 α - glycyrrhetinic acid (18 α - GA) were provided by Shanghai 59 Macklin Biochemical Co., Ltd. (Shanghai, China). Phosphate buffered saline (PBS, pH=7.4) was 60 supplied by Guangzhou Alexan Biotech company (Guangzhou, China). Platinum wire electrode was purchased from Xiya Reagents (Shandong, China). Poly dimethyl diallyl ammonium chloride 61 62 (PDADMAC) was supplied by Sigma-Aldrich (Shanghai, China). Sylgrd 184 silicone elastomer 63 polydimethylsiloxane (PDMS) was provided by Dow Corning (Midland, MI, USA). Rhodamine 123 (Rho123) was purchased from Yuanye Biotechnology Co., Ltd. (Shanghai, China). Fluorescence was 64 65 recorded using an inverted fluorescence microscope (Leica DMIL LED, Ernst & Company, Vetzlar, 66 Germany) equipped with a CCD camera (Leica DFC 360 FX) and quantified by the free software ImageJ. A DC power supply (MP3001D, Maisheng, Dongguan, China) was used to supply DC voltages for on-67 line electrokinetic concentration. The physical structure of AEMs were characterized using TEM (Hitach. 68 69 H, Tokyo, Japan). The chemical structures of CS, QCS and AEMs were confirmed by FTIR (Jasco Inc., 70 Easton, MD, USA). 71 The Caco-2 cells were supplied by the Chinese Academy of Sciences and cultured in Minimum 72 Essential Medium (MEM) (Procell Life Science & Technology Co. Ltd., Wuhan, China) containing 10%

fetal bovine serum (FBS) (Excellbio Biological Products Co. Ltd., Shanghai, China) and 1% penicillin
and streptomycin (P/S) (Gibco, Thermo Fisher Scientific, Shanghai, China) at 37 °C under a humidified

75 5% CO₂ conventional conditions in a cell incubator (Yiheng Scientific Instrument Co. Ltd., Shanghai,

76 China). A 24-well Transwell chamber (Corning, USA) was used to seed Caco-2 cells. The cell viability

of Caco-2 cells was detected by CCK-8 kit (Sigma, USA) and using a SpectraMax i3x Multi-Mode
 microplate reader (Molecular Devices, USA) to detect the optical density.

79 Experimental Section

80 1. Modification of the channel walls with PDDAC

81 The microfluidic chip was loaded with 0.1% PDDAC solution and equilibrated at room temperature for

82 5 min, then the channels were thoroughly rinsed with water and used immediately without further

83 treatment. PDDAC forms an electrostatic adsorption monolayer on the microchannel walls, resulting in

84 a positive net charge on the microchannel walls and a reverse EOF in the microchannel under electric

85 field.

86 2. Establishment of Caco-2 Cell Model

A 24-well Transwell chamber was used to seed 2×10^5 Caco-2 cells and supplied with MEM (containing 12% FBS and 1% P/S) for Transwell cell culture, which added 600 µl medium in basolateral (BL) side and 300 µl medium in apical (AP) side. The medium was changed every 2 days in the first week, and changed once daily in the rest experimental days. When the cells were cultured in the Transwell chamber to the tenth day, the trans-epithelial electrical resistance (TEER) was measured every 3 days to determine the growth of Caco-2 cells. Figure S9b shows that after 21 days of growing on Transwell inserts, the Caco-2 cells had formed an intact and confluent epithelial cell layer that can be used for further studies

94 3. Determination of Cell viability

VER was selected as a P-gp expression inhibitor in Caco-2 cell model, and 18α-GA was used as a P-gp
expression agonist in CacO-2 cell model. Next, we investigated the cytotoxicity of the two drugs as
follows.

98 Caco-2 cells were seeded in a 96-well plate at a density of 5,000 cells per well and incubated for 24 h, 99 then the cells were incubated with different concentrations of 18α -GA (10 μ M, 50 μ M, 100 μ M) and 100 VER (10 μ M, 50 μ M, 100 μ M) in combination with Rho 123 (10 μ M) for 12 h, respectively. The viability 101 of Caco-2 cells was determined by the Cell Counting Kit-8 (CCK-8) assay according to the 102 manufacturer's instruction. Briefly, the cultured cells were rinsed with 200 μ l PBS/well three times, and 103 added 10 μ l CCK-8 solution to each well, then optical density was detected at 450 nm using a SpectraMax 104 i3x Multi-Mode microplate reader after another 2 h incubation.

105 4. Establishment of standard curves for Rho123

106 The fluorescence intensity of a series of Rho123 gradient concentration of standard solution (10-3000 107 pM) was measured using CEC, Image J was used to process the fluorescence intensity (y) of all the Image

108 fluorescence bands, and the standard curve of fluorescence intensity (y) versus concentration (x) was

109 described.

110 5. Statistical analysis

111 The fluorescence intensity of the samples obtained from our enrichment platform at a certain

112 concentration dilution in bidirectional transport experiment was taken into the standard curve, and the

- 113 concentration at each time point was calculated. The apparent permeability coefficients (Papp) were
- 114 calculated in bidirectional transport experiments according to the following equation (2):

115
$$Papp = (dQ/dt)/(1/(A \times C_0))$$
 (1)

- 116 Where dQ/dt (µmol/s) is the slope of the cumulative amount transported in the receiving chamber, C₀
- 117 (µmol/L) is the initial concentration of Rho123, and A (0.33cm²) is the surface area of the cell
- 118 monolayer.
- 119 Efflux ratios (ER) were calculated according to the following equation (3):

$$120 \quad ER = Papp_{BL-AP}/Papp_{AP-BL} \tag{2}$$

Pharmacokinetic parameters, including the area under the plasma concentration-time curve (AUC),
maximal plasma concentration (C_{max}) etc. Pharmacokinetic parameters were calculated using the DAS
3.0 pharmacokinetic software (Chinese Pharmacological Association, Anhui, China).

Data were presented as mean and standard deviation, and the data analysis was performed using SPSS19.0 package (IBM SPSS Inc, Chicago, IL). The differences between the mean values were analyzed for significance using a one-way analysis of variance (ANOVA). In all statistical analyses, values of P < 0.05 were considered to indicate statistically significant.

128

- 131 Scheme S1. Schematic diagram of quaternized chitosan synthesis

135	Fig. S1 AEM line on the glass substrate after the PDMS mold was removed.

140 Fig. S2 FTIR spectra of CS, QCS, and γ -CD/QCS/PVA AEM. In FTIR, the absorption peak at 1480 141 cm⁻¹ was attributed to the bending vibration of C-H in the quaternary amine group. A characteristic peak 142 appeared at 1644 cm⁻¹, which successfully proved that the primary amine of chitosan backbone had been changed into a secondary amine structure. The appearance of the characteristic C-O-C peak at 1025 cm⁻ 143 ¹ can be seen after the addition of γ -CD. In addition, in FTIR of γ -CD/QCS/PVA AEM, the C-O stretching 144 145 vibration peak at 1415 cm⁻¹ was formed by the acetal reaction between -OH and -CHO, and the -CH 146 stretching vibration peak of the aldehyde group appeared at 2910 cm⁻¹, which indicated that the cross-147 linking reaction occurred in the AEM interior.

151 Fig. S3 SEM of the AEM composite in hydrated state. A: SEM of surface; B: SEM of section.

155 Fig. S4 Images around the AFM membrane in the channel. (A) Front. (B) Back. (C) Left. (B) Right.

158 Fig. S5 Stacking band of different cationic analyte, including Cationic Brilliant Red (CBR),

159 Berberine (BER) and Rho 123. Conditions: 0.1% PDDAC on the inner surface of the microchannel,

160 γ-CD/PVA/QCS AEM (3% PVA, 1%QCS, 2% GA, 2% MA and 1.5% γ-CD); 1 nM Rho 123; buffer

161 $0.5 \times PBS$ (pH 3.5); AEM microchannel dimension: 200 µm width and 45 µm depth; 150 V voltage.

- 165 Fig. S6 Effect of the content of PVA on electrokinetic concentration performance of the system.
- 166 Conditions: AEM (1%QCS, 3% PVA, 2% GA, 2% MA), other conditions as in Fig. S5.

- 169 Fig. S7 Effect of the contents of QCS on electrokinetic concentration performance of the system.
- 170 Conditions: AEM (3% PVA, 2% GA, 2% MA), other conditions as in Fig. S5.

- 172 Fig. S8 Effects of different contents of γ -CD on electrokinetic concentration of CEC. Conditions:
- 173 AEM (3% PVA, 1% QCS, 2% GA and 2% MA), other conditions as in Fig. S5.

176 Fig. S9 Effects of different types of CD on electrokinetic concentration of CEC. (a: QCS/PVA

177 AEM, b: α-CD/QCS-PVA AEM, c: β-CD/QCS-PVA AEM, d: γ-CD/QCS-PVA AEM). Other

178 conditions as in **Fig. S5**.

181 Fig. S10 Effect of the different concentration of the γ-CD/QCS/PVA composite on CEC enrichment

- 182 performance. Conditions: 0.1% PDDAC on the inner surface of the microchannel, γ -CD/PVA/QCS
- 183 AEM (PVA : QCS : GA : MA : γ -CD = 3:1:2:2:1.5); 1 nM Rho 123; buffer 0.5 × PBS (pH 3.5);
- 184 AEM microchannel dimension: 200 μ m width and 45 μ m depth; 150 V voltage.

2<u>00 μ</u>m

188 Fig. S11 Effects of PBS concentrations on fluorescent bands of 1 nM Rho 123.

2<u>00µ</u>m

190

191 Fig. S12 Effects of serum concentrations on fluorescent bands.of 1 nM Rho 123.

194 Fig. S13 Effects of different storing time of γ-CD/QCS/PVA composite on fluorescent bands of 1
195 nM Rho 123.

Fig. S14 Reusability of one CEC-Y. The buffer was 0.5 ×PBS, the sample was 1 nM Rho 123.

201 Fig. S15 Reusability of one CEC-Y on Rho 123 (1 nM) in 1% serum sample.

206 Fig. S16 The cytotoxicity of VER and 18 α -GA on Caco-2 was investigated by CCK-8 (a). The

- 207 relationship between the transmembrane resistance of Caco -2 monolayer cells and the growth time
- 208 (b)

2	1	1
2	1	2

Table S1. Comparison of previously reported electrokinetic concentrators with our work					
Nanochannel permselectivityNanochannel fabrication methodPermselective material			Enrichment factor	Ref.	
	AEM solution patterning	γ-CD/PVA/QCS AEM	120000	This work	
Anion	Salt leaching technique	PPO ^{a)} AEM	500	[1]	
permselective	Cationic gel photopolymerization	Cationic polyacrylamide gel	6400	[2]	
	Lithography and cationic polymer coating	TMSVE ^{d)}	500	[3]	

213 a) Poly (2,6-dimethyl 1,4-phenylene) oxide; b) Fluorescein isothiocyanate; c) Tris(bipyridine) ruthenium (II) chloride; d) N-[3- (trimethoxysilyl)propyl]-N'-(4-

214 vinylbenzyl) ethylenediamine hydrochloride; e) C-reactive protein; f) Bovine serum albumin

Table S2. Ranges for the examined parameters and the selected optimal mass proportion of each
 component of AEM based fluorescence intensity.

Parameters	Ranges (%)	Selected values (%)
PVA	0.5 – 4	3
QCS	0.25 - 2	1
γ-CD	0 - 2.5	1.5

219

Table S3. Comparison of the methods on the analysis of Rho 123

	5	
Methods	LOD	Ref
HPLC	105 pM (40 pg/mL)	[4]
CE-LIF	50 pM	[5]
MEKC-LIF	263 pM (100 pg/mL)	[6]
LC-ESI-MS	2.6 nM (1 ng/mL)	[7]
CEC	2.6 pM	This work

220 HPLC: high performance liquid chromatography; CE-LIF: capillary electrophoresis-laser-induced

221 fluorescence; MEKC-LIF: micellar electrokinetic chromatograph-laser-induced fluorescence; LC-

222 ESI-MS: Liquid chromatography - electrosprayionization mass spectrometry.

Sample	Spiked	Found	Recovery	Average	RSD
	(pM)	(pM)	(%)	(%)	(%)
	50	56	112.0		3.7
Serum	500	481	96.2	104.7	2.9
	2000	2174	108.7		2.7
	50	55	110.7		5.80
Cell culture medium	500	512	102.4	103.5	5.60
	2000	1946	97.3		4.10

224 Table S4. Spiked results of Rho123 in 1% serum and 0.3% Cell culture medium sample

	Decemintion	Sumlian	Order unit		CEC	
	Description	Suppner —	Quantity	Price	Quantity	Material Cost
γ-CD/PVA/QCS composite	PVA	Shanghai Aladdin Biochemical Technology Co., Ltd., China	1 Kg	¥203	0.039mg	¥0.0000079
-	CS	China National Pharmaceutical Group Co., Ltd., China	500 g	¥252	0.007 mg	¥0.0000035
	GTA	Shanghai Macklin Biochemical Co., Ltd., China	250 g	¥116	0.007 mg	¥0.0000016
	GA	Shanghai Macklin Biochemical Co., Ltd., China	500 mL	¥47	0.052 ul	¥0.0000030
	MA	Shanghai Macklin Biochemical Co., Ltd., China	500 g	¥73	0.026 mg	¥0.0000038
	γ-CD	Shanghai Macklin Biochemical Co., Ltd., China	5g	¥ 184	0.02 mg	¥0.000736
Chip	glass slide	Yancheng Feizhou Glass Co., LTD, China	50 pieces	¥8	1 piece	¥0.16
	Sylgard 184	DOW SILICONES CORPORATION, USA	19.9 Kg	¥13500	2 g	¥1.36
CEC					¥1.52	

 Table S5. The approximate material cost of the CEC

Table S6. Pharmacokinetic parameters of Rho123 in rats after intragastrical administration of
 Rho123 (5 mg/kg; n= 3, mean ± SD) with or without treatment of VER.

Parameters	Negative control group	tive control group Verapamil	
AUC $(0-t)$ (µg/L h)	38.41±4.16	104.29±5.14	0.00002
AUC $_{(0-\infty)}$ (µg/L h)	57.15±9.80	129.45±25.18	0.027
CLz(L/h/kg)	87.48±11.07	39.69±6.90	0.012
Vz (L/kg)	2008.32±1040.21	583.96±273.20	0.047
C_{max} (µg/L)	8.46±1.80	20.85±1.62	0.002

Table S7 List of Abbreviations

Abbreviations	Difinition
AEM	anion-exchange membranes
CEC	cation electrokinetic concentrator
AP-BL	Apical-to-basolateral
BER	Berberine
BL-AP	Basolateral-to-apical
CBR	Cationic Brilliant Red
CE	Cationic electrophoresis
CEM	Cation exchange membranes
CS	Chitosan
EF	Enrichment factor
EOF	Electroosmotic flow
ER	Efflux ratio
GA	Glutaraldehyde
HPLC	High-performance liquid chromatography
HSA	Human serum albumin
ICP	Ion concentration polarization
IDZ	Ion depletion zone
MA	Melamine
MDR1	Multidrug resistance protein 1
MS	Mass spectrometry
PDDAC	Poly dimethyl diallyl ammonium chloride
P_{app}	Apparent permeability coefficient
P-gp	P-glycoprotein
PVA	Polyvinyl alcohol
QCS	Quaternized chitosan
Rho 123	Rhodamine 123
SEM	Scanning electron microscopy
TEM	Transmission electron microscopy
VER	Verapamil
18α-GA	18α-glycyrrhetinic acid
γ-CD	γ-cyclodextrin

235 **References**

- 236 [1] M. Lee, H.J. Kwon, G. Lim, A Multiscale-Porous Anion Exchange Membrane for Convenient and
- 237 Scalable Electrokinetic Concentration of Cationic Species, Adv Funct Mater 31 (2021).
- 238 [2] S. Yamamoto, F. Okada, M. Kinoshita, et al., On-line microchip electrophoresis-mediated
- 239 preconcentration of cationic compounds utilizing cationic polyacrylamide gels fabricated by in situ
- 240 photopolymerization, Analyst 143 (2018) 4429-4435.
- 241 [3] I.H. Shin, K.J. Kim, J. Kim, et al., Cation-selective electropreconcentration, Lab Chip 14 (2014)
- 242 1811-1815.
- 243 [4] N. Hashimoto, N. Nakamichi, S. Uwafuji, et al., ATP binding cassette transporters in two distinct
- 244 compartments of the skin contribute to transdermal absorption of a typical substrate, Journal of
- 245 Controlled Release 165 (2013) 54-61.
- 246 [5] E. Yu, E. Ban, M.K. In, et al., Development for the analysis of reactive oxygen species using
- 247 capillary electrophoresis with laser-induced fluorescence detection, Journal of Microcolumn
- 248 Separations 13 (2001) 327-331.
- 249 [6] R. Li, R.a. Wu, M. Wu, et al., MEKC-LIF analysis of rhodamine123 delivered by carbon nanotubes
- 250 in K562 cells, Electrophoresis 30 (2009) 1906-1912.
- 251 [7] L. Xiu, M. Yuan, Y. Sun, et al., Jiangxi Journal of Chinese Traditional Medicine 45 (2014) 11-13.